Production of J3-Glucosidase and Diauxic Usage of Sugar Mixtures by Candida Molischiana

Total Page:16

File Type:pdf, Size:1020Kb

Production of J3-Glucosidase and Diauxic Usage of Sugar Mixtures by Candida Molischiana 7559 431 Production of J3-glucosidase and diauxic usage of sugar mixtures by Candida molischiana Shelby N. Freer and Christopher D. Skory Abstract: The fennentation of cellobiose is a rare trait among yeasts. Of the 308 yeast species that utilize cellobiose aerobically. only 12 species fennent it, and only 2 species, Candida molischiana and Candida wickerhamii, also fennent cellodextrins. Candida molischiana produced l3-glucosidase activity on all carbon sources tested, except glucose, mannose, and fructose. When these sugars were added to cultures growing on cellobiose, the synthesis of l3-glucosidase ceased. However, the total amount of enzyme activity remained constant, indicating that the C. molischiana l3-glucosidase is catabolite repressed and not catabolite inactivated. When grown in medium initially containing glucose plus xylose, cellobiose. maltose, mannitol. or glucitol, C. molischiana preferentially utilized glucose and produced little l3-glucosidase activity until glucose was nearly depleted from the medium. When grown in medium containing cellobiose plus either fructose or mannose. the yeast preferentially utilized the monosaccharides and produced little l3-glucosidase activity. Candida molischiana produced l3-glucosidase and co-utilized cellobiose and xylose. maltose, or trehalose. Glucose and fructose. mannose. or trehalose were co-utilized; however, no l3-glucosidase activity was detected. Thus, the order of substrate preference groups appeared to be (glucose, trehalose. fructose, mannose) > (cellobiose, maltose, xylose) > (mannitol, glucitol). Key words: glucose repression, trehalase. diauxic utilization, yeast, Resume: La fennentation du cellobiose est un phenomene rare chez les levures. Pam1i 308 especes de levures qui utilisaient Ie cellobiose en aerobiose, seulement 12 Ie fennentaient et seulement 2 especes, Candida molischiana et Candida wickerhamii. fennentaient aussi les collodextrines. Candida molischiana avait une activite l3-glucosidase envers toutes les sources de carbone verifiees al'exception du glucose, du mannose et du fructose. Lorsque ces sucres etaient ajoutes ades cultures croissant en presence de cellobiose. la synthese de l3-glucosidase s'arretait, Par contre, l'activite enzymatique globale demeurait constante signifiant que la l3-glucosidase de C. moliochiana etait reprimee mais pas inactivee par un produit du catabolisme. Lorsque C. molischiana etait cultivee dans un milieu contenant au depart du glucose et soit du xylose. du cellobiose, du maltose, du mannitol ou du glucitol. la levure utilisait Ie glucose de fac;on preferentielle et son activite l3-glucosidase demeurait faible jusqu'au moment ou Ie glucose etait apeu pres epuise dan Ie milieu de culture. Lorsque cette levure etait cultivee dans un milieu contenant du cellobiose et soit du fructose ou du mannose. elle utilisait les monosaccharides de fac;on preferentielle et I'activite l3-glucosidase demeurait faible. Candida molischiana produisait une l3-glucosidase et co-utilisait Ie cellobiose et Ie xylose. Ie maltose ou Ie trehalose. Le glucose et Ie fructose, Ie mannose ou Ie trehalose etaient co-utilises, mais aucune activite l3-glucosidase n'etait detectee. L'ordre de preference pour les groupes de substrats apparalt done etre (glucose, trehalose, fructose, mannose) > (cellobiose. maltose. xylose) > (mannitol, glucitol). iV/ots eNs: repression par Ie glucose, trehalase, utilisation diauxique, levure. [Traduit par la redaction] Introduction Received September 26, 1995. Revision received December 16. 