The Dependency of the Energy on Wave Numbers__1 2

Total Page:16

File Type:pdf, Size:1020Kb

The Dependency of the Energy on Wave Numbers__1 2 SUBMITTED TO: Dr. RANJIT PRASAD BY: RAVI RANJAN,CSE019 MAYANK KUMAR,CSE049 ALOK HERMOM,CSE079 SAURAV KUMAR,CSE109 ON:JANUARY 10,2020 TOPIC: 1. THE DEPENDENCY OF THE ENERGY ON WAVE NUMBERS__1 2. THE DENSITY OF STATE CURVES___ 2 TABLE OF CONTENT 1.THE DEPENDENCY OF THE ENERGY ON WAVE NUMBERS__1 1.1 INTRODUCTION 1.2 ILLUSTRATION WITH DIAGRAM 1.3 DIFFERENT TYPES OF WAVE EQUATION 1.4 CONCLUSION 2. THE DENSITY OF STATE CURVES___2 2.1 INTRODUCTION 2.2 DENSITY OF CURVES 2.3 Fermi-Dirac Probability FuncSon 2.4 CONCLUSION The Dependence of Energy on Wavenumber In the physical sciences, the wavenumber (also wave number or repetency) is the spa8al frequency of a wave, measured in cycles per unit distance or radians per unit distance. Whereas temporal frequency can be thought of as the number of waves per unit 8me, wavenumber is the number of waves per unit distance. Diagram illustra8ng the rela8onship between the wavenumber and the other proper8es of harmonic waves. In mul8dimensional systems, the wavenumber is the magnitude of the wave vector. The space of wave vectors is called reciprocal space. Wave numbers and wave vectors play an essen8al role in op8cs and the physics of wave scaAering, such as X-ray diffrac8on, neutron diffrac8on, electron diffrac8on, and elementary par8cle physics. For quantum mechanical waves, the wavenumber mul8plied by the reduced Planck's constant is the canonical momentum. Wavenumber can be used to specify quan88es other than spa8al frequency. In op8cal spectroscopy, it is oIen used as a unit of temporal frequency assuming acertain speed of light. Wavenumber, as used in spectroscopy and most chemistry fields, is defined as the number of wavelengths per unit distance, typically cen8meters (cm−1):, where λ is the wavelength. It is some8mes called the "spectroscopic wavenumber". It equals the spa8al frequency. where, Rh is the Rydberg constant n1 is the ini8al shell number of the electron n2 is the final shell number of the electron In theore8cal physics, a wave number defined as the number of radians per unit distance, some8mes called "angular wavenumber", is more oIen used: When wavenumber is represented by the symbol ν, a frequency is s8ll being represented, albeit indirectly. As described in the spectroscopy sec8on, this is done through the rela8onship , Where vs is the frequency in hertz. This is done for convenience as frequencies tend to be very large. It has dimensions of reciprocal length, so its SI unit is the reciprocal of meters (m−1). In spectroscopy it is usual to give wavenumbers in cgs unit (i.e., reciprocal cen8meters; cm−1); in this context, the wavenumber was formerly called the kayser, aIer Heinrich Kayser (some older scien8fic papers used this unit, abbreviated as K, where 1 K = 1 cm−1). The angular wavenumber may be expressed in radians per meter (rad⋅m−1),or as above, since the radian is dimensionless. For electromagne8c radia8on in vacuum,wavenumber is propor8onal to frequencyand to photon energy. Because of this,wavenumbers are used as a unit of energy in spectroscopy. A complex-valued wavenumber can be defined for a medium with complex- valued rela8ve permi\vity , rela8ve permeability and refrac8on index n as: where k0 is the free-space wavenumber, as above. The imaginary part of the wavenumber expresses aAenua8on per unit distance and is useful in the study of exponen8ally decaying evanescent fields The Density of States 1. Density of States • MathemaScal funcSon that gives us the possible energy quantum state per unit volume per unit energy of the electrons inside the solid metal. £(E)=8√2πm3/2E1/2 …equaSon (1). H^3 2. Fermi-Dirac Probability Function · Func8on that describes the probability of the certain energy quantum state be- ing occupied by an electron in the metal solid at some temperature T. f(E)=1/. .. equa8on(2) · We can combine equa8on (1) and equa- 