L and Bcl-X Staying Alive

Total Page:16

File Type:pdf, Size:1020Kb

L and Bcl-X Staying Alive Staying Alive: T Cell Costimulation, CD28, and Bcl-x L Tania H. Watts This information is current as J Immunol 2010; 185:3785-3787; ; of September 25, 2021. doi: 10.4049/jimmunol.1090085 http://www.jimmunol.org/content/185/7/3785 Downloaded from References This article cites 39 articles, 20 of which you can access for free at: http://www.jimmunol.org/content/185/7/3785.full#ref-list-1 Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average by guest on September 25, 2021 Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2010 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Staying Alive: T Cell Costimulation, CD28, and Bcl-xL Tania H. Watts he survival of lymphocytes is tightly regulated at each cemented the role of CD28 as a key receptor for signal 2 for stage of their lifespan. Although this may seem ob- T lymphocyte activation (14–19). T vious to us today, prior to the early 1990s, the focus of At the time of the studies of Boise et al. (2), it had been most studies of T lymphocyte activation emphasized the established that CD28 engagement could induce high level regulation of cellular proliferation, with studies of cell death IL-2 production by increasing both the transcription of the focused on apoptosis during development (1). The paper of IL-2 gene (20) and the stability of its message (21). There was Boise et al. (2), highlighted in this Pillars of Immunology article, also evidence that signals through the TCR in the absence of provided two important new insights that brought to the accessory cells could induce apoptosis of mature T cells and forefront the concept that T cell costimulation provides critical that this could be prevented by addition of IL-2 (22–24). In survival signals to T cells. The first important insight was that contrast, mitogen-activated lymphocytes were resistant to Downloaded from costimulation through CD28 induces intrinsic survival signals irradiation-induced apoptosis (25), leading Boise et al. to in T cells, independently of the exogenous proliferative/survival suspect a role for costimulation in prevention of T cell death. signals induced by IL-2. Secondly, Boise et al. provided evi- At the same time, data were emerging suggesting that there dence that the intrinsic survival signal induced by CD28 was were intrinsic mechanisms that regulated lymphocyte survival. distinct from the homeostatic survival mechanisms in place in The Bcl-2 gene had been identified through its aberrant ex- resting T cells. pression in B cell lymphomas with the t(14;18) translocation http://www.jimmunol.org/ The two signal model of lymphocyte activation, as con- (reviewed in Refs. 26 and 27). Bcl-2 overexpression allowed ceptualized for T lymphocytes by Lafferty (3), posited that the survival of lymphocytes upon growth factor withdrawal “both antigen and an inductive stimulus are required for and had recently been shown to be critical for lymphoid T cell activation and neither factor alone induces detectable homeostasis (27, 28). Importantly, Boise et al. (2) had just T cell activation.” It was already recognized in the 1970s that cloned a homolog of Bcl-2, Bcl-xL, whose overexpression this inductive process required a metabolically active acces- could replace Bcl-2 in sustaining survival of IL-3–dependent sory cell. This concept was revisited again in the 1980s by cells upon cytokine withdrawal (29). These findings led Boise Jenkins and Schwartz (4) and by Quill and Schwartz (5), who et al. (2) to hypothesize that the costimulatory signal induced by guest on September 25, 2021 showed that provision of signal 1 without signal 2 (using ei- by CD28 might induce intrinsic survival signals in activated ther fixed APCs or purified MHC class II in planar mem- T cells. branes) led to clonal inactivation of murine T cell clones. To test this concept, the authors first demonstrated that These findings invigorated the search for the key molecule(s) activated T cells were more resistant than resting lymphocytes that could provide signal 2. However, it was an independent to cell death induced by gamma irradiation. The advantage of line of research on the characterization of human T cell sur- this approach was that irradiation could induce cell death face molecules using monoclonal Abs that led to the identi- independently of surface death receptors whose expression fication of CD28 as a key receptor for signal 2 for