1995. Accepted December 19, 1995. Glucose. fructose. and mannose have significant effects upon S.N. Freer and C.D. Skory. Fennentation Biochemistry the expression of numerous genes in yeasts. Many ofthe genes Research Unit, National Center for Agricultural Utilization required for the metabolism of alternate carbon sources Research. Agricultural Research Service. U.S. Department of (sucrose. galactose. maltose. glyceroL and ethanol) are Agriculture (USDA), I 1815 N. University Street, Peoria. repressed during growth on glucose. while several genes IL 61604. U.S.A. involved in glucose utilization are induced during growth on glucose. Both glucose repression and glucose induction ofgene expression in Saccharomyces cerevisiae appears to be primar­ ily regulated at the transcriptional level (Johnston and Carlson 1993; Entian and Barnett 1992; Gancedo 1992; Trumbly 1992). Product names are necessary to report factually on available data. How·ever. the USDA neither guarantees nor warrants Sevetalof the gluconeogenic enzymes (cytosolic malate the standard of the product. and the use of the name by dehydrogenase. phosphopyruvate carboxykinase. isocitrate USDA implies no approval of the product to the exclusion lyase. etc.) are glucose (catabolite) inactivated. Generally. the of others that may also be suitable. inactivation of these enzymes by glucose starts 5-10 min after Can. J. Microbial. 42: 431-436 (1996). Printed in Canada / Imprime au Canada 432 Can. J. Microbial. Vol. 42, 1996 the addition of glucose to cells growing on nonfermentable The enzyme is produced constitutively. except that glucose. carbon sources and the activity of these enzymes is greatly fructose. and mannose at concentrations > 25 gIL. repress its reduced within I h. Glucose inactivation is irreversible and expression; the aeration state had no effect upon f3-glucosidase appears to depend upon targeting specific enzymes to the expression. Under all conditions tested. diauxic utilization of vacuole where they are inactivated by vacuole protease(s). The glucose-cellobiose mixtures was observed (Freer 1995). mechanism by which glucose triggers this process is unknown Because of the potential utility of these unique enzymes in (Entian and Barnett 1992; Holzer 1976). Although our under­ the biofuels and food and beverage industries. experiments standing of glucose repression in S. cerevisiae has increased were performed to characterize the effect that various sugar greatly in the last 10 years. the exact mechanism ofhow glucose mixtures have upon f3-g1ucosidase production by C. molis­ triggers the cessation of synthesis of specific enzyme is still chiana. The results showed that the f3-glucosidase was catabo­ incomplete and even less is known about the mechanisms that lite (glucose) repressed. while an extracytoplasmic trehalase regulate glucose repression in other yeasts. was constitutively produced. Because of the similarities Many yeasts utilize cellobiose when grown aerobically; between the f3-glucosidase and trehalase. this might be a valu­ however. few yeasts ferment it. Of the approximately able aid in studying the underlying mechanisms of glucose 800 known yeast species. 308 yeasts aerobically utilize cello­ repression in yeast. biose. while only 12 of these species also ferment it (Barnett 1976). The majority of the cellobiose-fermenting yeasts pro­ Materials and methods duce a cytoplasmic f3-IA-glucosidase(s) (EC 3.2.1.21) and ferment only cellobiose. In contrast. two yeast species. Can­ Source of chemicals and yeast dida molischiana and Candida ,vickerhamii (syn. Torulopsis Glucose. peptone. yeast extract. and malt extract were purchased from molischiana and Torulopsis wickerhamii. respectively). pro­ Difco Laboratories. Detroit. Mich. p-Nitrophenyl 13-o-gluco­ duce an extracytoplasmic f3-g1ucosidase(s) that enables them pyranoside (pNPG). 13-0-(+)-cellobiose. xylose. mannose. fructose. to ferment both cellobiose and cellodextrins of degree ofpoly­ maltose. trehalose. glucitol. mannitol. and the glucose detection kit. which was based upon the glucose oxidase - peroxidase reaction. merization 3 to 6 (Gonde et al. 1984; Freer and Detroy 1982; were purchased from Sigma Chemical Co.. St. Louis. Mo. All other LeClere 1984; Freer 1985. 