A History of Aerospace Problems, Their Solutions, Their Lessons

Total Page:16

File Type:pdf, Size:1020Kb

A History of Aerospace Problems, Their Solutions, Their Lessons https://ntrs.nasa.gov/search.jsp?R=19970001339 2020-06-16T03:48:40+00:00Z NASA Technical Paper 3653 A History of Aerospace Problems, Their Solutions, Their Lessons R.S. Ryan September 1996 NASA Technical Paper 3653 A History of Aerospace Problems, Their Solutions, Their Lessons R.S. Ryan Marshall Space Flight Center ° MSFC, Alabama National Aeronautics and Space Administration Marshall Space Flight Center ° MSFC, Alabama 35812 September 1996 NASA Technical Paper 3653 A History of Aerospace Problems, Their Solutions, Their Lessons R.S. Ryan Marshall Space Flight Center ,, MSFC, Alabama National Aeronautics and Space Administration Marshall Space Flight Center • MSFC, Alabama 35812 September 1996 TABLE OF CONTENTS Page I° INTRODUCTION ..................................................................................... II. GENERAL .............................................................................................. A. Why Study Problems .............................................................................. 2 B. Classification of Problems ........................................................................ 11 C. Pictorial of Problems .............................................................................. 13 III. AEROSPACE PROJECT/PROGRAM DEVELOPMENT ........................................ 13 A. Redstone and Jupiter .............................................................................. 13 1. Characteristics ................................................................................. 13 2. Evolution/Creativity/Innovation ............................................................. 18 3. Problem Examples ............................................................................ 21 B. Saturn/Saturn Apollo/Skylab Launch Vehicles ................................................. 25 1. Characteristics ................................................................................. 25 2. Evolution/Creativity/Innovation ............................................................. 34 C. HEAO ............................................................................................... 36 1. Characteristics ................................................................................. 36 2. Evolution/Innovations/Creativity ............................................................ 37 3. Problems ....................................................................................... 37 D. IUS/PAM-S/TOS .................................................................................. 40 1. Characteristics ................................................................................. 40 2. Creativity/Innovations ........................................................................ 40 3. Problems ....................................................................................... 40 E. Skylab, America's First Space Station .......................................................... 42 1. Characteristics ................................................................................. 42 2. Evolution, Innovation, Creativity ........................................................... 46 3. Problems ....................................................................................... 48 F. Space Shuttle ....................................................................................... 51 1. Space Shuttle System ......................................................................... 51 a. Characteristics .............................................................................. 51 b. Evolution/Creativity/Innovation ......................................................... 54 c. Problems .................................................................................... 60 d. Future Implications ........................................................................ 62 2. Space Shuttle Main Engine ................................................................... 63 a. Characteristics .............................................................................. 63 b. Creativity/Innovation ...................................................................... 64 c. Developmental Problem Examples ...................................................... 67 3. Solid Rocket Motors/Boosters ............................................................... 93 a. Characteristics .............................................................................. 93 b. Evolution/Creativity/Innovation ......................................................... 98 c. Problem Examples ......................................................................... 98 4. Extemal Tank .................................................................................. 108 a. Characteristics .............................................................................. 108 b. Evolution/Innovation ...................................................................... 116 c. Problems .................................................................................... 116 iii TABLE OF CONTENTS (Continued) Page G. Hubble Space Telescope .......................................................................... 122 1. Characteristics ................................................................................. 122 2. Evolution/Creativity/Innovation ............................................................. 123 3. Problems ....................................................................................... 126 H. Spacelab ............................................................................................. 133 1. Characteristics ................................................................................. 133 2. Evolution/Creativity/Evolution ............................................................... 139 3. Problems ....................................................................................... 139 I. International Space Station ........................................................................ 139 1. Characteristics ................................................................................. 140 2. Evolution/Innovation/Creativity ............................................................. 142 3. Problems ....................................................................................... 149 J. Titan Viking ........................................................................................ 149 K. Experiments ........................................................................................ 