8on (2) n(E) = £(E).f(E) =8√2πm3/2E1/2 . h3 This equa8on is known as the density of occupied states. If we plot this equa8on on the XY plane and integrate it with respect to energy, then it gives us the number of electrons per unit volume which occupies quantum states between some range of energies at some par8cular temperature. · The shaded curve represents the density of occupied states, for a metal solid at some temperature T. · The curve present the density of states at absolute zero. · That shaded curve tells us what hap- pens to the electrons in the metal solid as we increase the temperature. By in- creasing the temperature by approxi- mately 1000K , we increase the energy of electrons by approximately 0.1eV . Since this is very small amount only the elec- trons very close to the Fermi energy level can actually jump to higher and quantum states. · Electrons with energy way below the Fermi level do not gain enough energy and remain in their quantum states. · The free electron theory describes that the outer electrons of all the atoms in the metal roam freely about their en8re metal solid, but very rarely do they actu- ally leave. Since electrons are trapped within the metal, we can imagine that the met- al is a final poten8al as well. That is why electrons have a poten8al energy of zero inside the well metal, but the poten8al energy to some high value at the edges of the metal. · Recall that a par8cle trapped in a po- ten8al well has quan8zed energy given by the following equa8on. · Similarly, electrons trapped in metal solids have quan8zed energy states. · By the Pauli exclusion principle, all elec- trons must be given by a unique set of quantums and only two electrons can be found in any given electron orbital. Since there is a very large number of electrons in solid metals, we can presume that there must be a very large number of possible energy states. £(E)= 8√2πm3/2E1/2 h^3 · Mathema8cal func8on called the densi- ty state, gives the distribu8on of all pos- sible quantum states per unit volume per unit in exit that the electrons in the met- als can take. · We can integrate the func8on between any two energy value to calculate the number of quantum states per unit vol- ume that exists between those energy values. .
Recommended publications
  • Quantum Theory of the Hydrogen Atom
    Quantum Theory of the Hydrogen Atom Chemistry 35 Fall 2000 Balmer and the Hydrogen Spectrum n 1885: Johann Balmer, a Swiss schoolteacher, empirically deduced a formula which predicted the wavelengths of emission for Hydrogen: l (in Å) = 3645.6 x n2 for n = 3, 4, 5, 6 n2 -4 •Predicts the wavelengths of the 4 visible emission lines from Hydrogen (which are called the Balmer Series) •Implies that there is some underlying order in the atom that results in this deceptively simple equation. 2 1 The Bohr Atom n 1913: Niels Bohr uses quantum theory to explain the origin of the line spectrum of hydrogen 1. The electron in a hydrogen atom can exist only in discrete orbits 2. The orbits are circular paths about the nucleus at varying radii 3. Each orbit corresponds to a particular energy 4. Orbit energies increase with increasing radii 5. The lowest energy orbit is called the ground state 6. After absorbing energy, the e- jumps to a higher energy orbit (an excited state) 7. When the e- drops down to a lower energy orbit, the energy lost can be given off as a quantum of light 8. The energy of the photon emitted is equal to the difference in energies of the two orbits involved 3 Mohr Bohr n Mathematically, Bohr equated the two forces acting on the orbiting electron: coulombic attraction = centrifugal accelleration 2 2 2 -(Z/4peo)(e /r ) = m(v /r) n Rearranging and making the wild assumption: mvr = n(h/2p) n e- angular momentum can only have certain quantified values in whole multiples of h/2p 4 2 Hydrogen Energy Levels n Based on this model, Bohr arrived at a simple equation to calculate the electron energy levels in hydrogen: 2 En = -RH(1/n ) for n = 1, 2, 3, 4, .