1991; Vasserot et al. 1991). These chemicals were purchased from Fisher Scientific Co.• Fair Lawn. N.J. yeasts have potential for use in the production of fuel alcohol. The yeast NRRL Y-2237 Candida molischiana (Zikes) Meyer et When commercial fungal cellulase enzyme complex is used to Yarrow was obtained from the Agricultural Research Service Culture saccharify cellulose. one ofthe rate-limiting enzymatic steps is Collection. National Center for Agricultural Utilization Research. the conversion of cellobiose to glucose by f3-glucosidase Peoria. Ill. (Desrochers et al. 1981: Sternberg et al. 1977). If yeasts that ferment both glucose and cellobiose are used in the simultane­ Media and culture conditions ous saccharification-fermentation ofcellulose. 10-30% more The basal medium. adjusted to pH 6.0 with HCI. consisted ofpeptone. ethanol is produced (Freer and Detroy 1983; Spindler et al. yeast extract. and malt extract at concentrations of 5. 3. and 3 gIL. 1992) than in fermentations that employ S. cerevisiae (Savarese respectively. The basal medium was prepared at twofold concentration and Young 1978: Blotkamp et al. 1978: for a recent review see and the various carbon sources. dissolved in deionized distilled water. Grohman 1993). which is unable to ferment cellobiose. Addi­ were sterilized separately by autoclaving at 121°C for 20 min and tionally. yeast f3-glucosidases have potential for use in the food combined after cooling. Xylose was filter sterilized. Inocula were and beverage industry for the production offood flavors. Using prepared as described previously (Freer and Detroy 1982) by growing the yeast aerobically for 24 h in 20 mL of basal medium containing Muscat grape marc as a substrate. Vasserot et al. (1991) dem­
Recommended publications
  • A) and Co-Fermentation (B
    Simultaneous Co-Fermentation of Mixed Sugars: A Promising Strategy for Producing Cellulosic Biofuels and Chemicals Na Wei PI: Yong-Su Jin Energy Biosciences Institute /Institute for Genomic Biology University of Illinois at Urbana-Champaign Corn ethanol vs. Cellulosic ethanol Corn starch Cellulosic biomass Gelatinization Pretreatment + Cellulases Amylases Glucose + Xylose + Acetate Glucose + Fermentation inhibitors yeast yeast Ethanol + CO2 Ethanol + CO2 • Single sugar fermentation • Mixed sugar fermentation • No fermentation inhibitors • Fermentation inhibitors • Easy high loading • Difficulties in high loading 2 Saccharomyces cerevisiae: a workhorse strain for industrial ethanol production The most widely used yeast since ancient times in baking and brewing Osmotolerant and ethanol-tolerant Numerous genetic/genomic tools are available Overexpression / Knockout Expression of heterologous enzymes Cannot utilize xylose Not suitable for producing cellulosic biofuels 3 Basic strategy in metabolic engineering of xylose fermentation in S. cerevisiae Scheffersomyces stipitis Saccharomyces cerevisiae Xylose Xylose XYL1 Xylitol Xylitol XYL2 Xylulose Xylulose XYL3 X-5-P X-5-P PPP and Glycolysis PPP and Glycolysis Ethanol Ethanol . Natural xylose fermenting . High ethanol tolerance . Low ethanol tolerance . Amenable to metabolic engineering 4 Laboratory evolution of an engineered S. cerevisiae strain for further improvement DA24 n 16 Enrichment Single colony by serial culture isolation in 80 g/L of xylose Evaluation 5 Comparison of xylose fermentation capability between engineered S. cerevisiae and S. stipitis Engineered S. cerevisiae S. stipitis The engineered S. cerevisiae strain consumed xylose almost as fast as S. stipitis, the fastest xylose-fermenting yeast 6 Ha et al. PNAS, 108:504-509 Why we want to co-ferment cellobiose and xylose? Typical fermentation profile of glucose and xylose mixture Glucose Glycolysis Ethanol Pentose Phosphate Pathway CO2 Xylose 7 Engineered S.
