Nutrition of the Titicaca Water Frog (Telmatobius Culeus)

Total Page:16

File Type:pdf, Size:1020Kb

Nutrition of the Titicaca Water Frog (Telmatobius Culeus) GHENT UNIVERSITY FACULTY OF VETERINARY MEDICINE Academic year 2016 - 2017 NUTRITION OF THE TITICACA WATER FROG (TELMATOBIUS CULEUS) by Stéphane KNOLL Promoters: Muñoz-Saravia Arturo Research Report as part of the Prof. dr. Janssens Geert P. J. Master's Dissertation © 2017 Stéphane KNOLL Disclaimer Universiteit Gent, its employees and/or students, give no warranty that the information provided in this thesis is accurate or exhaustive, nor that the content of this thesis will not constitute or result in any infringement of third-party rights. Universiteit Gent, its employees and/or students do not accept any liability or responsibility for any use which may be made of the content or information given in the thesis, nor for any reliance which may be placed on any advice or information provided in this thesis. GHENT UNIVERSITY FACULTY OF VETERINARY MEDICINE Academic year 2016 - 2017 NUTRITION OF THE TITICACA WATER FROG (TELMATOBIUS CULEUS) by Stéphane KNOLL Promoters: Muñoz-Saravia Arturo Research Report as part of the Prof. dr. Janssens Geert P. J. Master's Dissertation © 2017 Stéphane KNOLL Foreword: This research has been conducted as a part of the master’s degree at the Faculty of Veterinary Medicine of the Ghent University, Belgium. As third master student, graduating in the field of research, conducting a research project is an important part of the master dissertation. I feel very lucky for being assigned such an interesting topic and had the chance to travel abroad. For this reason, I would like to thank the Ghent University for the amazing opportunity to conduct research abroad and get some international experience. I am very thankful I was able to travel to Bolivia for four months and execute this research project. It was an absolutely incredible experience and I would love to continue doing research in the field of animal nutrition. I would like to express a great amount of gratitude to prof. dr. Geert P. J. Janssens and especially Arturo Muñoz-Saravia for making all this possible. Thankyou Arturo for organizing this research project and for all you hospitality and expertise here in Belgium and in Bolivia. Furthermore, I would like to thank the directory team at the Museo de Historia Natural Alcide d’Orbigny in Cochabamba, Bolivia for all their help and support. A big thankyou to Ricardo Céspedes and Eliana Lizarraga. Fourthly, the team of BAI working in the captive breeding program in Cochabamba, as well as the BAI-research team in Bolivia also deserve a great amount of gratitude for all their help. In particular I would like to thank Gabriel Callapa for working with me in the field and helping me get around in Bolivia. Furthermore I would also like to thank Adriana Aguila Sainz, Alejandra Suarez Telles, Andrea Sandoval, Boris Bozo Herrera, Natalia Sanchez, Nazaria Lazzo, Ricardo Zurita Ugarte, Sophia M. Barron Lavayen, for the help I received catching and sorting potential prey items in the Titicaca Lake. Next, another thanks goes out to Arturo Muñoz-Saravia for helping me with the statistical analysis and processing of the data and a big thanks to Andrea Brenes Soto for helping with the nutrient intake calculations. Last but not least a big thank you goes out to my wonderful parents for their emotional, mental and financial support during this journey. I couldn’t have done it without them! Finally I would like to express how blessed I feel to be able to conduct research that will potentially help out endangered species and will put amphibian nutrition is a brighter light. It has always been a passion of mine to work in the field of wildlife conservation and being able to contribute to the preservation of our world’s wonderful biodiversity. Exotic animals, especially little critters like amphibians, fish, reptiles, and even insects have always had a special place in my heart. For as long as I can remember I have been catching and studying these animals in my free time. So being able to do the same on a semi- professional level and making a difference for these animals is a dream come true. I have to say that I have really found myself in the field of research and again, I would like to thank prof. dr. Geert P. J. Janssens and Arturo Muñoz-Saravia for this and, for making this project possible. I hope we will be working together again in the near future! Contents: SUMMARY: ...................................................................................................................................................... 1 SAMENVATTING: ............................................................................................................................................. 1 RESEARCH ........................................................................................................................................................ 3 1. INTRODUCTION ........................................................................................................................................ 3 2. THE TITICACA WATER FROG (TELMATOBIUS CULEUS) .............................................................................. 5 2.1. OCCURRENCE AND HABITAT ................................................................................................................. 5 2.2. MORPHOLOGY AND PHYSIOLOGY ........................................................................................................ 6 2.3. DIET ...................................................................................................................................................... 8 2.4. CONSERVATION STATUS ....................................................................................................................... 