naive T cell could change with activation. Initial experiments showed that activation. Costimulation of T cells through the TCR and T cells activated by plate-bound anti-CD3 were more resistant CD28 greatly increased human T cell proliferation and IL-2 to cell death than cells left untreated, independently of the in- production (reviewed in Ref. 6). These findings were soon clusion of anti-CD28 in the stimulation. However, if they followed by the identification of the ligands for CD28, now washed the cells to remove accumulated cytokines in the super- known as B7.1 and B7.2 (7–11), as well as a second, inhib- natant, “the anti-CD3 only” cultures were more radiation itory, B7 binding receptor, CTLA-4 (12). Although not all sensitive, whereas the anti-CD3 plus anti-CD28–treated cul- immune responses were found to be CD28 dependent (13), tures remained resistant to irradiation-induced death. Addi- studies showing that CD28–B7 interactions could costimulate tion of IL-2 restored the resistance of the anti-CD3–treated T cells and prevent T cell clonal anergy, as well as the dra- cells, confirming that IL-2 could provide an extrinsic survival matic inhibitory effects of B7 blockade by CTLA-4-Ig in vivo, signal to activated T cells, but also demonstrating that costim- ulation reduced the requirement for IL-2 in T cell survival. However, at this stage they could not rule out that the anti- Department of Immunology, University of Toronto, Toronto, Ontario, Canada CD28 treatment was simply increasing the amount of IL-2 pro- T.H.W. holds the Sanofi Pasteur Chair in Human Immunology at the University of duced, rendering the washout experiment less effective. Toronto. Boise et al. (2) next went on to examine the induction of Address correspondence and repint requests to Dr. Tania H. Watts, Department of Bcl-2 and Bcl-x by anti-CD3 and anti-CD28. When exam- Immunology, University of Toronto, Toronto, Ontario, Canada M5S 1A8. E-mail L address: [email protected] ined at the protein level, Bcl-2 levels were constant in resting versus activated T cells, whereas Bcl-xL protein was mildly Copyright Ó 2010 by The American Association of Immunologists, Inc. 0022-1767/10/$16.00 induced by anti-CD3 and strongly induced by anti-CD3 plus www.jimmunol.org/cgi/doi/10.4049/jimmunol.1090085 3786 PILLARS OF IMMUNOLOGY anti-CD28. Although Bcl-2 message increases with T cell ac- 3. Lafferty, K. J., and J. Woolnough. 1977. The origin and mechanism of the allograft reaction. Immunol. Rev. 35: 231–262. tivation, it is not regulated by CD28 and the mRNA appears 4. Jenkins, M. K., and R. H. Schwartz. 1987. Antigen presentation by chemically to increase to maintain steady state levels of Bcl-2 protein as modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J. Exp. Med. 165: 302–319. the cells divide. Moreover, CD28 costimulation, but not stim- 5. Quill, H., and R. H. Schwartz. 1987. Stimulation of normal inducer T cell clones ulation through other surface molecules, such as LFA-1 or with antigen presented by purified Ia molecules in planar lipid membranes: specific CD2 or addition of exogenous IL-2, could augment Bcl-x induction of a long-lived state of proliferative nonresponsiveness. J. Immunol. 138: L 3704–3712. expression. Addition of CTLA-4-Ig to the cultures resulted 6. Linsley, P. S., and J. A. Ledbetter. 1993. The role of the CD28 receptor during T cell responses to antigen. Annu. Rev. Immunol. 11: 191–212. in the complete abrogation of Bcl-xL induction by anti-CD3. 7. Linsley, P. S., E. A. Clark, and J. A. Ledbetter. 1990. T-cell antigen CD28 mediates Thus, the low level induction of Bcl-xL by anti-CD3 alone adhesion with B cells by interacting with activation antigen B7/BB-1. Proc. Natl. may have been due to the presence of B7 on the activated Acad. Sci. USA 87: 5031–5035. 8. Freeman, G. J., A. S. Freedman, J. M. Segil, G. Lee, J. F. Whitman, and T cells. The peak induction of Bcl-xL expression by CD28 L. M. Nadler. 1989. B7, a new member of the Ig superfamily with unique ex- was coincident with the peak resistance to exogenous death pression on activated and neoplastic B cells. J. Immunol. 143: 2714–2722. signals induced by FAS cross-linking. Moreover, the overex- 9. Freeman, G. J., J. G. Gribben, V. A. Boussiotis, J. W. Ng, V. A. Restivo, Jr., L. A. Lombard, G. S. Gray, and L. M. Nadler. 1993. Cloning of B7-2: a CTLA-4 pression of Bcl-xL prevented apoptosis induced by FAS, anti- counter-receptor that costimulates human T cell proliferation.
