Global Catastrophe Recap
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
NASA Catches the Eye of Typhoon Lingling 5 September 2019
NASA catches the eye of Typhoon Lingling 5 September 2019 Warning Center or JTWC said that Typhoon Lingling, known locally in the Philippines as Liwayway, had moved away from the Philippines enough that warnings have been dropped. Lingling was located near 23.0 degrees north latitude and 125.4 degrees east longitude. That is 247 nautical miles southwest of Kadena Air Base, Okinawa, Japan. Lingling was moving to the north- northeast and maximum sustained winds had increased to near 80 knots (75 mph/120.3 kph). JTWC forecasters said that Lingling is moving north and is expected to intensify to 105 knots (121 mph/194 kph) upon passing between Taiwan and Japan. Provided by NASA's Goddard Space Flight Center On Sept. 4, 2019 at 1:20 a.m. EDT (0520 UTC) the MODIS instrument that flies aboard NASA's Terra satellite showed powerful thunderstorms circling Typhoon Lingling's visible eye. Credit: NASA/NRL Typhoon Lingling continues to strengthen in the Northwestern Pacific Ocean and NASA's Terra satellite imagery revealed the eye is now visible. On Sept. 4 at 1:20 a.m. EDT (0520 UTC) the Moderate Imaging Spectroradiometer or MODIS instrument that flies aboard NASA's Terra satellite showed powerful thunderstorms circling Typhoon Lingling's visible 15 nautical-mile wide eye. The Joint Typhoon Warning Center (JTWC) noted, "Animated enhanced infrared satellite imagery depicts tightly-curved banding wrapping into a ragged eye." In addition, microwave satellite imagery showed a well-defined microwave eye feature. At 11 a.m. EDT (1500 UTC), the Joint Typhoon 1 / 2 APA citation: NASA catches the eye of Typhoon Lingling (2019, September 5) retrieved 2 October 2021 from https://phys.org/news/2019-09-nasa-eye-typhoon-lingling.html This document is subject to copyright. -
Field Investigations of Coastal Sea Surface Temperature Drop
1 Field Investigations of Coastal Sea Surface Temperature Drop 2 after Typhoon Passages 3 Dong-Jiing Doong [1]* Jen-Ping Peng [2] Alexander V. Babanin [3] 4 [1] Department of Hydraulic and Ocean Engineering, National Cheng Kung University, Tainan, 5 Taiwan 6 [2] Leibniz Institute for Baltic Sea Research Warnemuende (IOW), Rostock, Germany 7 [3] Department of Infrastructure Engineering, Melbourne School of Engineering, University of 8 Melbourne, Australia 9 ---- 10 *Corresponding author: 11 Dong-Jiing Doong 12 Email: [email protected] 13 Tel: +886 6 2757575 ext 63253 14 Add: 1, University Rd., Tainan 70101, Taiwan 15 Department of Hydraulic and Ocean Engineering, National Cheng Kung University 16 -1- 1 Abstract 2 Sea surface temperature (SST) variability affects marine ecosystems, fisheries, ocean primary 3 productivity, and human activities and is the primary influence on typhoon intensity. SST drops 4 of a few degrees in the open ocean after typhoon passages have been widely documented; 5 however, few studies have focused on coastal SST variability. The purpose of this study is to 6 determine typhoon-induced SST drops in the near-coastal area (within 1 km of the coast) and 7 understand the possible mechanism. The results of this study were based on extensive field data 8 analysis. Significant SST drop phenomena were observed at the Longdong buoy in northeastern 9 Taiwan during 43 typhoons over the past 20 years (1998~2017). The mean SST drop (∆SST) 10 after a typhoon passage was 6.1 °C, and the maximum drop was 12.5 °C (Typhoon Fungwong 11 in 2008). -
A Prototype KPOPS-Climate Development