9 3. THE DIGESTIVE TRACT OF AMPHIBIANS ................................................................................................. 10 4. METABOLISM ......................................................................................................................................... 12 5. NUTRITION ............................................................................................................................................. 13 5.1. PROTEIN ............................................................................................................................................. 14 5.2. FAT ..................................................................................................................................................... 16 5.3. CARBOHYDRATES ............................................................................................................................... 16 5.4. MINERALS .......................................................................................................................................... 16 5.5. VITAMINS ........................................................................................................................................... 17 6. FEEDING MANAGEMENT OF ADULT AMPHIBIANS .................................................................................. 18 7. NUTRITIONAL DISEASE ........................................................................................................................... 21 8. MATERIAL AND METHODS ..................................................................................................................... 22 9. RESULTS ................................................................................................................................................. 26 10. DISCUSSION ........................................................................................................................................ 31 10.1. PREY SELECTION .................................................................................................................................... 31 10.2. THEORETICAL NUTRIENT RECOMMENDATIONS .................................................................................... 37 REFERENCES:.................................................................................................................................................. 44 APPENDIX: ....................................................................................................................................................... 1 1. ADDITIONAL RESULTS .............................................................................................................................. 1 2. SUPPORTING GRAPHS .............................................................................................................................. 4 3. ILLUSTRATIVE MATTERIAL ........................................................................................................................ 5 4. ADDITIONAL INFORMATION .................................................................................................................... 8 Summary: Nutrition is a considerable bottleneck in the ex situ maintenance of amphibians and is increasingly important in the context of captive breeding programs and worldwide amphibian declines. For these reasons, the dietary nutrient profile of the critically endangered Titicaca water frog (Telmatobius culeus) was determined and an attempt was made to deduce its nutritional requirements. During this research, a total of 12 types of potential prey items were attained and proximate analysis was carried out, together with mineral analysis, in order to determine their nutrient contents. Next, this data was combined with results of a previously performed gut content analysis to generate T. culeus’ dietary
Recommended publications
  • The Endemic Gastropod Fauna of Lake Titicaca: Correlation Between
    The endemic gastropod fauna of Lake Titicaca: correlation between molecular evolution and hydrographic history Oliver Kroll1, Robert Hershler2, Christian Albrecht1, Edmundo M. Terrazas3, Roberto Apaza4, Carmen Fuentealba5, Christian Wolff1 & Thomas Wilke1 1Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Germany 2National Museum of Natural History, Smithsonian Institution, Washington, D.C. 3Facultad de Ciencias Biologicas, Universidad Nacional del Altiplano, Puno, Peru 4Instituto de Ecologıa,´ Universidad Mayor de San Andres, La Paz, Bolivia 5Departamento de Zoologia, Universidad de Concepcion, Chile Keywords Abstract Altiplano, Heleobia, molecular clock, phylogeography, species flock. Lake Titicaca, situated in the Altiplano high plateau, is the only ancient lake in South America. This 2- to 3-My-old (where My is million years) water body has had Correspondence a complex history that included at least five major hydrological phases during the Thomas Wilke, Department of Animal Ecology Pleistocene. It is generally assumed that these physical events helped shape the evo- and Systematics, Justus Liebig University lutionary history of the lake’s biota. Herein, we study an endemic species assemblage Giessen, Heinrich Buff Ring 26–32 (IFZ), 35392 in Lake Titicaca, composed of members of the microgastropod genus Heleobia,to Giessen, Germany. Tel: +49-641-99-35720; determine whether the lake has functioned as a reservoir of relic species or the site Fax: +49-641-99-35709; of local diversification, to evaluate congruence of the regional paleohydrology and E-mail: [email protected] the evolutionary history of this assemblage, and to assess whether the geographic distributions of endemic lineages are hierarchical. Our phylogenetic analyses in- Received: 17 February 2012; Revised: 19 April dicate that the Titicaca/Altiplano Heleobia fauna (together with few extralimital 2012; Accepted: 23 April 2012 taxa) forms a species flock.
