Rudi Mathematici

Total Page:16

File Type:pdf, Size:1020Kb

Rudi Mathematici Rudi Mathematici x4-8200x3+25213040x2-34452464000x+17652769695744=0 Rudi Mathematici January 1 1 T (1803) Guglielmo LIBRI Carucci dalla Sommaja USAMO 1997 – Problem 1 (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE Let ppp 321 ,,, be the prime numbers (1912) Boris GNEDENKO K (1822) Rudolf Julius Emmanuel CLAUSIUS 2 W listed in increasing order, and let x0 be a (1905) Lev Genrichovich SHNIRELMAN (1938) Anatoly SAMOILENKO real number between 0 and 1. For positive (1917) Yuri Alexeievich MITROPOLSHY 3 T integer k , define: 4 F (1643) Isaac NEWTON (1838) Marie Ennemond Camille JORDAN ⎧ if0 xk−1 = ,0 5 S (1871) Federigo ENRIQUES ⎪ (1871) Gino FANO xk = ⎨⎧ pk ⎫ ⎨ ⎬ if xk−1 ≠ ,0 6 S (1807) Jozeph Mitza PETZVAL ⎪ x (1841) Rudolf STURM ⎩⎩ k −1 ⎭ 2 7 M (1871) Felix Edouard Justin Emile BOREL (1907) Raymond Edward Alan Christopher PALEY where {x} denotes the fractional part of x . (1888) Richard COURANT 8 T (1924) Paul Moritz COHN Find, with proof, all x0 satisfying (1942) Stephen William HAWKING < x < 10 for which the sequence 9 W (1864) Vladimir Adreievich STELKOV 0 10 T (1875) Issai SCHUR xxx ,,, eventually becomes 0 . (1905) Ruth MOUFANG 210 K (1545) Guidobaldo DEL MONTE 11 F Why Astronomy is better than Sex: (1707) Vincenzo RICCATI (1734) Achille Pierre Dionis DU SEJOUR If you get tired, wait ten minutes and try it again. 12 S (1906) Kurt August HIRSCH (1864) Wilhelm Karl Werner Otto Fritz Franz WIEN Statisticians 13 S (1876) Luther Pfahler EISENHART (1876) Erhard SCHMIDT What do you get when you cross a statistician with a chiropractor? 3 14 M (1902) Alfred TARSKI (1704) Johann CASTILLON You get an adjusted R squared from 15 T (1717) Mattew STEWART a BACKward regression problem. (1850) Sofia Vasilievna KOVALEVSKAJA “I know not what I appear to the world, but to (1801) Thomas KLAUSEN 16 W myself I seem to have been only like a boy 17 T (1847) Nikolay Egorovich ZUKOWSKY playing on the sea-shore, and diverting myself (1858) Gabriel KOENIGS in now and then finding a smoother pebble or (1856) Luigi BIANCHI 18 F (1880) Paul EHRENFEST a prettier shell, whilst the great ocean of truth lay all undiscovered before me” 19 S (1813) Rudolf Friedrich Alfred CLEBSCH (1879) Guido FUBINI Isaac NEWTON (1908) Aleksandr Gennadievich KUROS (1775) Andre’ Marie AMPERE “The proof of the Hilbert Basis Theorem is not 20 S (1895) Gabor SZEGO mathematics; it is theology.” (1904) Renato CACCIOPPOLI Camille JORDAN 4 21 M (1846) Pieter Hendrik SCHOUTE (1915) Yuri Vladimirovich LINNIK “It's very good jam,” said the Queen. (1592) Pierre GASSENDI “Well, I don't want any to-day, at any rate.” 22 T (1908) Lev Davidovich LANDAU “You couldn't have it if you did want it,” the Queen said. “The rule is jam tomorrow and 23 W (1840) Ernst ABBE (1862) David HILBERT jam yesterday but never jam to-day.” 24 T (1891) Abram Samoilovitch BESICOVITCH “It must come sometimes to “jam to-day,” Alice (1914) Vladimir Petrovich POTAPOV objected. 25 F (1627) Robert BOYLE “No it can't,” said the Queen. “It's jam every (1736) Joseph-Louis LAGRANGE other day; to-day isn't any other day, you (1843) Karl Herman Amandus SCHWARTZ know.” 26 S (1799) Benoit Paul Emile CLAPEYRON “I don't understand you,” said Alice. “It's 27 S (1832) Charles Lutwidge DODGSON dreadfully confusing.” 