    [Show full text]
  • Fermentation of Glucose and Xylose to Hydrogen in the Presence of Long Chain Fatty Acids
    University of Windsor Scholarship at UWindsor Electronic Theses and Dissertations Theses, Dissertations, and Major Papers 2009 Fermentation of Glucose and Xylose to Hydrogen in the Presence of Long Chain Fatty Acids Stephen Reaume University of Windsor Follow this and additional works at: https://scholar.uwindsor.ca/etd Recommended Citation Reaume, Stephen, "Fermentation of Glucose and Xylose to Hydrogen in the Presence of Long Chain Fatty Acids" (2009). Electronic Theses and Dissertations. 92. https://scholar.uwindsor.ca/etd/92 This online database contains the full-text of PhD dissertations and Masters’ theses of University of Windsor students from 1954 forward. These documents are made available for personal study and research purposes only, in accordance with the Canadian Copyright Act and the Creative Commons license—CC BY-NC-ND (Attribution, Non-Commercial, No Derivative Works). Under this license, works must always be attributed to the copyright holder (original author), cannot be used for any commercial purposes, and may not be altered. Any other use would require the permission of the copyright holder. Students may inquire about withdrawing their dissertation and/or thesis from this database. For additional inquiries, please contact the repository administrator via email ([email protected]) or by telephone at 519-253-3000ext. 3208. Fermentation of Glucose and Xylose to Hydrogen in the Presence of Long Chain Fatty Acids by Stephen Reaume A Thesis Submitted to the Faculty of Graduate Studies through the Environmental Engineering Program in Partial Fulfillment of the Requirements for the Degree of Master of Applied Science at the University of Windsor Windsor, Ontario, Canada 2009 © 2009 Stephen Reaume AUTHORS DECLARATION OF ORIGINALITY I hereby certify that I am the sole author of this thesis and that no part of this thesis has been published or submitted for publication.
    [Show full text]
  • Acute and Chronic Effects of Dietary Lactose in Adult Rats Are Not Explained by Residual Intestinal Lactase Activity
    Nutrients 2015, 7, 5542-5555; doi:10.3390/nu7075237 OPEN ACCESS nutrients ISSN 2072-6643 www.mdpi.com/journal/nutrients Article Acute and Chronic Effects of Dietary Lactose in Adult Rats Are not Explained by Residual Intestinal Lactase Activity Bert J. M. van de Heijning *, Diane Kegler, Lidewij Schipper, Eline Voogd, Annemarie Oosting and Eline M. van der Beek Danone Nutricia Research, PO Box 80141, TC Utrecht 3508, The Netherlands; E-Mails: [email protected] (D.K.); [email protected] (L.S.); [email protected] (E.V.); [email protected] (A.O.); [email protected] (E.M.B.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +31-30-2095-000. Received: 5 June 2015 / Accepted: 30 June 2015 / Published: 8 July 2015 Abstract: Neonatal rats have a high intestinal lactase activity, which declines around weaning. Yet, the effects of lactose-containing products are often studied in adult animals. This report is on the residual, post-weaning lactase activity and on the short- and long-term effects of lactose exposure in adult rats. Acutely, the postprandial plasma response to increasing doses of lactose was studied, and chronically, the effects of a 30% lactose diet fed from postnatal (PN) Day 15 onwards were evaluated. Intestinal lactase activity, as assessed both in vivo and in vitro, was compared between both test methods and diet groups (lactose vs. control). A 50%–75% decreased digestive capability towards lactose was observed from weaning into adulthood. Instillation of lactose in adult rats showed disproportionally low increases in plasma glucose levels and did not elicit an insulin response.