    [Show full text]
  • A Taxonomic Revision of the Andean Killifish Genus Orestias (Cyprinodontiformes, Cyprinodontidae)
    A TAXONOMIC REVISION OF THE ANDEAN KILLIFISH GENUS ORESTIAS (CYPRINODONTIFORMES, CYPRINODONTIDAE) I.VNNE R. PARENT] BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY VOLUME 178 : ARTICLE 2 NEW YORK : 1984 A TAXONOMIC REVISION OF THE ANDEAN KILLIFISH GENUS ORESTIAS (CYPRINODONTIFORMES, CYPRINODONTIDAE) LYNNE R. PARENTI Research Associate, Department of Ichthyology American Museum of Natural History BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY Volume 178, article 2, pages 107-214, figures 1-72, tables 1-12 Issued May 9, 1984 Price: $8.40 a copy Copyright © American Museum of Natural History 1984 ISSN 0003-0090 CONTENTS Abstract 110 Introduction 110 Acknowledgments 113 Abbreviations 114 Note on Materials and Methods 115 Relationships of Killifishes of the Tribe Orestiini 116 Phylogenetic Analysis 122 Squamation and Neuromast Pattern 123 Hyobranchial Apparatus 126 Fins 129 Chromosomes 130 Sexual Dimorphism and Dichromatism 131 Jaw and Jaw Suspensorium 133 Skull 134 Meristic Characters 135 Morphometric Characters 146 Explanation of Synapomorphy Diagrams 150 Key to Orestias Species 160 Systematic Accounts 165 Genus Orestias Valenciennes 165 Orestias cuvieri Valenciennes 167 Orestias pentlandii Valenciennes 168 Orestias ispi Lauzanne 169 Orestias forgeti Lauzanne 170 Orestias mulleri Valenciennes 171 Orestias gracilis, New Species 172 Orestias crawfordi Tchernavin 173 Orestias tutini Tchernavin 174 Orestias incae Garman 174 Orestias luteus Valenciennes 175 Orestias rotundipinnis, New Species 176 Orestias farfani, New Species 178 Orestias
    [Show full text]
  • A New Species of Telmatobius Wiegmann, 1834, from The
    ANNALS OF CARNEGIE MUSEUM VOL. 83, NUMBER 4, PP. 255–268 31 AUGUST 2016 A NEW SPECIES OF TELMATOBIUS WIEGMANN, 1834, FROM THE EASTERN CORDILLERA CENTRAL OF THE ANDES, PERU (ANURA: TELMATOBIIDAE), WITH DESCRIPTION OF ITS TADPOLE, AND RANGE EXTENSION OF T. MENDELSONI DE LA RIVA ET AL., 2012 ALEX TTITO Museo de Historia Natural de la Universidad Nacional de San Antonio Abad del Cusco, Plaza de Armas s/n (Paraninfo Universitario), Cusco, Perú [email protected] CAROLL Z. LANDAURO División de Herpetología del Centro de Ornitología y Biodiversidad (CORBIDI). Santa Rita 117, Huertos de San Antonio, Surco, Lima, Perú [email protected] PABLO J. VENEGAS División de Herpetología, Centro de Ornitología y Biodiversidad (CORBIDI). Santa Rita 117, Huertos de San Antonio, Surco, Lima, Perú [email protected] IGNACIO DE LA RIVA Department of Biodiversity and Evolutionary Biology, Museo Nacional de Ciencias Naturales, CSIC. C/ José Gutiérrez Abascal 2, 28006 Madrid, Spain [email protected] JUAN C. CHAPARRO Museo de Historia Natural de la Universidad Nacional de San Antonio Abad del Cusco, Plaza de Armas s/n (Paraninfo Universitario), Cusco, Perú Corresponding author: [email protected] ABSTRACT We describe adult specimens and tadpoles of a new species of Telmatobius Wiegmann, 1834, Telmatobius mantaro, from the central Cordillera of the Andes in Peru. Specimens were collected in humid lower montane forests and dry lower montane forests between 2240–3170 m elevation at the northern parts of the Departments of Huancavelica and Ayacucho. We also report a range extension of 262 km west of the type locality for Telmatobius mendelsoni De la Riva et al., 2012, which was found in sympatry with T.