5 28 M (1701) Charles Marie de LA CONDAMINE Charles DOGSON (1892) Carlo Emilio BONFERRONI (1817) William FERREL “Mathematics is a game played according to 29 T (1888) Sidney CHAPMAN certain simple rules with meaningless marks on paper.” 30 W (1619) Michelangelo RICCI David HILBERT 31 T (1715) Giovanni Francesco FAGNANO dei Toschi (1841) Samuel LOYD “A mathematician's reputation rests on the (1896) Sofia Alexandrovna JANOWSKAJA number of bad proofs he has given” Abram BESICOVITCH www.rudimathematici.com Rudi Mathematici February 5 1 F (1900) John Charles BURKILL USAMO 1997 – Problem 2 2 S (1522) Lodovico FERRARI Let ABC be a triangle, and draw isosceles (1893) Gaston Maurice JULIA 3 S triangles BCD , CAE , ABF externally 6 4 M (1905) Eric Cristopher ZEEMAN to ABC , with BC , CA , AB as their 5 T (1757) Jean Marie Constant DUHAMEL respective bases. Prove that the lines through 6 W (1612) Antoine ARNAULD (1695) Nicolaus (II) BERNOULLI A , B , C perpendicular to the lines EF , 7 T (1877) Godfried Harold HARDY (1883) Eric Temple BELL FD , DE , respectively, are concurrent. (1700) Daniel BERNOULLI 8 F Why Astronomy is better than Sex: (1875) Francis Ysidro EDGEWORTH Nobody cares if you are ugly. 9 S (1775) Farkas Wolfgang BOLYAI (1907) Harod Scott MacDonald COXETER Statisticians (1747) Aida YASUAKI 10 S A statistician is someone who is skilled at 7 11 M (1800) William Henry Fox TALBOT drawing a precise line from an unwarranted (1839) Josiah Willard GIBBS assumption to a foregone conclusion. (1915) Richard Wesley HAMMING 12 T (1914) Hanna CAEMMERER NEUMANN “Common sense is not really so common.” 13 W (1805) Johann Peter Gustav Lejeune DIRICHLET Antoine ARNAUD “Archimedes will be remembered when 14 T (1468) Johann WERNER (1849) Hermann HANKEL Aeschylus is forgotten, because languages die (1896) Edward Artur MILNE and mathematical ideas do not. “Immortality” 15 F (1564) Galileo GALILEI may be a silly word, but probably a (1861) Alfred North WHITEHEAD mathematician has the best chance of (1946) Douglas HOFSTADTER whatever it may mean.” (1822) Francis GALTON 16 S (1853) Georgorio RICCI-CURBASTRO Godfried HARDY (1903) Beniamino SEGRE “it would be better for the true physics if there 17 S (1890) Sir Ronald Aymler FISHER were no mathematicians on earth” (1891) Adolf Abraham Halevi FRAENKEL 8 18 M (1404) Leon Battista ALBERTI Daniel BERNOULLI “Epur si muove” 19 T (1473) Nicolaus COPERNICUS Galileo GALILEI 20 W (1844) Ludwig BOLTZMANN (1591) Girard DESARGUES ...an incorrect theory, even if it cannot be 21 T (1915) Evgenni Michailovitch LIFSHITZ inhibited by any contradiction that would 22 F (1903) Frank Plumpton RAMSEY refute it, is none the less incorrect, just as a (1583) Jean-Baptiste MORIN criminal policy is none the less criminal even if 23 S (1951) Shigefumi MORI it cannot be inhibited by any court that would curb it. 24 S (1871) Felix BERNSTEIN Luitzen BROUWER 9 25 M (1827) Henry WATSON “Euler calculated without effort, just as men 26 T (1786) Dominique Francois Jean ARAGO breathe, as eagles sustain themselves in the 27 W (1881) Luitzen Egbertus Jan BROUWER air” 28 T (1735) Alexandre Theophile VANDERMONDE Dominique ARAGO 29 F (1860) Herman HOLLERITH www.rudimathematici.com Rudi Mathematici March 9 1 S (1611) John PELL USAMO 1997 – Problem 3 2 S (1836) Julius WEINGARTEN Prove that for any integer n , there exists an 10 3 M (1838) George William HILL (1845) Georg CANTOR unique polynomial Q with coefficients in 4 T (1822) Jules Antoine LISSAJUS { K 9,,3,2,1 } such that 5 W (1512) Gerardus MERCATOR (1759) Benjamin GOMPERTZ (− ) = ( 52 ) =− nQQ . (1817) Angelo GENOCCHI Why Astronomy is better than Sex: 6 T (1866) Ettore BORTOLOTTI Forty years from now, you can still participate 7 F (1792) William HERSCHEL (1824) Delfino CODAZZI regularly. 