KOPRI Final Report 2020.1 A prototype KPOPS-Climate development Sub-project: Development of a prototype of KPOPS automated management system for quasi-real time climate prediction model Main-project: Development and Application of the Korea Polar Prediction System (KPOPS) for Climate Change and Weather Disaster Dongwook Shin and Steve Cocke Center for Ocean-Atmospheric Prediction Studies, Florida State University Tallahassee, FL, USA Submission To : Chief of Korea Polar Research Institute This report is submitted as the final report (Report title: “a prototype KPOPS-Climate development”) of entrusted research “Development of a prototype of KPOPS automated management system for quasi-real time climate prediction model” project of “Development and Application of the Korea Polar Prediction System (KPOPS) for Climate Change and Weather Disaster” project. 2020. 1. 31 Person in charge of Entire Research : 김 주 홍 Name of Entrusted Organization : FSU/COAPS Entrusted Researcher in charge : Dongwook Shin Participating Entrusted Researchers : Steven Cocke 1 Summary I. Title A prototype KPOPS-Climate development II. Purpose and Necessity of R&D The main purpose of this R&D is to develop a prototype quasi-operational sub- seasonal to seasonal climate modeling system in the KOPRI computer cluster. The KOPRI and the FSU/COAPS scientists work closely together to initiate, improve and optimize the first version of the KPOPS-Climate in order to make a reliable sub- seasonal to seasonal climate prediction system which necessarily provides a better weather/climate guidance to the Korean policy decision makers, environmental risk protection managers and/or the public. III. Contents and Extent of R&D An initial version of the prototype KPOPS-Climate was developed and installed in the KOPRI computer cluster. -
Appendix 8: Damages Caused by Natural Disasters
Building Disaster and Climate Resilient Cities in ASEAN Draft Finnal Report APPENDIX 8: DAMAGES CAUSED BY NATURAL DISASTERS A8.1 Flood & Typhoon Table A8.1.1 Record of Flood & Typhoon (Cambodia) Place Date Damage Cambodia Flood Aug 1999 The flash floods, triggered by torrential rains during the first week of August, caused significant damage in the provinces of Sihanoukville, Koh Kong and Kam Pot. As of 10 August, four people were killed, some 8,000 people were left homeless, and 200 meters of railroads were washed away. More than 12,000 hectares of rice paddies were flooded in Kam Pot province alone. Floods Nov 1999 Continued torrential rains during October and early November caused flash floods and affected five southern provinces: Takeo, Kandal, Kampong Speu, Phnom Penh Municipality and Pursat. The report indicates that the floods affected 21,334 families and around 9,900 ha of rice field. IFRC's situation report dated 9 November stated that 3,561 houses are damaged/destroyed. So far, there has been no report of casualties. Flood Aug 2000 The second floods has caused serious damages on provinces in the North, the East and the South, especially in Takeo Province. Three provinces along Mekong River (Stung Treng, Kratie and Kompong Cham) and Municipality of Phnom Penh have declared the state of emergency. 121,000 families have been affected, more than 170 people were killed, and some $10 million in rice crops has been destroyed. Immediate needs include food, shelter, and the repair or replacement of homes, household items, and sanitation facilities as water levels in the Delta continue to fall. -
Quantification of Typhoon-Induced Phytoplankton Blooms Using
remote sensing Article Quantification of Typhoon-Induced Phytoplankton Blooms Using Satellite Multi-Sensor Data Jiayi Pan 1,2,3,* ID , Lei Huang 2, Adam T. Devlin 2 and Hui Lin 2 1 School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China 2 Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Hong Kong, China; [email protected] (L.H.); [email protected] (A.T.D.); [email protected] (H.L.) 3 Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen 518057, China * Correspondence: [email protected]; Tel.: +852-3943-1308 Received: 19 December 2017; Accepted: 16 February 2018; Published: 20 February 2018 Abstract: Using satellite-based multi-sensor observations, this study investigates Chl-a blooms induced by typhoons in the Northwest Pacific (NWP) and the South China Sea (SCS), and quantifies the blooms via wind-induced mixing and Ekman pumping parameters, as well as pre-typhoon mixed-layer depth (MLD). In the NWP, the Chl-a bloom is more correlated with the Ekman pumping than with the other two parameters, with an R2 value of 0.56. In the SCS, the wind-induced mixing and Ekman pumping have comparable correlations with the Chl-a increase, showing R2 values of 0.4~0.6. However, the MLD exhibits a negative correlation with the Chl-a increase. A multi-parameter quantification model of the Chl-a bloom strength achieves better results than the single-parameter regressions, yielding a more significant R2 value of 0.80, and a lower regression rms of 0.18 mg·m−3 in the SCS, and the R2 value in the NWP is also improved compared with the single-parameter regressions. -