    [Show full text]
  • Phylogenomics of the Hyalella Amphipod Species-Flock of The
    www.nature.com/scientificreports OPEN Phylogenomics of the Hyalella amphipod species‑fock of the Andean Altiplano Francesco Zapelloni1,3, Joan Pons2,3, José A. Jurado‑Rivera1, Damià Jaume2 & Carlos Juan1,2* Species diversifcation in ancient lakes has enabled essential insights into evolutionary theory as they embody an evolutionary microcosm compared to continental terrestrial habitats. We have studied the high‑altitude amphipods of the Andes Altiplano using mitogenomic, nuclear ribosomal and single‑ copy nuclear gene sequences obtained from 36 Hyalella genomic libraries, focusing on species of the Lake Titicaca and other water bodies of the Altiplano northern plateau. Results show that early Miocene South American lineages have recently (late Pliocene or early Pleistocene) diversifed in the Andes with a striking morphological convergence among lineages. This pattern is consistent with the ecological opportunities (access to unoccupied resources, initial relaxed selection on ecologically‑ signifcant traits and low competition) ofered by the lacustrine habitats established after the Andean uplift. Lakes with an uninterrupted history of more than 100,000 years (ancient lakes) may be considered as natural laboratories for evolutionary research as they constitute hotspots of aquatic animal speciation and phenotypic diversity1. Changes in lake size and episodes of desiccation are considered to be critical factors in the speciation and extinction of lake faunas, with the creation of new habitats afer lake expansions as the primary driver of intra-lake diversifcation2–4. For instance, cichlid radiations in the East African Lakes seem to have been trig- gered by lake expansions afer periods of intense desiccation, with the surviving species flling up empty niches afer lake reflling2.
    [Show full text]
  • Amphibian Physiology and Immunology and Immunology
    2/12/2013 Amphibian Physiology and Immunology Lecture Road Map • Amphibian organ systems • Function of systems • Physiological adaptations – Hibernation – Immune response Integumentary system • Amphibian Integument • Epidermis‐single or few layers of Epidermis‐keratinized cells Aquatic amphibians‐no keratinized cells • Extremely permeable Absorb water directly from environment • Dermis‐chromatophores and glands produce secretions which help protect the amphibian’s skin 1 2/12/2013 Vision • Lacrimal and harderian glands present in most amphibians • Produce secretions that combine to form the tear film • Eyes protected by nictitactin membranes • Caecilians‐eyes covered with skin • Amphibian eyes‐often protrude ventrally into the oral cavity when animal swallowing Circulatory system • Double circulatory system • Heart is not always completely separated into two pumps. • Three‐chambered heart. Heart • Two atria • One ventricle 2 2/12/2013 Heart • Ventricle Regions • Cavum venosum:paired aortic arches,lead to aortic arches,lead to systemic circulation • Cavum arteriosum:receives blood from pulmonary veins and directs oxygenated blood to cavum venosum • Cavum pulmonale: receives blood from right atrium and directs into pulmonary circulation Heart • Pressure differences of out flow tracts and muscular ridge that partially separates cavum venosum and cavum pulmonale maintain separation of oxygenated and deoxygenated blood Heart rate • Depends on species, size, temperature, activity level, and metabolic function • Heart rate=33.4 ×(Weight in
    [Show full text]
  • Amphibia, Anura, Telmatobiidae) from the Pacific Lops Es of the Andes, Peru Alessandro Catenazzi Southern Illinois University Carbondale, [email protected]
    Southern Illinois University Carbondale OpenSIUC Publications Department of Zoology 2-2015 A New Species of Telmatobius (Amphibia, Anura, Telmatobiidae) from the Pacific lopS es of the Andes, Peru Alessandro Catenazzi Southern Illinois University Carbondale, [email protected] Víctor Vargas García Pro-Fauna Silvestre Edgar Lehr Illinois Wesleyan University Follow this and additional works at: http://opensiuc.lib.siu.edu/zool_pubs Published in ZooKeys, Vol. 480 (2015) at doi: 10.3897/zookeys.480.8578 Recommended Citation Catenazzi, Alessandro, García, Víctor V. and Lehr, Edgar. "A New Species of Telmatobius (Amphibia, Anura, Telmatobiidae) from the Pacific lopeS s of the Andes, Peru." (Feb 2015). This Article is brought to you for free and open access by the Department of Zoology at OpenSIUC. It has been accepted for inclusion in Publications by an authorized administrator of OpenSIUC. For more information, please contact [email protected]. A peer-reviewed open-access journal ZooKeys 480: 81–95 (2015)A new species of Telmatobius (Amphibia, Anura, Telmatobiidae)... 81 doi: 10.3897/zookeys.480.8578 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research A new species of Telmatobius (Amphibia, Anura, Telmatobiidae) from the Pacific slopes of the Andes, Peru Alessandro Catenazzi1, Víctor Vargas García2, Edgar Lehr3 1 Department of Zoology, Southern Illinois University, Carbondale, IL 62901, USA 2 Pro-Fauna Silve- stre, Ayacucho, Peru 3 Department of Biology, Illinois Wesleyan University, P.O. Box 2900, Bloomington, IL 61701, USA Corresponding author: Alessandro Catenazzi ([email protected]) Academic editor: F. Andreone | Received 13 September 2014 | Accepted 25 December 2014 | Published 2 February 2015 http://zoobank.org/46E9AE3C-D24B-42DB-B455-2ABE684DA264 Citation: Catenazzi A, Vargas García V, Lehr E (2015) A new species of Telmatobius (Amphibia, Anura, Telmatobiidae) from the Pacific slopes of the Andes, Peru.