150 1. Safe Solar Array/Dynamic Augmentation Experiment (SAFE/DAE) .................... 150 2. Tethers in Space ............................................................................... 152 3. Problems ....................................................................................... 158 L. National Launch System/Space Transportation Main Engine (NLS/STME) ................ 161 IV. CONCLUSIONS ....................................................................................... 162 APPENDIX A ................................................................................................... 169 I° REDSTONE/JUPITER ................................................................................ 169 II. SATURN/SATURN APOLLO/SATURN SKYLAB .............................................. 171 III. SKYLAB SPACE STATION ......................................................................... 171 IV. SPACE SHUTI'LE SYSTEMS ...................................................................... 176 A. Space Shuttle Main Engine ....................................................................... 177 B. Solid Rocket Motor/Boosters (RSRM/RSRB) ................................................. 209 C. External Tank ....................................................................................... 213 V° HUBBLE SPACE TELESCOPE ..................................................................... 221 VI. SPACELAB ............................................................................................. 225 VII. TETHERS IN SPACE (TSS-1 ) ...................................................................... 225 VIII. INTERNATIONAL SPACE STATION. ............................................................ 225 REFERENCES .................................................................................................. 230 iv LIST OF ILLUSTRATIONS Figure Title Page I. The dynamics of innovation ....................................................................... 3 2. Performance of an established and an invading product (burst of improvement in established product) ............................................................................. 3 . The organizational requirement for product success ............................................ 5 4. Systems approach ................................................................................... 7 5. It only hurts at resonance .......................................................................... 8 6. Design compromises ............................................................................... 9 7. So that decimal point was a fly speck! ........................................................... 9 8. Change in what specs? ............................................................................. 10 9. SSME "buzz" words ............................................................................... 10 10. Heritage .............................................................................................
Recommended publications
  • L AUNCH SYSTEMS Databk7 Collected.Book Page 18 Monday, September 14, 2009 2:53 PM Databk7 Collected.Book Page 19 Monday, September 14, 2009 2:53 PM
    databk7_collected.book Page 17 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS databk7_collected.book Page 18 Monday, September 14, 2009 2:53 PM databk7_collected.book Page 19 Monday, September 14, 2009 2:53 PM CHAPTER TWO L AUNCH SYSTEMS Introduction Launch systems provide access to space, necessary for the majority of NASA’s activities. During the decade from 1989–1998, NASA used two types of launch systems, one consisting of several families of expendable launch vehicles (ELV) and the second consisting of the world’s only partially reusable launch system—the Space Shuttle. A significant challenge NASA faced during the decade was the development of technologies needed to design and implement a new reusable launch system that would prove less expensive than the Shuttle. Although some attempts seemed promising, none succeeded. This chapter addresses most subjects relating to access to space and space transportation. It discusses and describes ELVs, the Space Shuttle in its launch vehicle function, and NASA’s attempts to develop new launch systems. Tables relating to each launch vehicle’s characteristics are included. The other functions of the Space Shuttle—as a scientific laboratory, staging area for repair missions, and a prime element of the Space Station program—are discussed in the next chapter, Human Spaceflight. This chapter also provides a brief review of launch systems in the past decade, an overview of policy relating to launch systems, a summary of the management of NASA’s launch systems programs, and tables of funding data. The Last Decade Reviewed (1979–1988) From 1979 through 1988, NASA used families of ELVs that had seen service during the previous decade.
    [Show full text]
  • Glex-2021 – 6.1.1
    Global Space Exploration Conference (GLEX 2021), St Petersburg, Russian Federation, 14-18 June 2021. Copyright ©2021 by Christophe Bonnal (CNES). All rights reserved. GLEX-2021 – 6.1.1 Human spaceflight from Guiana Space Center Ch. Bonnal1* – J-M. Bahu1 – Ph. Berthe2 – J. Bertrand1 – Ch. Bonhomme1 – M. Caporicci2 J-F. Clervoy3 – N. Costedoat4 – E. Coletti5 – G. Collange5 – G. Debas5 – R. Delage6 – J. Droz5 E. Louaas1 – P. Marx8 – B. Muller6 – S. Perezzan1 – I. Quinquis5 – S. Sandrone7 D. Schmitt2 – V. Taponier1 1 CNES Launcher Directorate, Pairs, France – 2 ESA Human & Robotic Exploration Directorate, ESTEC, Noordwijk, Netherlands – 3 Astronaut Novespace, Paris, France – 4CNES Guiana Space Center, Kourou, France 5ArianeGroup, Les Mureaux, France – 6Airbus Defence & Space, Toulouse, France – 7Airbus Defence & Space, Bremen Germany – 8Consultant, Paris, France * Corresponding Author Abstract The use of Space has drastically evolved these last ten years. Tomorrow will see easier and cheaper access to Space, satellite servicing, in-orbit manufacturing, human private spaceflights to ever increasing number of Orbital Stations, road to the Moon, Asteroids, Mars. It seems fundamental to make sure we can rely on robust, reliable, frequent and affordable access to and from LEO with both automatic systems and human missions; such systems are the bricks with which all the future operations in Space will be built. Independent human access to space from Europe for our astronauts is a key to any future in Space. It has been studied in depth since the 80's with Hermes Spaceplane, then through numerous studies, pre- development activities, and demonstrations such as ARD, X38-CRV or IXV, which now allow Europe to reconsider such an endeavor with a much higher confidence.