Recommended publications
  • Systematic Examination of Antigen-Specific Recall T Cell
    Systematic Examination of Antigen-Specific Recall T Cell Responses to SARS-CoV-2 versus Influenza Virus Reveals a Distinct Inflammatory Profile This information is current as of November 24, 2020. Jaclyn C. Law, Wan Hon Koh, Patrick Budylowski, Jonah Lin, FengYun Yue, Kento T. Abe, Bhavisha Rathod, Melanie Girard, Zhijie Li, James M. Rini, Samira Mubareka, Allison McGeer, Adrienne K. Chan, Anne-Claude Gingras, Tania H. Watts and Mario A. Ostrowski Downloaded from J Immunol published online 18 November 2020 http://www.jimmunol.org/content/early/2020/11/17/jimmun ol.2001067 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2020/11/17/jimmunol.200106 Material 7.DCSupplemental Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on November 24, 2020 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2020 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published November 18, 2020, doi:10.4049/jimmunol.2001067 The Journal of Immunology Systematic Examination of Antigen-Specific Recall T Cell Responses to SARS-CoV-2 versus Influenza Virus Reveals a Distinct Inflammatory Profile Jaclyn C.
    [Show full text]
  • Dr. Tania Watts
    Interviews Interview with an Immunologist: Dr. Tania Watts Dario M. Ferri and Luke S. Dingwell r. Tania Watts received her After the initial shock dissipated, I started to think Well,“ Ph.D. in Biochemistry from we’re experts in viral immunology, we should do something” - the University of Alberta. She fortunately, I have colleagues in Dr. Mario Ostrowski and Dr. Dthen went on to do a post-doctoral Allison McGeer, both infectious diseases clinician scientists, fellowship at Stanford University so I reached out to them about the possibility of setting up studying T lymphocyte activation, which a project focused on studying human T cell responses to is where she first began to develop her SARS-CoV-2. Once we finalized our idea for the project, passion for immunology. During her there was a bit of a scramble to get all of the necessary post-doctoral work, Dr. Watts helped biosafety approval, but we began our work on SARS-CoV-2 to provide the first evidence for the immunity. I am very fortunate to have an extremely smart existence of a ternary complex existing and hardworking PhD student in Jaclyn Law, who in the between MHC II, peptide antigen, and past few months has had to completely pivot her PhD thesis Dr. Tania Watts the T cell receptor. In 1986, Dr. Watts work towards focusing on SARS-CoV-2 immunity. It was took up a faculty position at the University of Toronto Department also a very active collaboration with members of Mario of Immunology, where her research has been focused on T cell and Ostrowski’s team contributing their assays and expertise as viral immunity.
    [Show full text]
  • And CD137L Responses by Dual Costimulation with CD80
    Enhancement of HIV-Specific CD8 T Cell Responses by Dual Costimulation with CD80 and CD137L This information is current as Jacob Bukczynski, Tao Wen, Chao Wang, Natasha Christie, of September 28, 2021. Jean-Pierre Routy, Mohamed-Rachid Boulassel, Colin M. Kovacs, Kelly S. MacDonald, Mario Ostrowski, Rafick-Pierre Sekaly, Nicole F. Bernard and Tania H. Watts J Immunol 2005; 175:6378-6389; ; doi: 10.4049/jimmunol.175.10.6378 Downloaded from http://www.jimmunol.org/content/175/10/6378 References This article cites 57 articles, 30 of which you can access for free at: http://www.jimmunol.org/content/175/10/6378.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 28, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Enhancement of HIV-Specific CD8 T Cell Responses by Dual Costimulation with CD80 and CD137L1 Jacob Bukczynski,* Tao Wen,2* Chao Wang,* Natasha Christie,* Jean-Pierre Routy,† Mohamed-Rachid Boulassel,† Colin M.