    [Show full text]
  • 4. DUELLMAN, WE & E. LEHR (2009). Terrestrial-Breeding Frogs
    PUBLICATIONS (133 in total) BOOKS & BOOK CONTRIBUTIONS (peer-reviewed*) 4. DUELLMAN, W. E. & E. LEHR (2009). Terrestrial-Breeding Frogs (Strabomantidae) in Peru. Natur- und Tier-Verlag, Naturwissenschaft, Münster, Germany, 382 pp. 3. LEHR, E. (2002). Amphibien und Reptilien in Peru: Die Herpetofauna entlang des 10. Breitengrades von Peru: Arterfassung, Taxonomie, ökologische Bemerkungen und biogeographische Beziehungen. Dissertation, Natur- und Tier-Verlag, Naturwissenschaft, Münster, Germany, 208 pp. 2. *BURKE, L. R., L. S. FORD, E. LEHR, S. MOCKFORD, P. C. H. PRITCHARD, J. P. O. ROSADO, D. M. SENNEKE, AND B. L. STUART (2007). Non-Standard Sources in a Standardized World: Responsible Practice and Ethics of Acquiring Turtle Specimens for Scientific Use, pp. 142– 146. In: SHAFFER, H.B., N. N. FITZSIMMONS, A. GEORGES & A. G.J. RHODIN (eds., 2007): Defining Turtle Diversity: Proceedings of a Workshop on Genetics, Ethics, and Taxonomy of Freshwater Turtles and Tortoises. Chelonian Research Monograph 4:1– 200. 1. *LEHR, E. (2005). The Telmatobius and Batrachophrynus (Anura: Leptodactylidae) species of Peru, pp. 39–64. In: E. O. LAVILLA & I. DE LA RIVA, (eds.), Studies on the Andean Frogs of the Genera Telmatobius and Batrachophrynus, Asociación Herpetológica Española, Monografías de Herpetología 7:1–349. SCIENTIFIC ARTICLES (peer-reviewed) 91. CATENAZZI, A., E. LEHR & R. VON MAY (2014): The amphibians and reptiles of Manu National Park and its buffer zone, Amazon basin and eastern slopes of the Andes, Peru. Biota Neotropica 13(4): 269–283. 90. MORAVEC, J., LEHR E., CUSI, J. C., CÓRDOVA, J. H. & V. Gvoždík (2014): A new species of the Rhinella margaritifera species group (Anura, Bufonidae) from the montane forest of the Selva Central, Peru.
