Relationships Between Insect Pests and Weeds: an Evolutionary Perspective Author(S): John L
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morphological Systematics of the Nightshade Flea Beetles Epitrix
Clemson University TigerPrints All Theses Theses 8-2016 Morphological Systematics of the Nightshade Flea Beetles Epitrix Foudras and Acallepitrix Bechyné (Coleoptera: Chrysomelidae: Galerucinae: Alticini) in America North of Mexico Anthony Martin Deczynski Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_theses Recommended Citation Deczynski, Anthony Martin, "Morphological Systematics of the Nightshade Flea Beetles Epitrix Foudras and Acallepitrix Bechyné (Coleoptera: Chrysomelidae: Galerucinae: Alticini) in America North of Mexico" (2016). All Theses. 2479. https://tigerprints.clemson.edu/all_theses/2479 This Thesis is brought to you for free and open access by the Theses at TigerPrints. It has been accepted for inclusion in All Theses by an authorized administrator of TigerPrints. For more information, please contact [email protected]. MORPHOLOGICAL SYSTEMATICS OF THE NIGHTSHADE FLEA BEETLES EPITRIX FOUDRAS AND ACALLEPITRIX BECHYNÉ (COLEOPTERA: CHRYSOMELIDAE: GALERUCINAE: ALTICINI) IN AMERICA NORTH OF MEXICO A Thesis Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Master of Science Entomology by Anthony Martin Deczynski August 2016 Accepted by: Dr. Michael Caterino, Committee Chair Dr. Peter Adler Dr. J. Antonio Baeza ABSTRACT The flea beetle genera Epitrix and Acallepitrix are revised for America North of Mexico, building on a prior preliminary revision of the genus Epitrix by the author (Deczynski 2014). Four new species are described: Epitrix cuprea sp. nov., E. rileyi sp. nov., E. latifrons sp. nov., and E. vasinoda sp. nov., bringing the North American Epitrix fauna to a total of 26 species. A key is provided to adults of all species. -
Ladybirds, Ladybird Beetles, Lady Beetles, Ladybugs of Florida, Coleoptera: Coccinellidae1
Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY-170 Ladybirds, Ladybird beetles, Lady Beetles, Ladybugs of Florida, Coleoptera: Coccinellidae1 J. H. Frank R. F. Mizell, III2 Introduction Ladybird is a name that has been used in England for more than 600 years for the European beetle Coccinella septempunctata. As knowledge about insects increased, the name became extended to all its relatives, members of the beetle family Coccinellidae. Of course these insects are not birds, but butterflies are not flies, nor are dragonflies, stoneflies, mayflies, and fireflies, which all are true common names in folklore, not invented names. The lady for whom they were named was "the Virgin Mary," and common names in other European languages have the same association (the German name Marienkafer translates Figure 1. Adult Coccinella septempunctata Linnaeus, the to "Marybeetle" or ladybeetle). Prose and poetry sevenspotted lady beetle. Credits: James Castner, University of Florida mention ladybird, perhaps the most familiar in English being the children's rhyme: Now, the word ladybird applies to a whole Ladybird, ladybird, fly away home, family of beetles, Coccinellidae or ladybirds, not just Your house is on fire, your children all gone... Coccinella septempunctata. We can but hope that newspaper writers will desist from generalizing them In the USA, the name ladybird was popularly all as "the ladybird" and thus deluding the public into americanized to ladybug, although these insects are believing that there is only one species. There are beetles (Coleoptera), not bugs (Hemiptera). many species of ladybirds, just as there are of birds, and the word "variety" (frequently use by newspaper 1. -
Agricultural Experi2ant Station Potato Flea Beetle