    [Show full text]
  • Imm250h1f “Immunity and Infection” – Fall 2016
    IMM250H1F “IMMUNITY AND INFECTION” – FALL 2016 Students will be introduced to the basic concepts of immunity to infectious disease. We will trace the history of current ideas in immunology by examining how bacteria and viruses cause disease and the initial discoveries that led to such developments as vaccination. Current topical and newsworthy infectious diseases (HIV, Ebola, avian flu, Sepsis) will be used as examples of how the immune system copes with microbial infections and how breakdown of the immune response can lead to diseases such as autoimmunity. IMM250 is a required course for all immunology programs, however it is designed to fulfill breadth requirements and is an appropriate choice for students in other science or humanities programs. Development of writing skills through the composition of a science article for the general public is one objective of this course. Recommended Preparation: BIO120H, BIO130H COURSE DATES AND POLICIES Class time: Tuesdays, 10AM-12noon, Location: OISE Auditorium room G162, 252 Bloor Street. Course coordinator: Dr. Liliana Clemenza [email protected] All postings (lecture material and announcements) will be done on Blackboard. Please check the Portal regularly. Lecturers: Dr. L. Clemenza Office hours: Mondays 12:30-2:30pm, room MSB 7267. Please email in advance for appointment. Other meeting arrangements can be made upon request. Dr. Wendy Tamminen [email protected] Office hours: TBA Guest Lecturers: Dr. Tania Watts Dr. Brian Barber 1 Evaluation Summary and Event Dates: 1. Midterm Test: Weight 20% (multiple-choice questions), it will include the first 5 lectures. When: Tuesday October 11 2016, 11am-12noon (one hour) Location: Exam Centre, rooms: TBA, 255 McCaul Street.
    [Show full text]
  • GITRL on Inflammatory Antigen Presenting Cells in the Lung
    www.nature.com/mi ARTICLE GITRL on inflammatory antigen presenting cells in the lung parenchyma provides signal 4 for T-cell accumulation and tissue-resident memory T-cell formation Kuan-Lun Chu1, Nathalia V. Batista1, Kuan Chung Wang1, Angela C. Zhou1 and Tania H. Watts1 T-cell responses in the lung are critical for protection against respiratory pathogens. TNFR superfamily members play important roles in providing survival signals to T cells during respiratory infections. However, whether these signals take place mainly during priming in the secondary lymphoid organs and/or in the peripheral tissues remains unknown. Here we show that under conditions of competition, GITR provides a T-cell intrinsic advantage to both CD4 and CD8 effector T cells in the lung tissue, as well as for the formation of CD4 and CD8 tissue-resident memory T cells during respiratory influenza infection in mice. In contrast, under non- competitive conditions, GITR has a preferential effect on CD8 over CD4 T cells. The nucleoprotein-specific CD8 T-cell response partially compensated for GITR deficiency by expansion of higher affinity T cells; whereas, the polymerase-specific response was less flexible and more GITR dependent. Following influenza infection, GITR is expressed on lung T cells and GITRL is preferentially expressed on lung monocyte-derived inflammatory antigen presenting cells. Accordingly, we show that GITR+/+ T cells in the lung parenchyma express more phosphorylated-ribosomal protein S6 than their GITR−/− counterparts. Thus, GITR signaling within the lung tissue critically regulates effector and tissue-resident memory T-cell accumulation. Mucosal Immunology (2019) 12:363–377; https://doi.org/10.1038/s41385-018-0105-5 INTRODUCTION checkpoint for CD4 accumulation and shows only indirect effects Influenza remains an important human pathogen.