    [Show full text]
  • 2011-2015 Center for Genome Regulation (CGR)
    FONDAP CENTERS OF EXCELLENCE IN RESEARCH PROGRAM FINAL FIVE YEAR REPORT 2011-2015 Center for Genome Regulation (CGR) 1 FONDAP CENTERS OF RESEARCH PROGRAM FINAL REPORT FIRST FIVE-YEAR PERIOD FONDAP CENTER FOR GENOME REGULATION (CGR) Guidelines: ​ The report should be written following the format specified hereafter. Both a printed (report and excel spreadsheets) and an electronic version must be sent to the following address: PROGRAMA CENTROS DE EXCELENCIA FONDAP CONICYT Moneda 1375, Floor 9 Santiago E-mail: [email protected] ​ Phone: (56 – 2) 2435 43 27 For future inquiries, please contact: María Eugenia Camelio FONDAP Program Interim Director E-mail: [email protected] 2 I. PRESENTATION PERIOD COVERED: From: January 2011 To: June 2015 ​ NAME OF THE CENTER CODE FONDAP Center for Genome Regulation 15 09 00 07 DIRECTOR OF THE CENTER E-MAIL SIGNATURE Dr. Miguel L Allende [email protected] DEPUTY DIRECTOR E-MAIL SIGNATURE [email protected] Dr. Martín Montecino SPONSORING INSTITUTION Universidad de Chile SPONSORING INSTITUTION E-MAIL SIGNATURE REPRESENTATIVE Prof. Víctor Cifuentes (Dean) [email protected] ASSOCIATED INSTITUTION(S) (if applicable) ​ Pontificia Universidad Católica de Chile, Universidad Andrés Bello CENTER WEBSITE ADDRESS www.genomacrg.cl DATE: 10/7/15 ​ 3 II. EXECUTIVE SUMMARY Five years ago, the FONDAP Center for Genome Regulation (CGR) set for itself a list of strategic and scientific objectives that would significantly change the landscape of Chilean genomic science and biological research. At the midpoint of the projected 10­year period in which these goals were to be accomplished, we can say that we are in the presence of a completely new scenario.
    [Show full text]
  • Cladistic Revision of Talitroidean Amphipods (Crustacea, Gammaridea), with a Proposal of a New Classification
    CladisticBlackwell Publishing, Ltd. revision of talitroidean amphipods (Crustacea, Gammaridea), with a proposal of a new classification CRISTIANA S. SEREJO Accepted: 8 December 2003 Serejo, C. S. (2004). Cladistic revision of talitroidean amphipods (Crustacea, Gammaridea), with a proposal of a new classification. — Zoologica Scripta, 33, 551–586. This paper reports the results of a cladistic analysis of the Talitroidea s.l., which includes about 400 species, in 96 genera distributed in 10 families. The analysis was performed using PAUP and was based on a character matrix of 34 terminal taxa and 43 morphological characters. Four most parsimonious trees were obtained with 175 steps (CI = 0.617, RI = 0.736). A strict consensus tree was calculated and the following general conclusions were reached. The superfamily Talitroidea is elevated herein as infraorder Talitrida, which is subdivided into three main branches: a small clade formed by Kuria and Micropythia (the Kurioidea), and two larger groups maintained as distinct superfamilies (Phliantoidea, including six families, and Talitroidea s.s., including four). Within the Talitroidea s.s., the following taxonomic changes are proposed: Hyalellidae and Najnidae are synonymized with Dogielinotidae, and treated as subfamilies; a new family rank is proposed for the Chiltoniinae. Cristiana S. Serejo, Museu Nacional/UFRJ, Quinta da Boa Vista s/n, 20940–040, Rio de Janeiro, RJ, Brazil. E-mail: [email protected] Introduction Table 1 Talitroidean classification following Barnard & Karaman The talitroideans include amphipods ranging in length from 1991), Bousfield (1996) and Bousfield & Hendrycks (2002) 3 to 30 mm, and are widely distributed in the tropics and subtropics. In marine and estuarine environments, they are Superfamily Talitroidea Rafinesque, 1815 Family Ceinidae Barnard, 1972 usually found in shallow water, intertidally or even in the supra- Family Dogielinotidae Gurjanova, 1953 littoral zone.