    [Show full text]
  • Bioresources.Com
    PEER-REVIEWED ARTICLE bioresources.com ADSORPTION OF CELLOBIOSE-PENDANT POLYMERS TO A CELLULOSE MATRIX DETERMINED BY QUARTZ CRYSTAL MICROBALANCE ANALYSIS Shingo Yokota,† Takefumi Ohta, Takuya Kitaoka,* and Hiroyuki Wariishi Cellobiose-pendant polymers were synthesized by radical polymerization and their affinity for a cellulose matrix was investigated by quartz crystal microbalance (QCM). A 2-(methacryloyloxy)ethylureido cellobiose (MOU-Cel) macromer was synthesized by coupling cellobiosylamine with 2-(methacryloyloxy)ethyl isocyanate followed by polymerization in an aqueous radical reaction system. The interaction of the resulting poly(MOU-Cel) with a pure cellulose matrix in water was evaluated by QCM analysis. Poly(MOU-Cel) was strongly adsorbed to the cellulose substrate, whereas neither cellobiose nor MOU-Cel macromer exhibited an attractive interaction with cellulose. This specific interaction was not inhibited by the presence of ionic contaminants, suggesting that multiple cellobiopyranose moieties in each polymer molecule might cooperatively enhance its affinity for cellulose. Moderate insertion of acrylamide units into the polymer backbone improved the affinity for cellulose, possibly due to an increased mobility of sugar side chains. Polymers such as these, with a high affinity for cellulose, have potential applications for the surface functionalization of cellulose-based materials, including paper products. Keywords: Cellobiose; Cellulose; Sugar-pendant polymer; Non-electrostatic interaction; Quartz crystal microbalance Contact information: Department of Forest and Forest Products Sciences, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan; †Present address: Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan; *Corresponding author: [email protected] INTRODUCTION Cellulose is the most abundant, renewable carbohydrate resource and has been widely used as a raw material in a variety of applications (Klemm et al.
    [Show full text]
  • Xylose Fermentation to Ethanol by Schizosaccharomyces Pombe Clones with Xylose Isomerase Gene." Biotechnology Letters (8:4); Pp
    NREL!TP-421-4944 • UC Category: 246 • DE93000067 l I Xylose Fermenta to Ethanol: A R ew '.) i I, -- , ) )I' J. D. McMillan I ' J.( .!i �/ .6' ....� .T u�.•ls:l ., �-- • National Renewable Energy Laboratory II 'J 1617 Cole Boulevard Golden, Colorado 80401-3393 A Division of Midwest Research Institute Operated for the U.S. Department of Energy under Contract No. DE-AC02-83CH10093 Prepared under task no. BF223732 January 1993 NOTICE This report was prepared as an account of work sponsored by an agency of the United States government. Neither the United States government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, com­ pleteness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily con­ stitute or imply its endorsement, recommendation, or favoring by the United States government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States government or any agency thereof. Printed in the United States of America Available from: National Technical Information Service U.S. Department of Commerce 5285 Port Royal Road Springfield, VA22161 Price: Microfiche A01 Printed Copy A03 Codes are used for pricing all publications. The code is determined by the number of pages in the publication. Information pertaining to the pricing codes can be found in the current issue of the following publications which are generally available in most libraries: Energy Research Abstracts (ERA); Govern­ ment Reports Announcements and Index ( GRA and I); Scientific and Technical Abstract Reports(STAR); and publication NTIS-PR-360 available from NTIS at the above address.