    [Show full text]
  • October/November 2018
    Department of Immunology Newsletter VOL VII – ISSUE 2 October/November 2018 Message from the Chair, UPCOMING EASTON SEMINARS Dr. Juan Carlos Zúñiga-Pflücker November 2018 With fall fully upon us and with the main MSB 2172 at 11:10 a.m. grant-writing season finally over, it is a good time to start thinking about upcoming events in the Monday, November 5 Department of Immunology. With this in mind, Dr. Graham Pawelec, PhD please note the save the date(s) section. "Interplay between Age, Immunity, Cancer and I am also looking forward to our next departmental CMV" faculty meeting, during which I will provide an Host: Dr. Tania Watts, PhD overview of the next strategic plan for our department. This new plan will be the 2nd Strategic Monday, November 12 Plan for the department, and will build on the many Dr. Alan Sher, PhD successes achieved from our initial strategic plan "Iron Dependent Targets for Host-Directed (2014-2018). In the meantime, we will be Therapy of TB" Host: Dr. David Brooks, PhD conducting interviews and discussion with many of our stakeholders and external advisors to ensure Monday, November 19 our plan reflects areas that still need improvement Dr. Michael Gold, PhD and highlights those that can be further developed. "B Cell Activation in Space and Time" I am also taking this opportunity to say that all look Host: Dr. Robert Rottapel, MD forward to hearing from all of you regarding any new ideas and/or advice that be included as part of Monday, November 26 —No Easton Seminar our new plan.
    [Show full text]
  • A Critical Role for TNF Receptor-Associated Factor 1 and Bim Down-Regulation in CD8 Memory T Cell Survival
    A critical role for TNF receptor-associated factor 1 and Bim down-regulation in CD8 memory T cell survival Laurent Sabbagh*, Cathy C. Srokowski*, Gayle Pulle*, Laura M. Snell*, Bradley J. Sedgmen*, Yuanqing Liu*, Erdyni N. Tsitsikov†, and Tania H. Watts*‡ *Department of Immunology, University of Toronto, 1 King’s College Circle, Toronto, ON, Canada M5S 1A8; and †CBR Institute for Biomedical Research, Harvard Medical School, WAB 124, 200 Longwood Avenue, Boston, MA 02468 Edited by Philippa Marrack, National Jewish Medical and Research Center, Denver, CO, and approved October 16, 2006 (received for review April 10, 2006) The mechanisms that allow the maintenance of immunological involved in the promotion as well as feedback inhibition of TRAF2- memory remain incompletely defined. Here we report that tumor mediated signaling events. necrosis factor receptor (TNFR)-associated factor (TRAF) 1, a protein In T cells, TRAF1 deficiency results in hyperresponsiveness to recruited in response to several costimulatory TNFR family mem- anti-CD3 and TNF stimulation in vitro, suggesting that TRAF1 is bers, is required for maximal CD8 T cell responses to influenza virus a negative regulator of T cell activation (14). In contrast, constitu- in mice. Decreased recovery of CD8 T cells in vivo occurred under tive overexpression of a TRAF1 transgene in a T cell antigen conditions where cell division was unimpaired. In vitro, TRAF1- receptor (TCR) transgenic model led to reduced antigen-induced deficient, antigen-activated T cells accumulated higher levels of the cell death (15). However, the effect of TRAF1 deficiency on proapoptotic BH3-only family member Bim, particularly the most antigen-specific T cell responses in vivo has not yet been analyzed.