AGRICULTURAL EXPERI2ANT STATION Oregon State College Win. A. Schoenfeld, Director Corvallis Circular of Information No. 227 December, 1940 POTATO FLEA BEETLE CONTROL By K. W. Gray, Assistant Entomologist Joe Schuh, Assistant in Entomology Don C. Mote, Head, Departmentof Entomology The potato flea-beetle, Epitrix cucumeris Harris,can be controlled by a well-executed dusting program. The information as to whatmaterial to use, when to apply it, and how much to use as based on experiments conductedto date will be found in the followingpages. Calcium Arsenate is MostEfficient Poison: A dust containing 20% calcium arsenate and 3% powderedsugar is suggested. The following is the mostconsistently efficient formula found: Calcium arsenate 20 pounds Powdered sugar 3 pounds iatomaceous earth 10 pounds Talc 67 pounds Insecticides other than calciumarsenate have given good results recommended because they but are not are more expensive and haveproven no more effective. Some of these are: roterione,cryolite, copper arsenate, green. sodium fluosilicate, and Paris Sprays containing calcium arsenate or the other aforementionedsubstances are as effective as the dusts containing these insecticides.They, however, are more expensive to apply because of the much greater cost ofspray machines and the time required in refilling thetank. Caution. Calcium arsenate is poisonousto man and animals as wellas flea- beet:les and for thatreason must be handled with ing. care to prevent accidental poison- Laboratory and field tests both indicate that hydratedlime is an inferior carrier for calcium arsenate when used to combatflea-beetles. Time of Applications is theMost Important Factor: 1. Potatoes Before 15 Do Not Require Dusting before 15 to 20. -
Insect Management
C H A P T E R 5 INSECT MANAGEMENT “change in form.” Pests of field crops undergo either sim- LEARNING OBJECTIVES ple or complete metamorphosis. After completely studying this chapter, you should: Group 1. Simple Metamorphosis I Understand how insects grow and develop. When insects that develop by simple metamorphosis hatch from their eggs, they resemble the adult insects I Understand the difference between simple and com- except that the immatures, or nymphs, do not have plete metamorphosis. wings. Nymphs periodically molt, growing larger. After I Be able to identify general and major insect pests of the final molt, nymphs become adults and generally have alfalfa, corn, dry beans, soybeans, small grains, and wings. Many pests of field crops such as potato leafhop- sugar beets. per, sugarbeet root aphid, tarnished plant bug, and grasshoppers develop by simple metamorphosis. I Be able to describe the life cycles and habitats of the Nymphs and adults are often found together in the crop major field crop pests. and usually eat the same food. Insect damage reduces crop yield or quality, or conta- minates the final product. Insects can also transmit plant diseases. To effectively control insect pests, you should understand how insects grow and develop. Egg Nymphs Adult GROWTH AND DEVELOPMENT A plant bug is an example of an insect with simple Growth metamorphosis. An insect’s body is confined in a protective exoskele- Group 2. Complete Metamorphosis ton. This hard outer covering does not grow continuous- ly. A new, soft exoskeleton is formed under the old one, Insects that develop by complete metamorphosis and the old exoskeleton is shed—a process called molt- make a radical change in appearance from immature to ing. -
Diabrotica Barberi
EPPO Datasheet: Diabrotica barberi Last updated: 2020-11-26 IDENTITY Preferred name: Diabrotica barberi Authority: Smith & Lawrence Taxonomic position: Animalia: Arthropoda: Hexapoda: Insecta: Coleoptera: Chrysomelidae Other scientific names: Diabrotica longicornis barberi Smith & Lawrence Common names: northern corn rootworm view more common names online... EPPO Categorization: A1 list view more categorizations online... more photos... EU Categorization: A1 Quarantine pest (Annex II A) EPPO Code: DIABLO Notes on taxonomy and nomenclature The subfamily Galerucinae (Coleoptera; Chrysomelidae) includes the economically important genus Diabrotica which comprises over 400 described species (including 107 valid species in North and Central America), and is one of the most speciose leaf beetle genera in the New World. Many Diabrotica species feed on flowers, leaves and roots of a wide variety of herbaceous plants, including agricultural crops, vegetables, fruits and ornamentals and are vectors of plant diseases (Derunkov et al., 2013) such as Squash mosaic virus (Krysan & Miller, 1986) or Fusarium spp. (Chiang, 1973). A key to separate Diabrotica from related genera is presented by Derunkov et