    [Show full text]
  • I I I I I I I I I I I I I I I I I I 1 / , "2.&
    I RTR 218-01, Vol. I I I I I I 1 /, "2.& - 17 q BASE HEATING METHODOLOGY I IMPROVEMENTS I /JAS 8- 3 ~ 111 I November 1992 I Prepared by: I Robert L. Bender John E. Reardon Richard E. Somers I Michael S. Fulton of REMTECH inc. I Sheldon D. Smith of SECA, Inc. I Harold Pergament of PST, Inc. I Contract: I NAS8-38141 I For: National Aeronautics and Space Administration I Georg.e C. Marshall Space Flight Center Marshall Space Flight Center, AL 35812 I I i=_ _" r,,,,,_-1- I=" C I..-I RTR 218-O1 FOREWORD The need for improvements in launch vehicle base heating prediction methodology was recognized by the ALS Program in 1989 and implemented through Advanced Development Plan #4202. This plan was contracted to REMTECH by NASA/MSFC through Contract NAS8-38141. REMTECH was supported in this effort by SECA, Inc., of Huntsville, AL, and PST, Inc., of Princeton, NJ. The period of performance was from September 1989 through November 1992. The important output from this effort is a new Design Base Heating Code which incorporates the improvements and provides quick-look capability to assess base heating from a variety of launch vehicle concepts. The analyses leading to the methodology improvements are reported in this document. A companion user's guide document is also provided to assist potential users with the code. The NASA/MSFC Contract Officer's Technical Representative for this contract was Mr. Peter Sulyma, of the Induced Environments Branch, Aerophysics Division of the Structures and Dynamics Laboratory, ED33.
    [Show full text]
  • Nasa's Commercial Crew Development
    NASA’S COMMERCIAL CREW DEVELOPMENT PROGRAM: ACCOMPLISHMENTS AND CHALLENGES HEARING BEFORE THE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED TWELFTH CONGRESS FIRST SESSION WEDNESDAY, OCTOBER 26, 2011 Serial No. 112–46 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PRINTING OFFICE 70–800PDF WASHINGTON : 2011 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. RALPH M. HALL, Texas, Chair F. JAMES SENSENBRENNER, JR., EDDIE BERNICE JOHNSON, Texas Wisconsin JERRY F. COSTELLO, Illinois LAMAR S. SMITH, Texas LYNN C. WOOLSEY, California DANA ROHRABACHER, California ZOE LOFGREN, California ROSCOE G. BARTLETT, Maryland BRAD MILLER, North Carolina FRANK D. LUCAS, Oklahoma DANIEL LIPINSKI, Illinois JUDY BIGGERT, Illinois GABRIELLE GIFFORDS, Arizona W. TODD AKIN, Missouri DONNA F. EDWARDS, Maryland RANDY NEUGEBAUER, Texas MARCIA L. FUDGE, Ohio MICHAEL T. MCCAUL, Texas BEN R. LUJA´ N, New Mexico PAUL C. BROUN, Georgia PAUL D. TONKO, New York SANDY ADAMS, Florida JERRY MCNERNEY, California BENJAMIN QUAYLE, Arizona JOHN P. SARBANES, Maryland CHARLES J. ‘‘CHUCK’’ FLEISCHMANN, TERRI A. SEWELL, Alabama Tennessee FREDERICA S. WILSON, Florida E. SCOTT RIGELL, Virginia HANSEN CLARKE, Michigan STEVEN M. PALAZZO, Mississippi VACANCY MO BROOKS, Alabama ANDY HARRIS, Maryland RANDY HULTGREN, Illinois CHIP CRAVAACK, Minnesota LARRY BUCSHON, Indiana DAN BENISHEK, Michigan VACANCY (II) C O N T E N T S Wednesday, October 26, 2011 Page Witness List ............................................................................................................