    [Show full text]
  • Recent Advances in Immunology IMM1000Y-Syllabus
    Recent Advances in Immunology IMM1000Y Date/Time: Mondays 1:30-4:00pm (unless otherwise specified) Location: Health Science Building – Room 108 155 College Street TORONTO, ON, Canada M5T 1P8 Room 108 is a tentative location reserved for dates that will allow in-person lectures. Under the current circumstances lectures and student presentations will be held in an online, synchronous format (Mondays, 1:30-4:00pm). An invitation to a Zoom meeting will be provided by the course coordinator for each lecture. Note that lectures and student presentations will not be recorded. Course coordinator: Arthur Mortha ([email protected]) Please note that students who are not in the graduate program in Immunology need to obtain prior permission from the course coordinator to register for this course. Prerequisite: The prerequisite for this course is a basic background in Immunology obtained from at least one recent full-year undergraduate course. The course will be taught at a fairly advanced level. Students who are missing background knowledge in some areas should fill the gaps from textbook, discussions with colleagues, or advice from faculty members. Don’t hesitate to reach out. Recommended textbook: Primer to The Immune Response, 2nd Edition. Tak W. Mak, Mary Saunders, and Bradley Jett. 2014 (Academic Press). Evaluation Scheme & Course Assessments: Assessment % of Grade Due Date Midterm Exam 35% December 11, 2020 (4:00pm) Presentation 20% Throughout term Final Exam 45% March 29, 2021 (4:00pm) *All grading will be done by the professor/s who submitted the question or assigned the paper for presentation. The course coordinator will assemble the marks and administer the final mark.
    [Show full text]
  • And Enhance Igg2a Production in Vivo HLA-DM-Sufficient Antigen
    Chemical Chaperones Enhance Superantigen and Conventional Antigen Presentation by HLA-DM-Deficient as well as HLA-DM-Sufficient Antigen-Presenting Cells This information is current as and Enhance IgG2a Production In Vivo of September 24, 2021. Birinder Ghumman, Edward M. Bertram and Tania H. Watts J Immunol 1998; 161:3262-3270; ; http://www.jimmunol.org/content/161/7/3262 Downloaded from References This article cites 44 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/161/7/3262.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 24, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 1998 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Chemical Chaperones Enhance Superantigen and Conventional Antigen Presentation by HLA-DM-Deficient as well as HLA-DM-Sufficient Antigen-Presenting Cells and Enhance IgG2a Production In Vivo1 Birinder Ghumman, Edward M. Bertram, and Tania H. Watts2 Chemical chaperones, first defined in studies of mutant cystic fibrosis transmembrane conductance regulator proteins, are small molecules that act as stabilizers of proteins in their native state and have the ability in some cases to rescue protein-folding mutants within cells.
    [Show full text]
  • Chronic Viral Infection in Mice Ligand Expression on APC Subsets Over
    Conserved and Differential Features of TNF Superfamily Ligand Expression on APC Subsets over the Course of a Chronic Viral Infection in Mice Kuan C. Wang, Kuan-Lun Chu, Nathalia V. Batista and Tania H. Watts Downloaded from ImmunoHorizons 2018, 2 (11) 407-417 doi: https://doi.org/10.4049/immunohorizons.1800047 http://www.immunohorizons.org/content/2/11/407 http://www.immunohorizons.org/ This information is current as of October 3, 2021. Supplementary http://www.immunohorizons.org/content/suppl/2018/12/20/2.11.407.DCSup Material plemental References This article cites 33 articles, 10 of which you can access for free at: http://www.immunohorizons.org/content/2/11/407.full#ref-list-1 Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: by guest on October 3, 2021 http://www.immunohorizons.org/alerts ImmunoHorizons is an open access journal published by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. ISSN 2573-7732. RESEARCH ARTICLE Infectious Disease Conserved and Differential Features of TNF Superfamily Ligand Expression on APC Subsets over the Course of a Chronic Viral Infection in Mice Kuan C. Wang, Kuan-Lun Chu, Nathalia V. Batista, and Tania H. Watts Downloaded from Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada ABSTRACT http://www.immunohorizons.org/ There is currently much interest in how different APC subsets shape the immune response. We recently described a division of labor between classical dendritic cells (cDC) and inflammatory monocyte-derived APC in provision of costimulatory ligands to T cells early during chronic lymphocytic choriomeningitis clone 13 (LCMV 13) infection in mice.