al. (2015) but despite their bright colours and various patterns, Diabrotica species are notoriously difficult to identify at the species level. Diabrotica barberi Smith & Lawrence (the northern corn rootworm) was originally described as Galleruca longicornis by Say in 1824 and was subsequently transferred to the genus Diabrotica Chevrolat, 1843, considered only as a subspecies of Diabrotica longicornis (Say). However, based on laboratory and ?eld studies, Krysan et al. (1983) elevated the taxon to species level. They concluded that even when the two species occur in the same geographic areas, adults are found in different habitats and they show a clear sexual isolation that supports the decision to elevate D. -
Common Defoliating Beetles in Soybean
W 392 COMMON DEFOLIATING BEETLES IN SOYBEAN Scott Graham, Graduate Research Assistant Scott Stewart, Professor Department of Entomology and Plant Pathology typically emerge from eggs in less than two weeks JAPANESE BEETLE and then feed on grass roots. The larvae go through three instars, becoming fully grown by nine weeks Classification and Description after hatch. Full-grown, third instar white grubs tun- nel down in the soil to overwinter. After winter, white The Japanese beetle, Popillia japonica, is a scarab grubs crawl back up in the root zone to continue beetle commonly found in Tennessee. This beetle feeding until they enter a prepupal stage for roughly can be a pest of gardens, trees, shrubs, turfgrass 10 days. Adults emerge after an 8-20 day pupation and agricultural fields. Adults have a bright metallic period, depending on weather conditions. green head and thorax with copper-colored elytra (hardened wings) and a row of five spots of white Pest Status and Injury hairs on each side of the abdomen below the wings. They are oval shaped and vary in length from 8 to 11 Japanese beetles primarily feed on the upper foli- millimeters and a width of 5 to 7 millimeters. Larvae age of plants or on blooms, consuming leaf tissue or “white grubs” are found in the soil and vary in col- between veins leaving a lace-like skeleton. Although or from white to light gray and have a brown head. not a common problem, Japanese beetles may cause Japanese beetle white grubs have three pairs of legs. significant defoliation of soybean in Tennessee. -
Lepidoptera Sphingidae:) of the Caatinga of Northeast Brazil: a Case Study in the State of Rio Grande Do Norte
212212 JOURNAL OF THE LEPIDOPTERISTS’ SOCIETY Journal of the Lepidopterists’ Society 59(4), 2005, 212–218 THE HIGHLY SEASONAL HAWKMOTH FAUNA (LEPIDOPTERA SPHINGIDAE:) OF THE CAATINGA OF NORTHEAST BRAZIL: A CASE STUDY IN THE STATE OF RIO GRANDE DO NORTE JOSÉ ARAÚJO DUARTE JÚNIOR Programa de Pós-Graduação em Ciências Biológicas, Departamento de Sistemática e Ecologia, Universidade Federal da Paraíba, 58059-900, João Pessoa, Paraíba, Brasil. E-mail: [email protected] AND CLEMENS SCHLINDWEIN Departamento de Botânica, Universidade Federal de Pernambuco, Av. Prof. Moraes Rego, s/n, Cidade Universitária, 50670-901, Recife, Pernambuco, Brasil. E-mail:[email protected] ABSTRACT: The caatinga, a thorn-shrub succulent savannah, is located in Northeastern Brazil and characterized by a short and irregular rainy season and a severe dry season. Insects are only abundant during the rainy months, displaying a strong seasonal pat- tern. Here we present data from a yearlong Sphingidae survey undertaken in the reserve Estação Ecológica do Seridó, located in the state of Rio Grande do Norte. Hawkmoths were collected once a month during two subsequent new moon nights, between 18.00h and 05.00h, attracted with a 160-watt mercury vapor light. A total of 593 specimens belonging to 20 species and 14 genera were col- lected. Neogene dynaeus, Callionima grisescens, and Hyles euphorbiarum were the most abundant species, together comprising up to 82.2% of the total number of specimens collected. These frequent species are residents of the caatinga of Rio Grande do Norte. The rare Sphingidae in this study, Pseudosphinx tetrio, Isognathus australis, and Cocytius antaeus, are migratory species for the caatinga. -
Jordan Beans RA RMO Dir