    [Show full text]
  • Cellobiose 2-Epimerase, Process for Producing
    (19) TZZ ¥ZZ_T (11) EP 2 395 080 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C12N 15/00 (2006.01) C12N 1/15 (2006.01) 06.08.2014 Bulletin 2014/32 C12N 1/19 (2006.01) C12N 1/21 (2006.01) C12N 5/10 (2006.01) C12N 9/90 (2006.01) (2006.01) (2006.01) (21) Application number: 10738433.1 C12N 15/09 C12P 19/00 (22) Date of filing: 25.01.2010 (86) International application number: PCT/JP2010/050928 (87) International publication number: WO 2010/090095 (12.08.2010 Gazette 2010/32) (54) CELLOBIOSE 2-EPIMERASE, PROCESS FOR PRODUCING SAME, AND USE OF SAME CELLOBIOSE 2-EPIMERASE, HERSTELLUNGSVERFAHREN DAFÜR UND VERWENDUNG CELLOBIOSE 2-ÉPIMÉRASE, PROCÉDÉ DE PRODUCTION DE CELLE-CI ET UTILISATION DE CELLE-CI (84) Designated Contracting States: (74) Representative: Daniels, Jeffrey Nicholas AT BE BG CH CY CZ DE DK EE ES FI FR GB GR Page White & Farrer HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL Bedford House PT RO SE SI SK SM TR John Street London WC1N 2BF (GB) (30) Priority: 05.02.2009 JP 2009025070 (56) References cited: (43) Date of publication of application: WO-A1-2008/062555 14.12.2011 Bulletin 2011/50 • PARK CHANG-SU ET AL: "Characterization of a (73) Proprietor: Hayashibara Co., Ltd. recombinant cellobiose 2-epimerase from Okayama-shi, Okayama (JP) Caldicellulosiruptor saccharolyticus and its application in the production of mannose from (72) Inventors: glucose.", APPLIED MICROBIOLOGY AND • WATANABE Hikaru BIOTECHNOLOGY DEC 2011 LNKD- PUBMED: Okayama-shi 21691788,vol.
    [Show full text]
  • Enhanced Trehalose Production Improves Growth of Escherichia Coli Under Osmotic Stress† J
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, July 2005, p. 3761–3769 Vol. 71, No. 7 0099-2240/05/$08.00ϩ0 doi:10.1128/AEM.71.7.3761–3769.2005 Copyright © 2005, American Society for Microbiology. All Rights Reserved. Enhanced Trehalose Production Improves Growth of Escherichia coli under Osmotic Stress† J. E. Purvis, L. P. Yomano, and L. O. Ingram* Department of Microbiology and Cell Science, Box 110700, University of Florida, Gainesville, Florida 32611 Downloaded from Received 7 July 2004/Accepted 9 January 2005 The biosynthesis of trehalose has been previously shown to serve as an important osmoprotectant and stress protectant in Escherichia coli. Our results indicate that overproduction of trehalose (integrated lacI-Ptac-otsBA) above the level produced by the native regulatory system can be used to increase the growth of E. coli in M9-2% glucose medium at 37°C to 41°C and to increase growth at 37°C in the presence of a variety of osmotic-stress agents (hexose sugars, inorganic salts, and pyruvate). Smaller improvements were noted with xylose and some fermentation products (ethanol and pyruvate). Based on these results, overproduction of trehalose may be a useful trait to include in biocatalysts engineered for commodity chemicals. http://aem.asm.org/ Bacteria have a remarkable capacity for adaptation to envi- and lignocellulose (6, 7, 10, 28, 30, 31, 32, 45). Biobased pro- ronmental stress (39). A part of this defense system involves duction of these renewable chemicals would be facilitated by the intracellular accumulation of protective compounds that improved growth under thermal stress and by increased toler- shield macromolecules and membranes from damage (9, 24).
    [Show full text]
  • Rapid Method for the Estimation of Total Free Monosaccharide Content of Corn Stover Hydrolysate Using HPAE-PAD
    Application Note 225 Note Application Rapid Method for the Estimation of Total Free Monosaccharide Content of Corn Stover Hydrolysate Using HPAE-PAD Valoran Hanko and Jeff Rohrer Thermo Fisher Scientific, Sunnyvale, CA, USA Introduction The Thermo Scientific™ Dionex™ CarboPac™ PA1 Compositional carbohydrate analysis of biocrop feedstock anion-exchange column rapidly elutes corn stover is essential to the efficient production of cellulosic carbohydrates, resolving the monosacccharides from the ethanol.1 Corn stover is the leaf, husk, stalk, and cob unretained and undetected noncarbohydrate components remaining in the field after harvest and makes up about of acid-hydrolyzed corn stover. Under these conditions, half the yield of a crop of corn. It can also contain weeds disaccharides and trisaccharides are also resolved, with a and grasses collected during the harvest of corn stover. total elution time less than 10 min. Thus, the sum of all Along with other lignocellulosic biomass, corn stover the carbohydrate peaks is a useful measure of the energy provides 1.3 billion tons of raw material annually and is a production potential of acid-hydrolyzed corn stover. common feedstock for fermentation systems used in The carbohydrate content of acid-hydrolyzed corn stover biofuel production.2 can be very high, and for some carbohydrates can even Corn stover is acid-hydrolyzed to release a water-soluble approach their saturation concentration in an aqueous mixture of carbohydrates, typically consisting of arabi- solution. When used for saccharide determinations, PAD nose, glucose, galactose, mannose, xylose, fructose, and with a gold working electrode is a sensitive detection cellobiose among other noncarbohydrate substances in method, but like other detection techniques it does not 0.5 to 1.5% (w/w) sulfuric acid.3,4 The concentration of have an unlimited linear range.