8 S (1851) George CHRYSTAL Why pi is inferior to e 9 S (1818) Ferdinand JOACHIMSTHAL You can't confuse e with a food product. (1900) Howard Hathaway AIKEN 11 10 M (1864) William Fogg OSGOOD Why e is inferior to pi e is less challenging to spell than pi. 11 T (1811) Urbain Jean Joseph LE VERRIER (1853) Salvatore PINCHERLE “And what are these fluxions? The velocities of 12 W (1685) George BERKELEY evanescent increments? They are neither finite (1824) Gustav Robert KIRKHHOFF (1859) Ernesto CESARO quantities, nor quantities infinitely small, nor (1861) Jules Joseph DRACH yet nothing. May we not call them ghosts of 13 T (1957) Rudy S'ALEMBERT departed quantities?” (1864) Jozef KURSCHAK 14 F George BERKELEY (1879) Albert EINSTEIN (1860) Walter Frank Raphael WELDON “Common sense is nothing more than a deposit 15 S (1868) Grace CHISOLM YOUNG of prejudices laid down in the mind before you reach eighteen.” 16 S (1750) Caroline HERSCHEL (1789) Georg Simon OHM Albert EINSTEIN (1846) Magnus Gosta MITTAG-LEFFLER “We [he and Halmos] share a philosophy about 12 17 M (1876) Ernest Benjamin ESCLANGON (1897) Charles FOX linear algebra: we think basis-free, we write basis-free, but when the chips are down we 18 T (1640) Philippe de LA HIRE (1690) Christian GOLDBACH close the office door and compute with (1796) Jacob STEINER matrices like fury.” (1862) Adolf KNESER 19 W (1910) Jacob WOLFOWITZ Irving KAPLANSKY 20 T (1840) Franz MERTENS The mathematician's best work is art, a high (1884) Philip FRANCK perfect art, as daring as the most secret (1938) Sergi Petrovich NOVIKOV dreams of imagination, clear and limpid. 21 F (1768) Jean Baptiste Joseph FOURIER Mathematical genius and artistic genius touch (1884) George David BIRKHOFF one another. (1917) Irving KAPLANSKY 22 S Gosta MITTAG-LEFFLER (1754) Georg Freiherr von VEGA 23 S (1882) Emmy Amalie NOETHER “A Mathematician is a machine for turning (1897) John Lighton SYNGE coffee into theorems. “ 13 24 M (1809) Joseph LIOUVILLE Paul ERDOS (1948) Sun-Yung (Alice) CHANG The profound study of nature is the most 25 T (1538) Christopher CLAUSIUS fertile source of mathematical discoveries. (1848) Konstantin ADREEV 26 W (1913) Paul ERDOS Jean Baptiste FOURIER 27 T (1857) Karl PEARSON “What we know is not much. What we do not know is immense.” 28 F (1749) Pierre Simon de LAPLACE (1825) Francesco FAA’ DI BRUNO Pierre Simon de LAPLACE 29 S (1873) Tullio LEVI-CIVITA (1896) Wilhelm ACKERMAN 30 S (1892) Stefan BANACH 14 31 M (1596) Rene’ DESCARTES www.rudimathematici.com Rudi Mathematici April (1640) Georg MOHR 14 1 T USAMO 1997 – Problem 4 (1776) Marie-Sophie GERMAIN (1895) Alexander Craig AITKEN To clip a convex n-agon means to choose a 2 W (1934) Paul Joseph COHEN pair of consecutive sides AB , BC and to (1835) John Howard Van AMRINGE 3 T replace them by the three segments , (1892) Hans RADEMACHER AM (1900) Albert Edward INGHAM MN and NC , where M is the midpoint (1909) Stanislaw Marcin ULAM (1971) Alice RIDDLE of AB and N is the midpoint of BC .