Importation of Fresh Beans (Phaseolus vulgaris L.), Shelled or in Pods, from Jordan into the Continental United States A Qualitative, Pathway-Initiated Risk Assessment February 14, 2011 Version 2 Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Pest Risk Assessment for Beans from Jordan Executive Summary In this risk assessment we examined the risks associated with the importation of fresh beans (Phaseolus vulgaris L.), in pods (French, green, snap, and string beans) or shelled, from the Kingdom of Jordan into the continental United States. We developed a list of pests associated with beans (in any country) that occur in Jordan on any host based on scientific literature, previous commodity risk assessments, records of intercepted pests at ports-of-entry, and information from experts on bean production. This is a qualitative risk assessment, as we express estimates of risk in descriptive terms (High, Medium, and Low) rather than numerically in probabilities or frequencies. We identified seven quarantine pests likely to follow the pathway of introduction. We estimated Consequences of Introduction by assessing five elements that reflect the biology and ecology of the pests: climate-host interaction, host range, dispersal potential, economic impact, and environmental impact. We estimated Likelihood of Introduction values by considering both the quantity of the commodity imported annually and the potential for pest introduction and establishment. We summed the Consequences of Introduction and Likelihood of Introduction values to estimate overall Pest Risk Potentials, which describe risk in the absence of mitigation. -
Wildlife Review Cover Image: Hedgehog by Keith Kirk
Dumfries & Galloway Wildlife Review Cover Image: Hedgehog by Keith Kirk. Keith is a former Dumfries & Galloway Council ranger and now helps to run Nocturnal Wildlife Tours based in Castle Douglas. The tours use a specially prepared night tours vehicle, complete with external mounted thermal camera and internal viewing screens. Each participant also has their own state- of-the-art thermal imaging device to use for the duration of the tour. This allows participants to detect animals as small as rabbits at up to 300 metres away or get close enough to see Badgers and Roe Deer going about their nightly routine without them knowing you’re there. For further information visit www.wildlifetours.co.uk email [email protected] or telephone 07483 131791 Contributing photographers p2 Small White butterfly © Ian Findlay, p4 Colvend coast ©Mark Pollitt, p5 Bittersweet © northeastwildlife.co.uk, Wildflower grassland ©Mark Pollitt, p6 Oblong Woodsia planting © National Trust for Scotland, Oblong Woodsia © Chris Miles, p8 Birdwatching © castigatio/Shutterstock, p9 Hedgehog in grass © northeastwildlife.co.uk, Hedgehog in leaves © Mark Bridger/Shutterstock, Hedgehog dropping © northeastwildlife.co.uk, p10 Cetacean watch at Mull of Galloway © DGERC, p11 Common Carder Bee © Bob Fitzsimmons, p12 Black Grouse confrontation © Sergey Uryadnikov/Shutterstock, p13 Black Grouse male ©Sergey Uryadnikov/Shutterstock, Female Black Grouse in flight © northeastwildlife.co.uk, Common Pipistrelle bat © Steven Farhall/ Shutterstock, p14 White Ermine © Mark Pollitt, -
Chrysomela 43.10-8-04
CHRYSOMELA newsletter Dedicated to information about the Chrysomelidae Report No. 43.2 July 2004 INSIDE THIS ISSUE Fabreries in Fabreland 2- Editor’s Page St. Leon, France 2- In Memoriam—RP 3- In Memoriam—JAW 5- Remembering John Wilcox Statue of 6- Defensive Strategies of two J. H. Fabre Cassidine Larvae. in the garden 7- New Zealand Chrysomelidae of the Fabre 9- Collecting in Sholas Forests Museum, St. 10- Fun With Flea Beetle Feces Leons, France 11- Whither South African Cassidinae Research? 12- Indian Cassidinae Revisited 14- Neochlamisus—Cryptic Speciation? 