    [Show full text]
  • Federated Hermes Investment Funds Public Limited Company
    Federated Hermes Investment Funds Public Limited Company (An umbrella investment company with variable capital and having segregated liability between its Sub-Funds incorporated with limited liability in Ireland) Interim Report and Unaudited Financial Statements For the financial period ended 30 June 2020 Company Registration Number: 463628 Federated Hermes Investment Funds Public Limited Company Contents Management and Administration ������������������������������������������������������������������������������������������������������������������������������� 3 Manager Information ������������������������������������������������������������������������������������������������������������������������������������������������� 4 Investment Manager’s Report ����������������������������������������������������������������������������������������������������������������������������������� 6 Unaudited Portfolio Statements ������������������������������������������������������������������������������������������������������������������������������� 41 Unaudited Balance Sheet �������������������������������������������������������������������������������������������������������������������������������������� 191 Unaudited Income Statement �������������������������������������������������������������������������������������������������������������������������������� 201 Unaudited Statement of Changes in Net Assets Attributable to Holders of Redeemable Participating Shares ���� 210 Unaudited Cash Flow Statement ���������������������������������������������������������������������������������������������������������������������������
    [Show full text]
  • INTRODUCTION This Study of Reentry Vehicle (RV)
    INTRODUCTION This study of Reentry Vehicle (RV) systems and their associated operations was conducted for the Department of Transportation/Office of Commercial Space Transportation. The purpose of the study was to investigate and present an overview of reentry vehicle systems and to identify differences in mission requirements and operations. This includes reentry vehicle system background, system design considerations, description of past/present/future reentry systems, and hazards associated with reentry vehicles that attain orbit, reenter, and are recovered. A general literature search that included the OCST data base, NASA, Air Force, and other technical libraries and personal contact with various government or private industry organizations knowledgeable in reentry system vehicles was performed. A reference page is provided at the end of this report. A history of early manned reentry vehicle launches is shown in Appendix I. A listing of some of the agencies and companies found to be most knowledgeable in the reentry vehicle area is provided in Appendix II. The following sections provide more detailed information on reentry system vehicles. A. Background - The development of reentry vehicles began in the late 1950's due to the need for Department of Defense and Central Intelligence Agency photo reconnaissance of Soviet ICBM sites. NASA has also been involved in the use of reentry vehicles since the early 1960's, including manned space programs Mercury, Gemini and Apollo. The following sections describe the evolution of reentry system development in the United States and foreign countries: 1. Discoverer1 - The Discoverer program was of major importance because it provided a vehicle for testing orbital maneuvering capability and reentry techniques and it played a large role in enabling the first United States manned space flights to be conducted in Project Mercury.
    [Show full text]
  • Air Transport
    The History of Air Transport KOSTAS IATROU Dedicated to my wife Evgenia and my sons George and Yianni Copyright © 2020: Kostas Iatrou First Edition: July 2020 Published by: Hermes – Air Transport Organisation Graphic Design – Layout: Sophia Darviris Material (either in whole or in part) from this publication may not be published, photocopied, rewritten, transferred through any electronical or other means, without prior permission by the publisher. Preface ommercial aviation recently celebrated its first centennial. Over the more than 100 years since the first Ctake off, aviation has witnessed challenges and changes that have made it a critical component of mod- ern societies. Most importantly, air transport brings humans closer together, promoting peace and harmo- ny through connectivity and social exchange. A key role for Hermes Air Transport Organisation is to contribute to the development, progress and promo- tion of air transport at the global level. This would not be possible without knowing the history and evolu- tion of the industry. Once a luxury service, affordable to only a few, aviation has evolved to become accessible to billions of peo- ple. But how did this evolution occur? This book provides an updated timeline of the key moments of air transport. It is based on the first aviation history book Hermes published in 2014 in partnership with ICAO, ACI, CANSO & IATA. I would like to express my appreciation to Professor Martin Dresner, Chair of the Hermes Report Committee, for his important role in editing the contents of the book. I would also like to thank Hermes members and partners who have helped to make Hermes a key organisa- tion in the air transport field.