Recommended publications
  • 1 Portraits Leonhard Euler Daniel Bernoulli Johann-Heinrich Lambert
    Portraits Leonhard Euler Daniel Bernoulli Johann-Heinrich Lambert Compiled and translated by Oscar Sheynin Berlin, 2010 Copyright Sheynin 2010 www.sheynin.de ISBN 3-938417-01-3 1 Contents Foreword I. Nicolaus Fuss, Eulogy on Leonhard Euler, 1786. Translated from German II. M. J. A. N. Condorcet, Eulogy on Euler, 1786. Translated from French III. Daniel Bernoulli, Autobiography. Translated from Russian; Latin original received in Petersburg in 1776 IV. M. J. A. N. Condorcet, Eulogy on [Daniel] Bernoulli, 1785. In French. Translated by Daniel II Bernoulli in German, 1787. This translation considers both versions V. R. Wolf, Daniel Bernoulli from Basel, 1700 – 1782, 1860. Translated from German VI. Gleb K. Michajlov, The Life and Work of Daniel Bernoullli, 2005. Translated from German VII. Daniel Bernoulli, List of Contributions, 2002 VIII. J. H. S. Formey, Eulogy on Lambert, 1780. Translated from French IX. R. Wolf, Joh. Heinrich Lambert from Mühlhausen, 1728 – 1777, 1860. Translated from German X. J.-H. Lambert, List of Publications, 1970 XI. Oscar Sheynin, Supplement: Daniel Bernoulli’s Instructions for Meteorological Stations 2 Foreword Along with the main eulogies and biographies [i, ii, iv, v, viii, ix], I have included a recent biography of Daniel Bernoulli [vi], his autobiography [iii], for the first time translated from the Russian translation of the Latin original but regrettably incomplete, and lists of published works by Daniel Bernoulli [vii] and Lambert [x]. The first of these lists is readily available, but there are so many references to the works of these scientists in the main texts, that I had no other reasonable alternative.
    [Show full text]
  • HOMOTECIA Nº 4-16 Abril 2018
    HOMOTECIA Nº 4 – Año 16 Lunes, 2 de Abril de 2018 1 Sobre la descapitalización intelectual y profesional actual en Venezuela. En la última década del siglo XX se realizaron investigaciones sobre educación que arrojaron como resultados, que en Venezuela se estaba produciendo una descapitalización intelectual la cual se definía como la disminución del número de individuos capaces intelectualmente, con destrezas y habilidades propias que puedan generar soluciones óptimas en la resolución significativa de los problemas nacionales primordiales, y que como consecuencia de esto, se le restaba a la nación potencial humano útil para implementar un proceso de desarrollo; todo ello en el contexto de la improductividad de la Educación Media Diversificada y Profesional como consecuencia directa de la deficiente realidad práctica que se vivía en la Educación Básica. La interpretación que se le daba a lo anterior era señalar que aunque los egresados de los estudios secundarios en número se correspondían con la masificación impulsada en el sector por los gobiernos de turno, el devenir de la mayoría de estos egresados en los estudios universitarios sería de transcurrir lento y no muy brillante, es decir tardarían en graduarse en más tiempo del que se estipulaba para ello y con pocos méritos que destacar, haciendo parecer la inversión de recursos económicos en educación como poco exitosa y productora de pérdidas para la nación. Pero aun así, sin que dependiera de la época histórica del momento que se vivía, en el transcurrir de la línea temporal se pudo detectar que los egresados en cada cohorte presentaban un perfil suficientemente satisfactorio que los llevaba, al realizar un mejor esfuerzo posterior, obtener loables méritos, camino válido para alcanzar convertirse a futuro en excelentes profesionales.