    [Show full text]
  • 2017-2018 Immunology Seminar Series 12:00 – 1:00 PM, Scaife Auditorium 5 Contact: Jesse Rosenthal, [email protected], 412-648-7050
    2017-2018 Immunology Seminar Series 12:00 – 1:00 PM, Scaife Auditorium 5 Contact: Jesse Rosenthal, [email protected], 412-648-7050 SEPTEMBER 7 – Wajahat Mehal, MD, PhD, Yale University “Sterile Inflammation in the Liver” 14 – Geoffrey Camirand, PhD, University of Pittsburgh “Visualization of Treg suppressor function within non-lymphoid tissues” 21 – NO SEMINAR – Rosh Hoshanah 28 – NO SEMINAR – Department Retreat OCTOBER 5 – EBERLY LECTURE – Klaus Rajewsky, MD, Max Delbruck Center for Molecular Medicine “Signals Controlling Normal and Malignant B Cells” 12 – Charles Drake, MD, PhD, Columbia University “Immunotherapy for GU Cancers” 19 – NO SEMINAR – Science 2017 26 – Shruti Naik, MD, Rockefeller University “Memory of Inflammation in Epidermal Stem Cells” NOVEMBER 2 – Mike Rosenblum, MD, PhD, University of California, San Francisco “Regulatory T Cells in Skin – From Mice to Man” 9 – NO SEMINAR 16 – Robert Lafyatis, MD, University of Pittsburgh “Expansion of pro-fibrotic fibroblasts and macrophages in idiopathic pulmonary fibrosis” 23 – NO SEMINAR – THANKSGIVING 30 – Eugene Oltz, PhD, Washington University in St. Louis “Normal and Pathogenic Regulatory Circuits Governing Gene Expression in Human Lymphoid Cells” DECEMBER 7 – Michael Cancro, PhD, University of Pennsylvania “New subsets, new checkpoints: Expanding roles for Tbet+ B cells in health and disease” 14 – Greg Delgoffe, PhD, University of Pittsburgh 2017-2018 Immunology Seminar Series 12:00 – 1:00 PM, Scaife Auditorium 5 Contact: Jesse Rosenthal, [email protected], 412-648-7050
    [Show full text]
  • Chronic Viral Infection in Mice Ligand Expression on APC Subsets Over
    Conserved and Differential Features of TNF Superfamily Ligand Expression on APC Subsets over the Course of a Chronic Viral Infection in Mice Kuan C. Wang, Kuan-Lun Chu, Nathalia V. Batista and Tania H. Watts Downloaded from ImmunoHorizons 2018, 2 (11) 407-417 doi: https://doi.org/10.4049/immunohorizons.1800047 http://www.immunohorizons.org/content/2/11/407 http://www.immunohorizons.org/ This information is current as of October 6, 2021. Supplementary http://www.immunohorizons.org/content/suppl/2018/12/20/2.11.407.DCSup Material plemental References This article cites 33 articles, 10 of which you can access for free at: http://www.immunohorizons.org/content/2/11/407.full#ref-list-1 Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: by guest on October 6, 2021 http://www.immunohorizons.org/alerts ImmunoHorizons is an open access journal published by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. ISSN 2573-7732. RESEARCH ARTICLE Infectious Disease Conserved and Differential Features of TNF Superfamily Ligand Expression on APC Subsets over the Course of a Chronic Viral Infection in Mice Kuan C. Wang, Kuan-Lun Chu, Nathalia V. Batista, and Tania H. Watts Downloaded from Department of Immunology, University of Toronto, Toronto, Ontario M5S 1A8, Canada ABSTRACT http://www.immunohorizons.org/ There is currently much interest in how different APC subsets shape the immune response. We recently described a division of labor between classical dendritic cells (cDC) and inflammatory monocyte-derived APC in provision of costimulatory ligands to T cells early during chronic lymphocytic choriomeningitis clone 13 (LCMV 13) infection in mice.
    [Show full text]