    [Show full text]
  • Round Trip to Orbit: Human Spaceflight Alternatives
    Round Trip to Orbit: Human Spaceflight Alternatives August 1989 NTIS order #PB89-224661 Recommended Citation: U.S. Congress, Office of Technology Assessment, Round Trip to Orbit: Human Spaceflight Alternatives Special Report, OTA-ISC-419 (Washington, DC: U.S. Government Printing Office, August 1989). Library of Congress Catalog Card Number 89-600744 For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402-9325 (order form can be found in the back of this special report) Foreword In the 20 years since the first Apollo moon landing, the Nation has moved well beyond the Saturn 5 expendable launch vehicle that put men on the moon. First launched in 1981, the Space Shuttle, the world’s first partially reusable launch system, has made possible an array of space achievements, including the recovery and repair of ailing satellites, and shirtsleeve research in Spacelab. However, the tragic loss of the orbiter Challenger and its crew three and a half years ago reminded us that space travel also carries with it a high element of risk-both to spacecraft and to people. Continued human exploration and exploitation of space will depend on a fleet of versatile and reliable launch vehicles. As this special report points out, the United States can look forward to continued improvements in safety, reliability, and performance of the Shuttle system. Yet, early in the next century, the Nation will need a replacement for the Shuttle. To prepare for that eventuality, NASA and the Air Force have begun to explore the potential for advanced launch systems, such as the Advanced Manned Launch System and the National Aerospace Plane, which could revolutionize human access to space.
    [Show full text]
  • Computer Modelling of Aerothermodynamic Characteristics for Hypersonic Vehicles
    Journal of Applied Mathematics and Physics, 2014, 2, 115-123 Published Online April 2014 in SciRes. http://www.scirp.org/journal/jamp http://dx.doi.org/10.4236/jamp.2014.25015 Computer Modelling of Aerothermodynamic Characteristics for Hypersonic Vehicles Yuri Ivanovich Khlopkov, Anton Yurievich Khlopkov, Zay Yar Myo Myint Department of Aeromechanics and Flight Engineering, Moscow Institute of Physics and Technology, Zhukovsky, Russia Email: [email protected], [email protected] Received December 2013 Abstract The purpose of this work is to describe the suitable methods for aerodynamic characteristics cal- culation of hypersonic vehicles in free molecular flow and the transitional regimes. Moving of the hypersonic vehicles at high altitude, it is necessary to know the behavior of its aerodynamic cha- racteristics for all flow regimes. Nowadays, various engineering approaches have been developed for modelling of aerodynamics of aircraft vehicle designs at initial state. The engineering method that described in this paper provides good results for the aerodynamic characteristics of various geometry designs of hypersonic vehicles in the transitional regime. In this paper present the cal- culation results of aerodynamic characteristics of various hypersonic vehicles in all range of re- gimes by using engineering method. Keywords Aerodynamic Characteristics, Computational Aerodynamics, Hypersonic Technology, Rarefied Gas Dynamics; Engineering Method, Aerodynamics in Transitional Regime 1. Introduction Theoretical studies of hypersonic flows associated with the creation of “Space Shuttle” to transport people and cargo into Earth orbit began in the last century. Research had been focused mainly on the department of TsAGI named after N.Y. Zhukovsky (Central Aerohydrodynamic Institute). Practical work on the creation of aerospace systems had been instructed engineering centre of the experimental design bureau named after A.I.