    [Show full text]
  • Rudi Mathematici
    Rudi Mathematici x4-8188x3+25139294x2-34301407052x+17549638999785=0 Rudi Mathematici January 53 1 S (1803) Guglielmo LIBRI Carucci dalla Sommaja Putnam 1999 - A1 (1878) Agner Krarup ERLANG (1894) Satyendranath BOSE Find polynomials f(x), g(x), and h(x) _, if they exist, (1912) Boris GNEDENKO such that for all x 2 S (1822) Rudolf Julius Emmanuel CLAUSIUS f (x) − g(x) + h(x) = (1905) Lev Genrichovich SHNIRELMAN (1938) Anatoly SAMOILENKO −1 if x < −1 1 3 M (1917) Yuri Alexeievich MITROPOLSHY 4 T (1643) Isaac NEWTON = 3x + 2 if −1 ≤ x ≤ 0 5 W (1838) Marie Ennemond Camille JORDAN − + > (1871) Federigo ENRIQUES 2x 2 if x 0 (1871) Gino FANO (1807) Jozeph Mitza PETZVAL 6 T Publish or Perish (1841) Rudolf STURM "Gustatory responses of pigs to various natural (1871) Felix Edouard Justin Emile BOREL 7 F (1907) Raymond Edward Alan Christopher PALEY and artificial compounds known to be sweet in (1888) Richard COURANT man," D. Glaser, M. Wanner, J.M. Tinti, and 8 S (1924) Paul Moritz COHN C. Nofre, Food Chemistry, vol. 68, no. 4, (1942) Stephen William HAWKING January 10, 2000, pp. 375-85. (1864) Vladimir Adreievich STELKOV 9 S Murphy's Laws of Math 2 10 M (1875) Issai SCHUR (1905) Ruth MOUFANG When you solve a problem, it always helps to (1545) Guidobaldo DEL MONTE 11 T know the answer. (1707) Vincenzo RICCATI (1734) Achille Pierre Dionis DU SEJOUR The latest authors, like the most ancient, strove to subordinate the phenomena of nature to the laws of (1906) Kurt August HIRSCH 12 W mathematics.
    [Show full text]
  • Stefanie Ursula Eminger Phd Thesis
    CARL FRIEDRICH GEISER AND FERDINAND RUDIO: THE MEN BEHIND THE FIRST INTERNATIONAL CONGRESS OF MATHEMATICIANS Stefanie Ursula Eminger A Thesis Submitted for the Degree of PhD at the University of St Andrews 2015 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/6536 This item is protected by original copyright Carl Friedrich Geiser and Ferdinand Rudio: The Men Behind the First International Congress of Mathematicians Stefanie Ursula Eminger This thesis is submitted in partial fulfilment for the degree of PhD at the University of St Andrews 2014 Thesis Declaration 1. Candidate’s declarations: I, Stefanie Eminger, hereby certify that this thesis, which is approximately 78,500 words in length, has been written by me, and that it is the record of work carried out by me, or principally by myself in collaboration with others as acknowledged, and that it has not been submitted in any previous application for a higher degree. I was admitted as a research student in September 2010 and as a candidate for the degree of PhD in September 2010; the higher study for which this is a record was carried out in the University of St Andrews between 2010 and 2014. Date ……………… Signature of candidate …………………………………… 2. Supervisor’s declaration: I hereby certify that the candidate has fulfilled the conditions of the Resolution and Regulations appropriate for the degree of PhD in the University of St Andrews and that the candidate is qualified to submit this thesis in application for that degree.
    [Show full text]
  • History of Mathematics Clio Mathematicæ the Muse of Mathematical Historiography Craig Smorynski´
    History of Mathematics Clio Mathematicæ The Muse of Mathematical Historiography Craig Smorynski´ History of Mathematics A Supplement 123 Craig Smorynski´ 429 S. Warwick Westmont, IL 60559 USA [email protected] ISBN 978-0-387-75480-2 e-ISBN 978-0-387-75481-9 Library of Congress Control Number: 2007939561 Mathematics Subject Classification (2000): 01A05 51-Axx, 15-xx c 2008 Springer Science+Business Media, LLC All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper. 987654321 springer.com Contents 1 Introduction ............................................... 1 1 An Initial Assignment . 1 2 AboutThisBook........................................ 7 2 Annotated Bibliography ................................... 11 1 General Remarks . 11 2 General Reference Works . 18 3 General Biography . 19 4 General History of Mathematics . 21 5 History of Elementary Mathematics . 23 6 SourceBooks........................................... 25 7 Multiculturalism . 27 8 Arithmetic ............................................. 28 9 Geometry .............................................. 28 10 Calculus................................................ 29 11 Women in Science . 30 12 MiscellaneousTopics..................................... 35 13 Special Mention . 36 14 Philately .