    [Show full text]
  • Quantum Coherence and Control in One-And Two-Photon Optical Systems
    Quantum coherence and control in one- and two-photon optical systems Andrew J. Berglund∗ Department of Physics and Astronomy, Dartmouth College, Hanover, NH 03755, USA and Physics Division, P-23, Los Alamos National Laboratory, Los Alamos, NM 87545, USA We investigate coherence in one- and two-photon optical systems, both theoretically and ex- perimentally. In the first case, we develop the density operator representing a single photon state subjected to a non-dissipative coupling between observed (polarization) and unobserved (frequency) degrees of freedom. We show that an implementation of “bang-bang” quantum control protects pho- ton polarization information from certain types of decoherence. In the second case, we investigate the existence of a “decoherence-free” subspace of the Hilbert space of two-photon polarization states under the action of a similar coupling. The density operator representation is developed analytically and solutions are obtained numerically. [Note: This manuscript is taken from the author’s un- photon polarization-entangled state that, due to its sym- dergraduate thesis (A.B. Dartmouth College, June 2000, metry properties, is immune to collective decoherence advised by Dr. Walter E. Lawrence), an experimental of the type mentioned above. That is, this state is a and theoretical investigation under the supervision of Dr. decoherence-free subspace (DFS) of the Hilbert space of Paul G. Kwiat.1] photon polarization [6, 7]. Photon pairs entangled in both polarization and frequency degrees of freedom, such as hyper-entangled photons produced in down-conversion I. INTRODUCTION sources (see [8, 9]), further complicate this particular de- coherence mechanism . In particular, energy conserva- tion imposes frequency correlations which affect the co- Decoherence in two-state quantum systems is a sig- herence properties of these two-photon states.
    [Show full text]
  • Rydberg Constant and Emission Spectra of Gases
    Page 1 of 10 Rydberg constant and emission spectra of gases ONE WEIGHT RECOMMENDED READINGS 1. R. Harris. Modern Physics, 2nd Ed. (2008). Sections 4.6, 7.3, 8.9. 2. Atomic Spectra line database https://physics.nist.gov/PhysRefData/ASD/lines_form.html OBJECTIVE - Calibrating a prism spectrometer to convert the scale readings in wavelengths of the emission spectral lines. - Identifying an "unknown" gas by measuring its spectral lines wavelengths. - Calculating the Rydberg constant RH. - Finding a separation of spectral lines in the yellow doublet of the sodium lamp spectrum. INSTRUCTOR’S EXPECTATIONS In the lab report it is expected to find the following parts: - Brief overview of the Bohr’s theory of hydrogen atom and main restrictions on its application. - Description of the setup including its main parts and their functions. - Description of the experiment procedure. - Table with readings of the vernier scale of the spectrometer and corresponding wavelengths of spectral lines of hydrogen and helium. - Calibration line for the function “wavelength vs reading” with explanation of the fitting procedure and values of the parameters of the fit with their uncertainties. - Calculated Rydberg constant with its uncertainty. - Description of the procedure of identification of the unknown gas and statement about the gas. - Calculating resolution of the spectrometer with the yellow doublet of sodium spectrum. INTRODUCTION In this experiment, linear emission spectra of discharge tubes are studied. The discharge tube is an evacuated glass tube filled with a gas or a vapor. There are two conductors – anode and cathode - soldered in the ends of the tube and connected to a high-voltage power source outside the tube.
    [Show full text]
  • Lecture Notes
    Solid State Physics PHYS 40352 by Mike Godfrey Spring 2012 Last changed on May 22, 2017 ii Contents Preface v 1 Crystal structure 1 1.1 Lattice and basis . .1 1.1.1 Unit cells . .2 1.1.2 Crystal symmetry . .3 1.1.3 Two-dimensional lattices . .4 1.1.4 Three-dimensional lattices . .7 1.1.5 Some cubic crystal structures ................................ 10 1.2 X-ray crystallography . 11 1.2.1 Diffraction by a crystal . 11 1.2.2 The reciprocal lattice . 12 1.2.3 Reciprocal lattice vectors and lattice planes . 13 1.2.4 The Bragg construction . 14 1.2.5 Structure factor . 15 1.2.6 Further geometry of diffraction . 17 2 Electrons in crystals 19 2.1 Summary of free-electron theory, etc. 19 2.2 Electrons in a periodic potential . 19 2.2.1 Bloch’s theorem . 19 2.2.2 Brillouin zones . 21 2.2.3 Schrodinger’s¨ equation in k-space . 22 2.2.4 Weak periodic potential: Nearly-free electrons . 23 2.2.5 Metals and insulators . 25 2.2.6 Band overlap in a nearly-free-electron divalent metal . 26 2.2.7 Tight-binding method . 29 2.3 Semiclassical dynamics of Bloch electrons . 32 2.3.1 Electron velocities . 33 2.3.2 Motion in an applied field . 33 2.3.3 Effective mass of an electron . 34 2.4 Free-electron bands and crystal structure . 35 2.4.1 Construction of the reciprocal lattice for FCC . 35 2.4.2 Group IV elements: Jones theory . 36 2.4.3 Binding energy of metals .