    [Show full text]
  • Commercial Crew
    Table of Contents What is Commercial Crew? 3 Biographies 4 Crew 4 NASA 7 SpaceX 8 Astronaut Training 10 Commercial Crew Program Timeline 10 National Investment 12 SpaceX Missions 13 Demo-2 13 Crew-1 18 SpaceX Operations 19 Crew Dragon 19 Falcon 9 22 SpaceX Spacesuit 24 Launch Complex 39A 26 Ascent 28 Retrieving Crew Dragon 30 Safety and Innovation 31 Media Contacts 35 Multimedia 36 STEM Engagement 39 Working side-by-side with our two partners: What is Commercial Crew? NASA’s Commercial Crew Program is working with the American aerospace industry as companies develop and operate a new generation of spacecraft and launch systems capable of carrying crews to low-Earth orbit and the International Space Station. Commercial transportation to and from the station will provide expanded utility, additional research time and broader opportunities for discovery on the orbiting laboratory. The station is a critical testbed for NASA to understand and overcome the challenges of long- duration spaceflight. As commercial companies focus on providing human transportation services to and from low-Earth orbit, NASA is freed up to focus on building spacecraft and rockets for deep space missions. How is the Commercial Crew Program Different? The Commercial Crew Program represents a revolutionary approach to government and commercial collaborations for the advancement of space exploration. NASA's Prior Approach for Obtaining Crew Transportation Systems Since the Mercury program in the early 1960s, NASA has used an almost identical operating model to achieve its goals of human spaceflight. This includes the Space Shuttle Program and the American portions of the International Space Station.
    [Show full text]
  • Singer-Space 2010 Paper-080310
    https://ntrs.nasa.gov/search.jsp?R=20100040541 2019-08-30T13:31:02+00:00Z AIAA Space 2010 Conference; Aug 31-Sep 2, 2010; Anaheim, CA Session: Space Systems Engineering and Space Economics Track: Space Workforce Development Issues and Industrial Base Challenges Getting to First Flight: Equipping Space Engineers to Break the Start-Stop-Restart Cycle Christopher E. Singer, Deputy Director Daniel L. Dumbacher, Director Engineering Directorate NASA Marshall Space Flight Center Abstract The National Aeronautics and Space Administration’s (NASA’s) history is built on a foundation of can-do strength, while pointing to the Saturn/Apollo Moon missions in the 1960s and 1970s as its apex — a sentiment that often overshadows the potential that lies ahead. The chronicle of America’s civil space agenda is scattered with programs that got off to good starts with adequate resources and vocal political support but that never made it past a certain milestone review, General Accountability Office report, or Congressional budget appropriation. Over the decades since the fielding of the Space Shuttle in the early 1980s, a start-stop-restart cycle has intervened due to many forces. Despite this impediment, the workforce has delivered engineering feats such as the International Space Station and numerous Shuttle and science missions, which reflect a trend in the early days of the Exploration Age that called for massive infrastructure and matching capital allocations. In the new millennium, the aerospace industry must respond to transforming economic climates, the public will, national agendas, and international possibilities relative to scientific exploration beyond Earth’s orbit. Two pressing issues — workforce transition and mission success — are intertwined.
    [Show full text]
  • NSIAD-93-97 NASA Program Costs: Space Missions Require
    Ilrlit,c!d States Gmt~ral Actconnfing Office Report to the Chairrnan, Subcommittee GAO on Investigations and Oversight, Cornrnittee on Science, Space, and T’echnology, House of Represent;atives NASA PROGRAM---~- COSTS Space Missions Require Substantially More Funding Than Initially Estimated I 148971 \ -. - RESTRICTED--Not to be released outside the General Accounting Office unless specifically approved by the Office of Congressional Relations. 5St23b RELEASED Wd)l:NSIAIMW97 United States General Accounting Off¶ce GAO Washington, D.C. 20548 National Security and International AfTairs Division B-261430 December 3 1,1992 The Honorable Howard Wolpe Chairman, Subcommittee on Investigations and Oversight Committee on Science, Space, and Technology House of Representatives Dear Mr. Chairman: This report responds to your request that we provide information on the National Aeronautics and SpaceAdministration ’s (NASA) historical experience at estimating space program costs. The Subcommittee was concerned that at the time Congress is asked to authorize the start of new programs estimated to cost hundreds of millions or even billions of dollars, NASA may not have reasonably accurate estimates of their total funding requirements. Specifically, we reviewed the changes from initial to current estimates for major space programs initiated in the past 16 years and studied the reasons for those changes. Almost all of the 29 programs we reviewed required substantially more Results in Brief funding than the initial estimates provided to Congress. Figure 1 shows the extent that current cost estimates changed from initial estimates. Changes in estimates ranged from a 44-percent decrease to a 426-percent increase over the initial estimates. The median change was a 77-percent increase.
    [Show full text]