    [Show full text]
  • Lambert's Proof of the Irrationality of Pi
    Lambert’s proof of the irrationality of Pi: Context and translation Denis Roegel To cite this version: Denis Roegel. Lambert’s proof of the irrationality of Pi: Context and translation. [Research Report] LORIA. 2020. hal-02984214 HAL Id: hal-02984214 https://hal.archives-ouvertes.fr/hal-02984214 Submitted on 30 Oct 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Lambert’s proof of the irrationality of π: Context and translation this is a preliminary draft please check for the final version Denis Roegel LORIA, Nancy1 30 October 2020 1Denis Roegel, LORIA, BP 239, 54506 Vandœuvre-lès-Nancy cedex, [email protected] 2 3 In this document, I give the first complete English translation of Johann Heinrich Lambert’s memoir on the irrationality of π published in 1768 [92], as well as some contextual elements, such as Legendre’s proof [98] and more recent proofs such as Niven’s [109]. Only a small part of Lambert’s memoir has been translated before, namely in Struik’s source book [143]. My trans- lation is not based on that of Struik and it is supplemented with notes and indications of gaps or uncertain matters.
    [Show full text]
  • Origin of Irrational Numbers and Their Approximations
    computation Review Origin of Irrational Numbers and Their Approximations Ravi P. Agarwal 1,* and Hans Agarwal 2 1 Department of Mathematics, Texas A&M University-Kingsville, 700 University Blvd., Kingsville, TX 78363, USA 2 749 Wyeth Street, Melbourne, FL 32904, USA; [email protected] * Correspondence: [email protected] Abstract: In this article a sincere effort has been made to address the origin of the incommensu- rability/irrationality of numbers. It is folklore that the starting point was several unsuccessful geometric attempts to compute the exact values of p2 and p. Ancient records substantiate that more than 5000 years back Vedic Ascetics were successful in approximating these numbers in terms of rational numbers and used these approximations for ritual sacrifices, they also indicated clearly that these numbers are incommensurable. Since then research continues for the known as well as unknown/expected irrational numbers, and their computation to trillions of decimal places. For the advancement of this broad mathematical field we shall chronologically show that each continent of the world has contributed. We genuinely hope students and teachers of mathematics will also be benefited with this article. Keywords: irrational numbers; transcendental numbers; rational approximations; history AMS Subject Classification: 01A05; 01A11; 01A32; 11-02; 65-03 Citation: Agarwal, R.P.; Agarwal, H. 1. Introduction Origin of Irrational Numbers and Their Approximations. Computation Almost from the last 2500 years philosophers have been unsuccessful in providing 2021, 9, 29. https://doi.org/10.3390/ satisfactory answer to the question “What is a Number”? The numbers 1, 2, 3, 4, , have ··· computation9030029 been called as natural numbers or positive integers because it is generally perceived that they have in some philosophical sense a natural existence independent of man.