    [Show full text]
  • Converting Galactose Into the Rare Sugar Talose with Cellobiose 2-Epimerase As Biocatalyst
    molecules Article Converting Galactose into the Rare Sugar Talose with Cellobiose 2-Epimerase as Biocatalyst Stevie Van Overtveldt, Ophelia Gevaert, Martijn Cherlet, Koen Beerens and Tom Desmet * Centre for Synthetic Biology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Gent, Belgium; [email protected] (S.V.O.); [email protected] (O.G.); [email protected] (M.C.); [email protected] (K.B.) * Correspondence: [email protected]; Tel.: +32-9264-9920 Academic Editors: Giorgia Oliviero and Nicola Borbone Received: 17 September 2018; Accepted: 29 September 2018; Published: 1 October 2018 Abstract: Cellobiose 2-epimerase from Rhodothermus marinus (RmCE) reversibly converts a glucose residue to a mannose residue at the reducing end of β-1,4-linked oligosaccharides. In this study, the monosaccharide specificity of RmCE has been mapped and the synthesis of D-talose from D-galactose was discovered, a reaction not yet known to occur in nature. Moreover, the conversion is industrially relevant, as talose and its derivatives have been reported to possess important antimicrobial and anti-inflammatory properties. As the enzyme also catalyzes the keto-aldo isomerization of galactose to tagatose as a minor side reaction, the purity of talose was found to decrease over time. After process optimization, 23 g/L of talose could be obtained with a product purity of 86% and a yield of 8.5% (starting from 4 g (24 mmol) of galactose). However, higher purities and concentrations can be reached by decreasing and increasing the reaction time, respectively. In addition, two engineering attempts have also been performed.
    [Show full text]
  • Mechanism and Kinetics of Cellobiose Decomposition in Sub- and Supercritical Water
    Ind. Eng. Chem. Res. 1998, 37, 357-361 357 Mechanism and Kinetics of Cellobiose Decomposition in Sub- and Supercritical Water B. M. Kabyemela, M. Takigawa, T. Adschiri, R. M. Malaluan, and K. Arai* Department of Chemical Engineering, Tohoku University, Aza, Aoba, Aramaki, Aoba-ku, Sendai 980-77, Japan Cellobiose decomposition kinetics and products in sub- and supercritical water were studied with a flow apparatus at temperatures from 300 to 400 °C at pressures from 25 to 40 MPa, and at short residence times (0.04-2 s). Cellobiose was found to decompose via hydrolysis of the glycosidic bond and via pyrolysis of the reducing end. Pyrolysis products were glycosylerythrose (GE) and glycosylglycolaldehyde (GG) which were confirmed by FAB-MS. Hydrolysis products were glucose, erythrose, and glycolaldehyde from cellobiose, GE, and GG, respectively, as well as glucose decomposition products. The kinetics from glucose decomposition were used to fit the experimental results and evaluate rate constants of hydrolysis (kH) and pyrolysis rate constants (k1 and k2). The activation energy for the hydrolysis of cellobiose and pyrolysis products GG and GE was found to be 108.6, 110.5, and 106.1 kJ/mol, respectively. In the supercritical region, there was a decrease in the pyrolysis rates k1 and k2 and a corresponding increase in hydrolysis selectivity from 85% to 95% as the pressure increased from 30 to 40 MPa. Introduction Reaction times were in the order of 1-14 min, and the product analysis was able to account for 60% of the Cellulose hydrolysis products have the potential to cellobiose decomposition products.