    [Show full text]
  • On the Linkage Between Planck's Quantum and Maxwell's Equations
    The Finnish Society for Natural Philosophy 25 years, K.V. Laurikainen Honorary Symposium, Helsinki 11.-12.11.2013 On the Linkage between Planck's Quantum and Maxwell's Equations Tuomo Suntola Physics Foundations Society, www.physicsfoundations.org Abstract The concept of quantum is one of the key elements of the foundations in modern physics. The term quantum is primarily identified as a discrete amount of something. In the early 20th century, the concept of quantum was needed to explain Max Planck’s blackbody radiation law which suggested that the elec- tromagnetic radiation emitted by atomic oscillators at the surfaces of a blackbody cavity appears as dis- crete packets with the energy proportional to the frequency of the radiation in the packet. The derivation of Planck’s equation from Maxwell’s equations shows quantizing as a property of the emission/absorption process rather than an intrinsic property of radiation; the Planck constant becomes linked to primary electrical constants allowing a unified expression of the energies of mass objects and electromagnetic radiation thereby offering a novel insight into the wave nature of matter. From discrete atoms to a quantum of radiation Continuity or discontinuity of matter has been seen as a fundamental question since antiquity. Aristotle saw perfection in continuity and opposed Democritus’s ideas of indivisible atoms. First evidences of atoms and molecules were obtained in chemistry as multiple proportions of elements in chemical reac- tions by the end of the 18th and in the early 19th centuries. For physicist, the idea of atoms emerged for more than half a century later, most concretely in statistical thermodynamics and kinetic gas theory that converted the mole-based considerations of chemists into molecule-based considerations based on con- servation laws and probabilities.
    [Show full text]
  • Improving the Accuracy of the Numerical Values of the Estimates Some Fundamental Physical Constants
    Improving the accuracy of the numerical values of the estimates some fundamental physical constants. Valery Timkov, Serg Timkov, Vladimir Zhukov, Konstantin Afanasiev To cite this version: Valery Timkov, Serg Timkov, Vladimir Zhukov, Konstantin Afanasiev. Improving the accuracy of the numerical values of the estimates some fundamental physical constants.. Digital Technologies, Odessa National Academy of Telecommunications, 2019, 25, pp.23 - 39. hal-02117148 HAL Id: hal-02117148 https://hal.archives-ouvertes.fr/hal-02117148 Submitted on 2 May 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Improving the accuracy of the numerical values of the estimates some fundamental physical constants. Valery F. Timkov1*, Serg V. Timkov2, Vladimir A. Zhukov2, Konstantin E. Afanasiev2 1Institute of Telecommunications and Global Geoinformation Space of the National Academy of Sciences of Ukraine, Senior Researcher, Ukraine. 2Research and Production Enterprise «TZHK», Researcher, Ukraine. *Email: [email protected] The list of designations in the text: l
    [Show full text]
  • Guide for the Use of the International System of Units (SI)
    Guide for the Use of the International System of Units (SI) m kg s cd SI mol K A NIST Special Publication 811 2008 Edition Ambler Thompson and Barry N. Taylor NIST Special Publication 811 2008 Edition Guide for the Use of the International System of Units (SI) Ambler Thompson Technology Services and Barry N. Taylor Physics Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 (Supersedes NIST Special Publication 811, 1995 Edition, April 1995) March 2008 U.S. Department of Commerce Carlos M. Gutierrez, Secretary National Institute of Standards and Technology James M. Turner, Acting Director National Institute of Standards and Technology Special Publication 811, 2008 Edition (Supersedes NIST Special Publication 811, April 1995 Edition) Natl. Inst. Stand. Technol. Spec. Publ. 811, 2008 Ed., 85 pages (March 2008; 2nd printing November 2008) CODEN: NSPUE3 Note on 2nd printing: This 2nd printing dated November 2008 of NIST SP811 corrects a number of minor typographical errors present in the 1st printing dated March 2008. Guide for the Use of the International System of Units (SI) Preface The International System of Units, universally abbreviated SI (from the French Le Système International d’Unités), is the modern metric system of measurement. Long the dominant measurement system used in science, the SI is becoming the dominant measurement system used in international commerce. The Omnibus Trade and Competitiveness Act of August 1988 [Public Law (PL) 100-418] changed the name of the National Bureau of Standards (NBS) to the National Institute of Standards and Technology (NIST) and gave to NIST the added task of helping U.S.