    [Show full text]
  • Stefanie Ursula Eminger Phd Thesis
    CARL FRIEDRICH GEISER AND FERDINAND RUDIO: THE MEN BEHIND THE FIRST INTERNATIONAL CONGRESS OF MATHEMATICIANS Stefanie Ursula Eminger A Thesis Submitted for the Degree of PhD at the University of St Andrews 2015 Full metadata for this item is available in Research@StAndrews:FullText at: http://research-repository.st-andrews.ac.uk/ Please use this identifier to cite or link to this item: http://hdl.handle.net/10023/6536 This item is protected by original copyright Carl Friedrich Geiser and Ferdinand Rudio: The Men Behind the First International Congress of Mathematicians Stefanie Ursula Eminger This thesis is submitted in partial fulfilment for the degree of PhD at the University of St Andrews 2014 Table of Contents Abstract 7 Acknowledgements 9 1. Introduction 11 2. Carl Friedrich Geiser (1843 – 1934) 15 2.1 Life 15 2.2 Connection with Steiner 33 2.3 Impact at the Polytechnic and on Education 39 3. Ferdinand Karl Rudio (1856 – 1929) 49 3.1 Life 49 3.2 Contribution to Euler’s Opera Omnia 53 4. The First International Congress of Mathematicians, Zurich 1897 57 4.1 Background and Organisation 57 4.1.1 Historical Developments 57 4.1.2 Organising the Congress 62 4.1.3 The Congress Itself 67 4.1.4 Geiser’s Contribution 76 4.1.5 Rudio’s Contribution 77 4.2 The Swiss Organising Committee 79 4.2.1 Ernst Julius Amberg (1871 – 1952) 79 4.2.2 Christian Beyel (1854 – 1941) 82 4.2.3 Hermann Bleuler (1837 – 1912) 83 4.2.4 Heinrich Burkhardt (1861 – 1914) 86 4.2.5 Fritz Bützberger (1862 – 1922) 89 4.2.5.1 Bützberger’s Work on Steiner 92 4.2.6 Gustave Dumas
    [Show full text]
  • The Elementary Mathematical Works of Leonhard Euler (1707 – 1783) Paul Yiu Department of Mathematics Florida Atlantic University Summer 19991
    The Elementary Mathematical Works of Leonhard Euler (1707 – 1783) Paul Yiu Department of Mathematics Florida Atlantic University Summer 19991 IA. Introduction to Euler’s Opera Omnia 1 IB. Solution of cubic equations 4 IC. Solution of quartic equations 5 IIA. Factorization of a quartic as a product of two real quadratics 7 IIB. Euler’s proof of the FTA for quartic polynomials 10 IIC. Relations between roots and coefficients 11 IIIA. Partial fraction decomposition 17 IIIB. Introduction to Introductio, I 20 IIIC. Exponentials and logarithms 21 IVA. Trigonometric functions 28 IVB. Logarithms of complex numbers 31 VA. Euler’s works on infinite series, introduction 35 VB. An example from Euler’s earliest paper on infinite series 38 VC. Euler’s Paper 72: Variae observationes circa series infinitas 39 1 1 1 ··· VIA. Euler’ first calculation of 1+22k + 32k + 42k + 43 VIB. Chapter X of Introductio, I 48 VIC. Euler’s “forgotten” paper Demonstration de la somme de cett suite 1 1 1 1 1+ 4 + 9 + 25 + 36 + ··· 49 VIIA. Jacob Bernoulli’s summation of the powers of natural numbers 54 VIIB. Euler’s summation formula 57 VIIC. Euler’s summation formula (continued) 59 VIIIA. The series expansions of cotangent, tangent, and secant 62 VIIIB. Euler’s constant γ 66 VIIIC. Summary on Bernoulli and Euler numbers 68 1Diagrams redrawn in August, 2007. I IXA. Continued fractions 69 IXB. Continued fractions and infinite series 73 IXC. Continued fraction expansion of functions 77 XA. Euler’s proof of Heron’s formula 80 XB. Area of a cyclic quadrilateral 81 XC.
    [Show full text]
  • View This Volume's Front and Back Matter
    Christopher Hollings HISTORY OF MATHEMATICS Y VOLUME 41 Mathematics Across the Iron Curtain A History of the Algebraic Theory of Semigroups https://doi.org/10.1090/hmath/041 HISTORY OF MATHEMATICS v VOLUME 41 Mathematics Across the Iron Curtain A History of the Algebraic Theory of Semigroups Christopher Hollings American Mathematical Society Providence, Rhode Island Editorial Board June Barrow-Green Bruce Reznick Robin Hartshorne Adrian Rice, Chair 2010 Mathematics Subject Classification. Primary 01A60, 20-03. For additional information and updates on this book, visit www.ams.org/bookpages/hmath-41 Library of Congress Cataloging-in-Publication Data Hollings, Christopher, 1982– Mathematics across the Iron Curtain : a history of the algebraic theory of semigroups / Christopher Hollings. pages cm. — (History of mathematics ; volume 41) Includes bibliographical references and indexes. ISBN 978-1-4704-1493-1 (alk. paper) 1. Semigroups. 2. Mathematics—History—20th century. 3. Cold War. I. Title. QA182.H65 2014 512.27—dc23 2014008281 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected].