The Effect of Typhoon on POC Flux
Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | Biogeosciences Discuss., 7, 3521–3550, 2010 Biogeosciences www.biogeosciences-discuss.net/7/3521/2010/ Discussions BGD doi:10.5194/bgd-7-3521-2010 7, 3521–3550, 2010 © Author(s) 2010. CC Attribution 3.0 License. The effect of typhoon This discussion paper is/has been under review for the journal Biogeosciences (BG). on POC flux Please refer to the corresponding final paper in BG if available. C.-C. Hung et al. The effect of typhoon on particulate Title Page Abstract Introduction organic carbon flux in the southern East Conclusions References China Sea Tables Figures C.-C. Hung1, G.-C. Gong1, W.-C. Chou1, C.-C. Chung1,2, M.-A. Lee3, Y. Chang3, J I H.-Y. Chen4, S.-J. Huang4, Y. Yang5, W.-R. Yang5, W.-C. Chung1, S.-L. Li1, and 6 E. Laws J I 1Institute of Marine Environmental Chemistry and Ecology, National Taiwan Ocean University Back Close Keelung, 20224, Taiwan 2Center for Marine Bioscience and Biotechnology, National Taiwan Ocean University Keelung, Full Screen / Esc 20224, Taiwan 3 Department of Environmental Biology and Fisheries Science, National Taiwan Ocean Printer-friendly Version University, 20224, Taiwan 4Department of Marine Environmental Informatics, National Taiwan Ocean University, Interactive Discussion Keelung, 20224, Taiwan 5Taiwan Ocean Research Institute, National Applied Research Laboratories, Taipei, Taiwan 3521 Discussion Paper | Discussion Paper | Discussion Paper | Discussion Paper | BGD 6 Department of Environmental Sciences, School of the Coast and Environment, Louisiana 7, 3521–3550, 2010 State University, Baton Rouge, LA 70803, USA Received: 16 April 2010 – Accepted: 7 May 2010 – Published: 19 May 2010 The effect of typhoon on POC flux Correspondence to: C.-C. -
Development and Validation of Alluvial Risk Identification Methodologies Through the Integrated Use of Remote Sensing from Satel
DEVELOPMENT AND VALIDATION OF ALLUVIAL RISK IDENTIFICATION METHODOLOGIES THROUGH THE INTEGRATED USE OF REMOTE SENSING FROM SATELLITE AND HYDRAULIC MODELING WITH PARTICULAR REFERENCE TO POST- EVENT ANALYSIS AND NOWCASTING PHASES Ph.D. in Environmental and Hydraulic engineering – XXXII cycle Ph.D. candidate Supervisor Eng. Vincenzo Scotti Prof. Francesco Cioffi Academic year: 2018/2019 1 Summary 1 PREFACE ..................................................................................................................................................... 7 2 INTRODUCTION ....................................................................................................................................... 12 2.1 FLOODING RISK ASSESSMENT FROM SATELLITE ............................................................................. 13 2.1.1 REMOTE SENSING FROM SATELLITE FOR THE RETRIEVAL OF SOIL MOISTURE ....................... 17 2.1.2 REMOTE SENSING FROM SATELLITE FOR THE SUBSIDENCE PHENOMENA ASSESSMENT ...... 20 2.1.3 REMOTE SENSING FROM SATELLITE FOR THE DETECTION OF FLOODING EXTENSION .......... 23 2.1.4 REMOTE SENSING FROM SATELLITE FOR THE PRECIPITATION ESTIMATION .......................... 26 2.2 OTHER TECHNIQUES IN FLOODING RISK ASSESSMENT ................................................................... 27 2.2.1 HYDRAULIC MODELLING IN FLOOD RISK ASSESSMENT ........................................................... 28 2.2.2 FLOODING RISK ASSESSMENT USING SOCIAL MEDIA MARKER ............................................... 29 2.2.3 ARTIFICIAL -
Strong Enhancement of Chlorophyll a Concentration by a Weak Typhoon