    [Show full text]
  • Cofermentation of Glucose, Xylose and Arabinose by Genomic DNA
    GenomicCopyright © DNA–Integrated2002 by Humana Press Zymomonas Inc. mobilis 885 All rights of any nature whatsoever reserved. 0273-2289/02/98-100/0885/$13.50 Cofermentation of Glucose, Xylose, and Arabinose by Genomic DNA–Integrated Xylose/Arabinose Fermenting Strain of Zymomonas mobilis AX101 ALI MOHAGHEGHI,* KENT EVANS, YAT-CHEN CHOU, AND MIN ZHANG Biotechnology Division for Fuels and Chemicals, National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401, E-mail: [email protected] Abstract Cofermentation of glucose, xylose, and arabinose is critical for complete bioconversion of lignocellulosic biomass, such as agricultural residues and herbaceous energy crops, to ethanol. We have previously developed a plas- mid-bearing strain of Zymomonas mobilis (206C[pZB301]) capable of cofer- menting glucose, xylose, and arabinose to ethanol. To enhance its genetic stability, several genomic DNA–integrated strains of Z. mobilis have been developed through the insertion of all seven genes necessay for xylose and arabinose fermentation into the Zymomonas genome. From all the integrants developed, four were selected for further evaluation. The integrants were tested for stability by repeated transfer in a nonselective medium (containing only glucose). Based on the stability test, one of the integrants (AX101) was selected for further evaluation. A series of batch and continuous fermenta- tions was designed to evaluate the cofermentation of glucose, xylose, and L-arabinose with the strain AX101. The pH range of study was 4.5, 5.0, and 5.5 at 30°C. The cofermentation process yield was about 84%, which is about the same as that of plasmid-bearing strain 206C(pZB301). Although cofer- mentation of all three sugars was achieved, there was a preferential order of sugar utilization: glucose first, then xylose, and arabinose last.
    [Show full text]
  • Cellobiose/Mannitol Sugar Permeability Test Complements Biopsy Histopathology in Clinical Investigation of the Jejunum
    Gut: first published as 10.1136/gut.25.11.1241 on 1 November 1984. Downloaded from Gut, 1984, 25, 1241-1246 Cellobiose/mannitol sugar permeability test complements biopsy histopathology in clinical investigation of the jejunum S STROBEL, W G BRYDON, AND ANNE FERGUSON From the Gastro-Intestinal Unit, University ofEdinburgh and Western General Hospital, Edinburgh, Scotland SUMMARY Intestinal permeability to probe molecules has been shown to correlate closely with the presence or absence of villous atrophy in a jejunal biopsy. The purpose of this study was to establish if there exist groups of patients with functional derangement of intestinal permeability but normal histopathology of the small bowel mucosa. In 135 patients a cellobiose/mannitol permeability test was performed at the same time as jejunal biopsy. Diagnosis included coeliac disease, Crohn's disease, irritable bowel syndrome, idiopathic diarrhoea, self diagnosed food allergy, atopic eczema and postinfectious malabsorption. The value of the cellobiose/mannitol test in identifying patients with abnormal jejunal biopsy histopathology was confirmed. The permeability test was abnormal in all 28 patients with partial or subtotal villous atrophy, and also in all 10 in whom there was a high intraepithelial lymphocyte count despite normal villi and crypts. Functional abnormality of the small intestine has not previously been reported in patients with this jejunal biopsy abnormality. Abnormalities of permeability were also found in patients with idiopathic diarrhoea, folate deficiency, postinfectious or traveller's diarrhoea, small bowel Crohn's disease, and atopic eczema. These results show that sugar permeability tests have more potential in clinical investigation than merely serving as screening tests before jejunal biopsy.
    [Show full text]