    [Show full text]
  • Invited Review the Phylogenetic Odyssey of the Erythrocyte. IV. The
    Histol Histopathol (1997) 12: 147-170 Histology and 001: 10.14670/HH-12.147 Histopathology http://www.hh.um.es From Cell Biology to Tissue Engineering Invited Review The phylogenetic odyssey of the erythrocyte. IV. The amphibians C.A. Glomski, J. Tamburlin, R. Hard and M. Chainani State University of New York at Buffalo, Department of Anatomy and Cell Biology, School of Medicine, Buffalo, New York, USA Summary. Amphibians mani fes t permanently nucleated , Introduction oval. flatte ned , biconvex ery throcytes. These cell s demonstrate a cytoskeleton which is responsible for their H e moglo bin is a n unique, a nc ie nt respirato ry morphogeneti c conversion from a sphere to an ellipse me ta ll o -pig m e nt w hose s pec ia li zed func ti o ns a nd imparts to the ir cellular m ass revers ibility of a re d e mo ns tra bly e nha nced by it s m ic ro ­ traumati c deformati o n. The class Amphibia has the environmentali zati on in a passive-flowi ng, circulating largest of all erythrocytes attaining volumes greater than cell as opposed to free physical solution in the plasma as 10,000 fe mto lite rs in the Amphiuma. The la rge seen at the in vertebrate level (Glomski and Tamburlin, dimensions re fl ect evolutionary processes, genomic size, 1989). The degree of its polymeri zati on, association with plo id y a nd the re lative size of o the r somati c cell s. interactive enzyme syste ms, and the structure o f it s Conversely, the ery throcyte count a nd he mog lobin globin chains confe r upon the compound a spectrum of concentrat io n of these spec ies are low.
    [Show full text]
  • Conservation of Telmatobius Species: T. Scrocchii and T. Culeus by Anna Martinez
    Conservation of Telmatobius Species: T. scrocchii and T. culeus By Anna Martinez Conservation of Telmatobius Species: T. scrocchii and T. culeus Introduction: The Telmatobius Family Telmatobius frogs are endemic to South America’s Andes mountain range, distributed across Argentina, Bolivia, Ecuador, Chile, and Peru (Angulo, 2008) (Fig 1 & 2). Many species are purely aquatic and live in small streams or lakes. Others can be partially terrestrial as adults, but their eggs and larvae are completely dependent on aquatic conditions. Their clutch can be 80 to 500 eggs, however they tend to have low reproduction rates. Eggs are laid on rocks with in the water but little is known about their development. Adults tend to live hidden in debris and vegetation, under rocks, and within natural muddy cavities. Though adults may be found resting on rock during the day, most adults are most active at night (Barrionuevo, 2008). Along with their endemism and aquatic lifestyles, Telmatobius species can be found in high altitude habitats. This gives rise to evolutionary adaptations in low oxygen environments. The T.culeus has been a focus of studies observing unique oxygen exchange techniques and will be described further within this paper. Distribution of IUCN Telmatobius Species in South America Bolivia 21% 22% Peru Ecuador 16% 36% Chile Argentina 5% Figure 2: Pie chart of distribution of Telmatobius Figure 1: Map of Argentina species Provided by Emily the Blogger Based on information given by IUCN Page 1 of 9 Conservation of Telmatobius Species: T. scrocchii and T. culeus By Anna Martinez Herpetologists are concerned for Telmatobius for a variety of reasons.
    [Show full text]
  • The Hyalella (Crustacea: Amphipoda) Species Cloud of the Ancient Lake Titicaca Originated from Multiple Colonizations
    Accepted Manuscript The Hyalella (Crustacea: Amphipoda) species cloud of the ancient Lake Titicaca originated from multiple colonizations Sarah J. Adamowicz, María Cristina Marinone, Silvina Menu Marque, Jeffery W. Martin, Daniel C. Allen, Michelle N. Pyle, Patricio R. De los Ríos-Escalante, Crystal N. Sobel, Carla Ibañez, Julio Pinto, Jonathan D.S. Witt PII: S1055-7903(17)30154-9 DOI: https://doi.org/10.1016/j.ympev.2018.03.004 Reference: YMPEV 6076 To appear in: Molecular Phylogenetics and Evolution Received Date: 18 February 2017 Revised Date: 13 February 2018 Accepted Date: 5 March 2018 Please cite this article as: Adamowicz, S.J., Cristina Marinone, M., Menu Marque, S., Martin, J.W., Allen, D.C., Pyle, M.N., De los Ríos-Escalante, P.R., Sobel, C.N., Ibañez, C., Pinto, J., Witt, J.D.S., The Hyalella (Crustacea: Amphipoda) species cloud of the ancient Lake Titicaca originated from multiple colonizations, Molecular Phylogenetics and Evolution (2018), doi: https://doi.org/10.1016/j.ympev.2018.03.004 This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. The final publication is available at Elsevier via https://doi.org/10.1016/j.ympev.2018.03.004. © 2018.
    [Show full text]