Vol. 404: 39–50, 2010 MARINE ECOLOGY PROGRESS SERIES Published April 8 doi: 10.3354/meps08477 Mar Ecol Prog Ser Strong enhancement of chlorophyll a concentration by a weak typhoon Liang Sun1, 2,*, Yuan-Jian Yang3, Tao Xian1, Zhu-min Lu4, Yun-Fei Fu1 1Laboratory of Atmospheric Observation and Climatological Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, PR China 2LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, PR China 3Anhui Institute of Meteorological Sciences, Hefei 230031, PR China 4Key Laboratory of Tropical Marine Environmental Dynamics, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, PR China ABSTRACT: Recent studies demonstrate that chlorophyll a (chl a) concentrations in ocean surface waters can be significantly enhanced due to typhoons. The present study investigated chl a concen- trations in the middle of the South China Sea (SCS) from 1997 to 2007. Only the Category 1 (minimal) Typhoon Hagibis (2007) had a notable effect on chl a concentrations. Typhoon Hagibis had a strong upwelling potential due to its location near the equator, and the forcing time of the typhoon (>82 h) was much longer than the geostrophic adjustment time (~63 h). The higher upwelling velocity and the longer forcing time increased the depth of the mixed-layer, which consequently induced a strong phytoplankton bloom that accounted for about 30% of the total annual chl a concentration in the middle of the SCS. Induction of significant upper ocean responses can be expected if the forcing time of a typhoon is long enough to establish strong upwelling. -
Statistical Characteristics of the Response of Sea Surface Temperatures to Westward Typhoons in the South China Sea
remote sensing Article Statistical Characteristics of the Response of Sea Surface Temperatures to Westward Typhoons in the South China Sea Zhaoyue Ma 1, Yuanzhi Zhang 1,2,*, Renhao Wu 3 and Rong Na 4 1 School of Marine Science, Nanjing University of Information Science and Technology, Nanjing 210044, China; [email protected] 2 Institute of Asia-Pacific Studies, Faculty of Social Sciences, Chinese University of Hong Kong, Hong Kong 999777, China 3 School of Atmospheric Sciences, Sun Yat-Sen University and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China; [email protected] 4 College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao 266100, China; [email protected] * Correspondence: [email protected]; Tel.: +86-1888-885-3470 Abstract: The strong interaction between a typhoon and ocean air is one of the most important forms of typhoon and sea air interaction. In this paper, the daily mean sea surface temperature (SST) data of Advanced Microwave Scanning Radiometer for Earth Observation System (EOS) (AMSR-E) are used to analyze the reduction in SST caused by 30 westward typhoons from 1998 to 2018. The findings reveal that 20 typhoons exerted obvious SST cooling areas. Moreover, 97.5% of the cooling locations appeared near and on the right side of the path, while only one appeared on the left side of the path. The decrease in SST generally lasted 6–7 days. Over time, the cooling center continued to diffuse, and the SST gradually rose. The slope of the recovery curve was concentrated between 0.1 and 0.5. -
HUMANITARIAN AID in NORTH KOREA: NEEDS, SANCTIONS and FUTURE CHALLENGES Dr Nazanin Zadeh-Cummings and Lauren Harris
HUMANITARIAN AID IN NORTH KOREA: NEEDS, SANCTIONS AND FUTURE CHALLENGES Dr Nazanin Zadeh-Cummings and Lauren Harris April 2020 TABLE OF CONTENTS Executive Summary 4 Section 1: Introduction 5 Section 2: Humanitarian need in North Korea today 6 Section 3: Humanitarian foresight: what now, what next? 12 Section 4: Conclusion 20 Section 5: Recommendations 21 Section 6: Appendix 23 HUMANITARIAN AID IN NORTH KOREA: NEEDS, SANCTIONS AND FUTURE CHALLENGES Dr Nazanin Zadeh-Cummings and Lauren Harris "The [DPRK] is in the midst of a protracted, entrenched humanitarian situation largely forgotten or overlooked by the rest of the world." United Nations (UN) Resident Coordinator Tapan Mishra, 20171 "We’ve been able to navigate it, but every one of those [UN and US] restric- tions affects the quality of our work, and our ability to reach more people. That’s just the reality. I don’t think it’s the intention of the people who