    [Show full text]
  • Turbulence Examined in the Frequency-Wavenumber Domain*
    Turbulence examined in the frequency-wavenumber domain∗ Andrew J. Morten Department of Physics University of Michigan Supported by funding from: National Science Foundation and Office of Naval Research ∗ Arbic et al. JPO 2012; Arbic et al. in review; Morten et al. papers in preparation Andrew J. Morten LOM 2013, Ann Arbor, MI Collaborators • University of Michigan Brian Arbic, Charlie Doering • MIT Glenn Flierl • University of Brest, and The University of Texas at Austin Robert Scott Andrew J. Morten LOM 2013, Ann Arbor, MI Outline of talk Part I{Motivation (research led by Brian Arbic) • Frequency-wavenumber analysis: {Idealized Quasi-geostrophic (QG) turbulence model. {High-resolution ocean general circulation model (HYCOM)∗: {AVISO gridded satellite altimeter data. ∗We used NLOM in Arbic et al. (2012) Part II-Research led by Andrew Morten • Derivation and interpretation of spectral transfers used above. • Frequency-domain analysis in two-dimensional turbulence. • Theoretical prediction for frequency spectra and spectral transfers due to the effects of \sweeping." {moving beyond a zeroth order approximation. Andrew J. Morten LOM 2013, Ann Arbor, MI Motivation: Intrinsic oceanic variability • Interested in quantifying the contributions of intrinsic nonlinearities in oceanic dynamics to oceanic frequency spectra. • Penduff et al. 2011: Interannual SSH variance in ocean models with interannual atmospheric forcing is comparable to variance in high resolution (eddying) ocean models with no interannual atmospheric forcing. • Might this eddy-driven low-frequency variability be connected to the well-known inverse cascade to low wavenumbers (e.g. Fjortoft 1953)? • A separate motivation is simply that transfers in mixed ! − k space provide a useful diagnostic. Andrew J.
    [Show full text]
  • Variable Planck's Constant
    Variable Planck’s Constant: Treated As A Dynamical Field And Path Integral Rand Dannenberg Ventura College, Physics and Astronomy Department, Ventura CA [email protected] [email protected] January 28, 2021 Abstract. The constant ħ is elevated to a dynamical field, coupling to other fields, and itself, through the Lagrangian density derivative terms. The spatial and temporal dependence of ħ falls directly out of the field equations themselves. Three solutions are found: a free field with a tadpole term; a standing-wave non-propagating mode; a non-oscillating non-propagating mode. The first two could be quantized. The third corresponds to a zero-momentum classical field that naturally decays spatially to a constant with no ad-hoc terms added to the Lagrangian. An attempt is made to calibrate the constants in the third solution based on experimental data. The three fields are referred to as actons. It is tentatively concluded that the acton origin coincides with a massive body, or point of infinite density, though is not mass dependent. An expression for the positional dependence of Planck’s constant is derived from a field theory in this work that matches in functional form that of one derived from considerations of Local Position Invariance violation in GR in another paper by this author. Astrophysical and Cosmological interpretations are provided. A derivation is shown for how the integrand in the path integral exponent becomes Lc/ħ(r), where Lc is the classical action. The path that makes stationary the integral in the exponent is termed the “dominant” path, and deviates from the classical path systematically due to the position dependence of ħ.