    [Show full text]
  • A Reader's Guide to Euler's Introductio
    A Reader’s Guide to Euler’s Introductio V. Frederick Rickey Department of Mathematical Sciences United States Military Academy West Point, NY 10996 Email: [email protected] Abstract: Leonhard Euler’s Introductio in analysin infinitorum is surely one of his most famous works. For a century after its publication in 1748 it was widely read by aspiring mathematicians. Today, thanks to John Blan- ton, it is available in English translation. To encourage aspiring historians to read this famous work, a reader’s guide will be distributed. It will sum- marize the contents of the individual chapters of the Introductio, explain points that the reader might miss, point out antecedents of the work, and detail how the work influenced later mathematics. Prepared for the Euler 2K + 2 Conference. Countdown to the Tercentenary, Rumford Maine, 4-7 August 2002. The Introductio in analysin infinitorum (1748), by Leonhard Euler (1707–1783) is one of the most famous and important mathematical books ever written. Euclid’s Elements (300 BC) ranks supreme, and Newton’s Principia (1687) is the most famous scientific book ever written, but only partly deals with mathematics. Placing the Introductio second on the all time list in mathematics, may engender some arguments, but they will be interesting. That there have been 21 printings/editions in half a dozen languages certainly speaks highly of the importance of the Introductio. For many years I have been involved in seminars that took as their goal the reading of original mathe- matical texts. This has always been a rewarding experience and a synergistic one, for I have always learned more in the seminar setting than I ever could have learned on my own.
    [Show full text]
  • Hurwitz's Complex Continued Fractions
    Hurwitz’s Complex Continued Fractions A Historical Approach and Modern Perspectives. Dissertationsschrift zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universit¨at W¨urzburg vorgelegt von Nicola Oswald aus Kronach W¨urzburg 2014 2 ”Knowledge is in the end based on acknowledgement.” Ludwig Wittgenstein (1889 - 1951) Ich freue mich, an dieser Stelle die Gelegenheit zu nutzen, einigen Menschen zu danken, die mich w¨ahrend der letzten drei Jahre unterst¨utzt und begleitet haben. Mein erstes großes Dankesch¨on geb¨uhrt nat¨urlich J¨orn Steuding, der mir diese Promotionsstelle nicht nur erm¨oglicht hat, sondern mir seitdem als Betreuer stets mit Rat und Tat zur Hilfe steht. Er erm¨oglichte mir den Besuch zahlreicher Konferenzen, meine Forschungsinter- essen zu finden und selbstst¨andig eigene Projekte zu verwirklichen. In unserer gemein- samen Arbeitsgruppe zusammen mit Thomas Christ, sowie am Institut, genoss ich sehr die fortw¨ahrend freundliche und r¨ucksichtsvolle Atmosph¨are. Außerdem m¨ochte ich meinen Dank Karma Dajani aussprechen, die mir bereits zu Beginn meiner Arbeit erste Inspirationen zur Ergodentheorie gab. W¨ahrend ihres Aufen- thalts in W¨urzburg im Sommersemester 2014 hatte ich große Freude daran, dieses Inter- esse wieder aufzunehmen und konnte viel pers¨onliche Motivation aus ihrer herzlichen Art sch¨opfen. Im Bezug auf meine mathematik-historische Forschung m¨ochte ich mich ausdr¨ucklich bei meiner Mentorin Renate Tobies und Klaus Volkert bedanken. Beide halfen mir sehr bei meinem Einstieg in diesen neuen Fachbereich und ich bin ihnen f¨ur viele gute Ratschl¨age und Ermutigungen dankbar. In dieser Hinsicht sind auch das Archiv der ETH Z¨urich, insbesondere die hervorra- gende Betreuung von Evelyn Boesch, die Staats- und Universit¨atsbibliothek G¨ottingen, das Staatsarchiv Basel und das Universit¨atsarchiv Halle-Wittenberg zu erw¨ahnen.
    [Show full text]