put the sanctions together, but that’s just how it’s worked out." Randall Spadoni, World Vision2 Acknowledgements The authors would like to thank the individuals who gave their time and insights during interviews for this paper. A special thanks to Melanie Book and Tara Cartland for their input, and to Jade Legrand for sharing her expertise in the foresight field. We dedicate this report to the people of North Korea, and to the people working to ensure the world does not forget them. Cover image: Pyongyang cityscape, September 2016 / Centre for Humanitarian Leadership" 1 Humanitarian Country Team. (2017). DPR Korea 2017: Needs and Priorities. Retrieved from: https://reliefweb.int/sites/reliefweb.int/ files/resources/DPRK%20Needs%20and%20Priorities%202017.pdf 2 CATO institute. -
Tropical Cyclones 2019
<< LINGLING TRACKS OF TROPICAL CYCLONES IN 2019 SEP (), !"#$%&'( ) KROSA AUG @QY HAGIBIS *+ FRANCISCO OCT FAXAI AUG SEP DANAS JUL ? MITAG LEKIMA OCT => AUG TAPAH SEP NARI JUL BUALOI SEPAT OCT JUN SEPAT(1903) JUN HALONG NOV Z[ NEOGURI OCT ab ,- de BAILU FENGSHEN FUNG-WONG AUG NOV NOV PEIPAH SEP Hong Kong => TAPAH (1917) SEP NARI(190 6 ) MUN JUL JUL Z[ NEOGURI (1920) FRANCISCO (1908) :; OCT AUG WIPHA KAJIK() 1914 LEKIMA() 1909 AUG SEP AUG WUTIP *+ MUN(1904) WIPHA(1907) FEB FAXAI(1915) JUL JUL DANAS(190 5 ) de SEP :; JUL KROSA (1910) FUNG-WONG (1927) ./ KAJIKI AUG @QY @c NOV PODUL SEP HAGIBIS() 1919 << ,- AUG > KALMAEGI OCT PHANFONE NOV LINGLING() 1913 BAILU()19 11 \]^ ./ ab SEP AUG DEC FENGSHEN (1925) MATMO PODUL() 191 2 PEIPAH (1916) OCT _` AUG NOV ? SEP HALONG (1923) NAKRI (1924) @c MITAG(1918) NOV NOV _` KALMAEGI (1926) SEP NAKRI KAMMURI NOV NOV DEC \]^ MATMO (1922) OCT BUALOI (1921) KAMMURI (1928) OCT NOV > PHANFONE (1929) DEC WUTIP( 1902) FEB 二零一 九 年 熱帶氣旋 TROPICAL CYCLONES IN 2019 2 二零二零年七月出版 Published July 2020 香港天文台編製 香港九龍彌敦道134A Prepared by: Hong Kong Observatory 134A Nathan Road Kowloon, Hong Kong © 版權所有。未經香港天文台台長同意,不得翻印本刊物任何部分內容。 © Copyright reserved. No part of this publication may be reproduced without the permission of the Director of the Hong Kong Observatory. 本刊物的編製和發表,目的是促進資 This publication is prepared and disseminated in the interest of promoting 料交流。香港特別行政區政府(包括其 the exchange of information. The 僱員及代理人)對於本刊物所載資料 Government of the Hong Kong Special 的準確性、完整性或效用,概不作出 Administrative Region -
A Limited Effect of Sub-Tropical Typhoons on Phytoplankton Dynamics
https://doi.org/10.5194/bg-2020-310 Preprint. Discussion started: 27 August 2020 c Author(s) 2020. CC BY 4.0 License. A Limited Effect of Sub-Tropical Typhoons on Phytoplankton Dynamics Fei Chai1,2*, Yuntao Wang1, Xiaogang Xing1, Yunwei Yan1, Huijie Xue2,3, Mark Wells2, Emmanuel Boss2 1 State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural 5 Resources, Hangzhou, 310012, China 2 School of Marine Sciences, University of Maine, Orono, ME, 04469, USA 3 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China Correspondence to Fei Chai ([email protected]) 10 Abstract. Typhoons are assumed to stimulate ocean primary production through the upward mixing of nutrients into the surface ocean, based largely on observations of increased surface chlorophyll concentrations following the passage of typhoons. This surface chlorophyll enhancement, seen on occasion by satellites, more often is undetected due to intense cloud coverage. Daily data from a BGC-Argo profiling float revealed the upper-ocean response to Typhoon Trami in the Northwest Pacific Ocean. Temperature and chlorophyll changed rapidly, with a significant drop in sea surface temperature and surge in 15 surface chlorophyll associated with strong vertical mixing, which was only partially captured by satellite observations. However, no net increase in vertically integrated chlorophyll was observed during Typhoon Trami or in its wake. Contrary to the prevailing dogma, the results show that typhoons likely have limited effect on net ocean primary production. Observed surface chlorophyll enhancements during and immediately following typhoons in tropical and subtropical waters are more likely associated with surface entrainment of deep chlorophyll maxima.