16- In Memoriam—JGE 16- 17- Fabreries in Fabreland 18- The Duckett Update 18- Chrysomelidists at ESA: 2003 & 2004 Meetings 19- Recent Chrysomelid Literature 21- Email Address List 23- ICE—Phytophaga Symposium 23- Chrysomela Questionnaire See Story page 17 Research Activities and Interests Johan Stenberg (Umeå Univer- Duane McKenna (Harvard Univer- Eduard Petitpierre (Palma de sity, Sweden) Currently working on sity, USA) Currently studying phyloge- Mallorca, Spain) Interested in the cy- coevolutionary interactions between ny, ecological specialization, population togenetics, cytotaxonomy and chromo- the monophagous leaf beetles, Altica structure, and speciation in the genus somal evolution of Palearctic leaf beetles engstroemi and Galerucella tenella, and Cephaloleia. Needs Arescini and especially of chrysomelines. Would like their common host plant Filipendula Cephaloleini in ethanol, especially from to borrow or exchange specimens from ulmaria (meadow sweet) in a Swedish N. Central America and S. America. Western Palearctic areas. Archipelago. Amanda Evans (Harvard University, Maria Lourdes Chamorro-Lacayo Stefano Zoia (Milan, Italy) Inter- USA) Currently working on a phylogeny (University of Minnesota, USA) Cur- ested in Old World Eumolpinae and of Leptinotarsa to study host use evolu- rently a graduate student working on Mediterranean Chrysomelidae (except tion. -
Field Bindweed in California
ers, seeds, or seed capsules. The most Field bindweed in California destructive organisms are the seed bee- tles (Bruchidae), especially Sperrnopha- The outlook for biological control gus sericeus (Geoffroy). In Greece, smut caused by the fungus Thecophora se- minis-convolvuli (Desmaz.) Lioro infects Sara S. Rosenthal 0 Lloyd A. Andres 0 Carl B. Huffaker up to 17 percent of the seeds. Stem and root feeders. The remain- ing Mediterranean natural enemies at- tack the stems and roots. The agromyzid fly, Melanagromyza albocilia Hendel, is Biological control is seldom attempt- fornia, we have found a pattern that the most widespread stem borer. The ed against weeds on cultivated lands, may be used to help select the most pyralid moth, Noctuelia floralis because herbicides generally provide suitable European organisms for bio- (Huebner), attacks stems and roots ex- economical, efficient control, and farm- logical control. ternally. The most common root feeder ing practices may interfere with the Our discussion focuses on such spe- is the larva of the flea beetle, Longitar- biological agents. Field bindweed, how- cies and excludes many insects attract- sus pellucidus Foudras (or very near). ever, reproduces from seeds that may ed to the flowers for pollen or nectar as The adult feeds on the leaves. remain alive in the soil for more than 40 well as many crop pests for which field years and from an extensive perennial bindweed is an alternate host. For ex- California plant feeders root system. Control by cultivation or ample, we did not include the spider Foliage feeders. As might be expect- chemicals is difficult, at best. -
Root Maggots (Onion - Delia Antiqua; Cabbage - Delia Radicum)
Root Maggots (Onion - Delia antiqua; Cabbage - Delia radicum) Figure 2 Root maggot larvae, 1/4" long Figure 1 Adult, 1/4" long Figure 3 Damage to onion Damage The maggots feed on the roots and the bulbs (in the case of onions), creating numerous tunnels. Plants first begin to wilt and can eventually become stunted and yellowed. Heavily infested plants can ultimately die. When Are They Active Root maggots overwinter in the top few inches of garden soil. In late April - early May adult flies emerge to lay 50-200 white eggs on the soil near the base of crops. Eggs hatch in 3-7 days and larvae immediately begin feeding on the roots of the plants. Feeding continues for 3-4 weeks before larvae pupate in the soil. Susceptible Plants Onion maggots are an early season pest of root vegetables such as onion, garlic, carrot, and radish, whereas cabbage maggots are mainly a pest of cabbage, broccoli, cauliflower, Brussels sprouts, radishes, and turnips. Prevention Methods Most root maggot adults are attracted to rotting organic matter; avoid incorporating animal manure or green manure in spring. When possible, delay planting susceptible plants until the threat of root maggots is reduced, which is generally after June 1st. Plant crops in well-drained soils and only when the soil temperatures exceed 50° F. Row covers are effective during flight periods and must be set up in your garden by the time adults flies are laying eggs which is usually early to mid-May. Don't use row covers if onions or other root vegetables or cucurbits were planted in the same area the previous year.