    [Show full text]
  • Chapter 09584
    Author's personal copy Excitons in Magnetic Fields Kankan Cong, G Timothy Noe II, and Junichiro Kono, Rice University, Houston, TX, United States r 2018 Elsevier Ltd. All rights reserved. Introduction When a photon of energy greater than the band gap is absorbed by a semiconductor, a negatively charged electron is excited from the valence band into the conduction band, leaving behind a positively charged hole. The electron can be attracted to the hole via the Coulomb interaction, lowering the energy of the electron-hole (e-h) pair by a characteristic binding energy, Eb. The bound e-h pair is referred to as an exciton, and it is analogous to the hydrogen atom, but with a larger Bohr radius and a smaller binding energy, ranging from 1 to 100 meV, due to the small reduced mass of the exciton and screening of the Coulomb interaction by the dielectric environment. Like the hydrogen atom, there exists a series of excitonic bound states, which modify the near-band-edge optical response of semiconductors, especially when the binding energy is greater than the thermal energy and any relevant scattering rates. When the e-h pair has an energy greater than the binding energy, the electron and hole are no longer bound to one another (ionized), although they are still correlated. The nature of the optical transitions for both excitons and unbound e-h pairs depends on the dimensionality of the e-h system. Furthermore, an exciton is a composite boson having integer spin that obeys Bose-Einstein statistics rather than fermions that obey Fermi-Dirac statistics as in the case of either the electrons or holes by themselves.
    [Show full text]
  • Variable Planck's Constant
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 29 January 2021 doi:10.20944/preprints202101.0612.v1 Variable Planck’s Constant: Treated As A Dynamical Field And Path Integral Rand Dannenberg Ventura College, Physics and Astronomy Department, Ventura CA [email protected] Abstract. The constant ħ is elevated to a dynamical field, coupling to other fields, and itself, through the Lagrangian density derivative terms. The spatial and temporal dependence of ħ falls directly out of the field equations themselves. Three solutions are found: a free field with a tadpole term; a standing-wave non-propagating mode; a non-oscillating non-propagating mode. The first two could be quantized. The third corresponds to a zero-momentum classical field that naturally decays spatially to a constant with no ad-hoc terms added to the Lagrangian. An attempt is made to calibrate the constants in the third solution based on experimental data. The three fields are referred to as actons. It is tentatively concluded that the acton origin coincides with a massive body, or point of infinite density, though is not mass dependent. An expression for the positional dependence of Planck’s constant is derived from a field theory in this work that matches in functional form that of one derived from considerations of Local Position Invariance violation in GR in another paper by this author. Astrophysical and Cosmological interpretations are provided. A derivation is shown for how the integrand in the path integral exponent becomes Lc/ħ(r), where Lc is the classical action. The path that makes stationary the integral in the exponent is termed the “dominant” path, and deviates from the classical path systematically due to the position dependence of ħ.
    [Show full text]
  • Exploring Quantum Vacuum with Low-Energy Photons 3
    August 29, 2018 8:19 WSPC/INSTRUCTION FILE paper International Journal of Quantum Information c World Scientific Publishing Company EXPLORING QUANTUM VACUUM WITH LOW-ENERGY PHOTONS E. MILOTTI,∗ F. DELLA VALLE INFN - Sez. di Trieste and Dip. di Fisica, Universit`adi Trieste via A. Valerio 2, I-34127 Trieste, Italy G. ZAVATTINI, G. MESSINEO INFN - Sez. di Ferrara and Dip. di Fisica, Universit`adi Ferrara via Saragat 1, Blocco C, I-44122 Ferrara, Italy U. GASTALDI, R. PENGO, G. RUOSO INFN - Lab. Naz. di Legnaro viale dell’Universit`a2, I-35020 Legnaro, Italy D. BABUSCI, C. CURCEANU, M. ILIESCU, C. MILARDI INFN, Laboratori Nazionali di Frascati, CP 13, Via E. Fermi 40, I-00044, Frascati (Roma), Italy Although quantum mechanics (QM) and quantum field theory (QFT) are highly suc- cessful, the seemingly simplest state – vacuum – remains mysterious. While the LHC experiments are expected to clarify basic questions on the structure of QFT vacuum, much can still be done at lower energies as well. For instance, experiments like PVLAS try to reach extremely high sensitivities, in their attempt to observe the effects of the interaction of visible or near-visible photons with intense magnetic fields – a process which becomes possible in quantum electrodynamics (QED) thanks to the vacuum fluc- tuations of the electronic field, and which is akin to photon-photon scattering. PVLAS is now close to data-taking and if it reaches the required sensitivity, it could provide arXiv:1210.6751v1 [physics.ins-det] 25 Oct 2012 important information on QED vacuum. PVLAS and other similar experiments face great challenges as they try to measure an extremely minute effect.
    [Show full text]