High-contrast imaging of and disks with adaptive optics

Arthur Vigan Laboratoire d'Astrophysique de Marseille (LAM) Centre National de la Recherche Scientifique (CNRS) Direct imaging of circumstellar environments

Dust properties

System architecture

Planet composition

Arthur Vigan - AO4ASTRO - 2019-03-28 2 Direct imaging of exoplanets

Physical units

Arthur Vigan - AO4ASTRO - 2019-03-28 3 Direct imaging of exoplanets

Observables Diffraction limit (8 m) Diffractionlimit

Arthur Vigan - AO4ASTRO - 2019-03-28 4 Direct imaging of exoplanets

High-angular resolution High-contrast Diffraction limit (8 m) Diffractionlimit

Arthur Vigan - AO4ASTRO - 2019-03-28 5 Large ground-based telescopes MMT MMT AO-2ndary + ARIES, CLIO <0.1" angular resolution ➙ 8-10 m telescopes

Magellan: MagAO + VisAO-CLIO

Palomar LBT PALAO/P3K + PHARO-P1640 FLAO + PISCES , LMIRCAM Gemini: ALTAIR-NIRI, NICI, GPI

VLT: NaCo, SINFONI, SPHERE Subaru AO188, SCExAO + CIAO, HiCIAO, CHARIS Keck: NIRC2, NIRSPEC, OSIRIS

Arthur Vigan - AO4ASTRO - 2019-03-28 6 (Extreme) Adaptive optics systems

<0.1" angular resolution ➙ 8-10 m telescopes + AO

1990s 2000s 2010s ESO3.6m/Come-On+ VLT/NaCo LBT/SPHERE/GPI SH WFS; 62 actuators SH WFS; 180 actuators SH/Pyr WFS; 1200 actuators Sr < 10% (NIR) Sr = 40-50% (NIR) Sr > 80% (NIR) Sr = ~40% (VIS)

Janson et al. 2007 Neuhaüser et al. 2005 SPHERE consortium

Arthur Vigan - AO4ASTRO - 2019-03-28 7 Coronagraphy

Contrast > 104 at separation < 2" ➙ coronagraphs

1980s 1990s 2000s 2010s Las Campañas Obs. 3-5 m telescopes 8-10 m telescopes 8-10 m telescopes 7" mask 1" mask <1" mask <0.1" mask VIS NIR detectors NIR detectors NIR or VIS First AO systems Low order AO High-order AO

Arthur Vigan - AO4ASTRO - 2019-03-28 8 Real coronagraphy requires AO! Instrument Lyot stop Focal-plane Focal plane mask

Amplitude

Phase

Arthur Vigan - AO4ASTRO - 2019-03-28 9 Real coronagraphy requires AO! Instrument Lyot stop Focal-plane Focal plane mask

Amplitude

Phase

Arthur Vigan - AO4ASTRO - 2019-03-28 10 Post-processing

Contrast > 106 at separation < 2" ➙ post-processing

Spectral

SDI ➙ different wavelengths Stellar Angular RDI ➙ different ADI ➙ sky or telescope rotation DIVERSITY

Coherence Polarisation CDI ➙ coherence of stellar light PDI Orbital ➙ different polarisation

ODI Arthur Vigan - AO4ASTRO - 2019-03-28 ➙ planetary orbital motion 11 Post-processing: ADI, SDI

Racine et al. (1999) - SDI Sparks & Ford (2002) - Spectral Deconvolution Marois et al. (2006) - Classical ADI Lafrenière et al. (2007) - LOCI Mugnier et al. (2009) - ANDROMEDA Soummer et al. (2012) - KLIP ... etc ...

H2 H3 H2-H3

• Assumes: • chromaticity of speckles is ≪ 1 H2 - cADI H3 - cADI ASDI • speckles lifetime is ≫ 1 • Strong assumptions!

Arthur Vigan - AO4ASTRO - 2019-03-28 12 Target selection

Sun Sensitivity to planetary- ➙ young nearby stars 109

105

Jupiter

• Identification of nearby young stars: ischrones, Li, H�, X-ray, kinematics, ... • 1980s: TW Hydra (Rucinski & Krautter 1983) • 2000s: 10 new young associations • 1990s: Additional members of TW Hya assoc. • 2010s: extension to low-mass stars, intermediate-old (<1 Gyr), more distant associations Arthur Vigan - AO4ASTRO - 2019-03-28 13 Mixing ingredients: the direct imaging recipe

Seeing-limited PSF Diffraction-limited PSF Diffraction-limited PSF Coronagraphic image ✘ Adaptive optics ✔ Adaptive optics ✔ Adaptive optics ✔ Adaptive optics ✘ Coronagraph ✘ Coronagraph ✘ Coronagraph ✔ Coronagraph

Diffraction limited 10-4-10-5 contrast within 20 λ/D in dark zone

~10-5-10-6 contrast down to 0.2" post-processing Enough to detect young giant exoplanets of a few around young nearby stars

Arthur Vigan - AO4ASTRO - 2019-03-28 14 Census of direct imaging surveys

GPIES Macintosh et al. Gemini-S GPI ALC-ASDI JHK 3.5 600 A-M 1 - 1000 started in 2014 SHINE Chauvin et al. VLT SPHERE ALC-ASDI JHK 10 600 A-M 1 - 1000 started in 2015

Arthur Vigan - AO4ASTRO - 2019-03-28 15 A short timeline of discoveries...

1990 1994 2000 2010 2020

Coronography

Gl229 B discovery (Nakajima et al. 1995)

First imaged substellar companion • Palomar AOC camera: image stabilizer + coronograph • First T-dwarf discovery with strong CH4 absorptions

Arthur Vigan - AO4ASTRO - 2019-03-28 Credit to G. Chauvin for the timeline 16 A short timeline of discoveries...

1990 2000 2004 2010 2020

Coronography +IR detectors +8-m telescopes with AO Gl229 B discovery (Nakajima et al. 1995) b (Chauvin et al. 2004) First imaged planetary-mass companion • VLT/NaCo • 3-5 MJup object • L5 spectral type, dusty/cloudy atmosphere

Followed by many on wide orbits (>100 au) • DH Tau b (Itoh et al. 05) • AB Pic b (Chauvin et al. 05) • CHXR73 b (Luhman et al. 05) • GQ Lup b (Neuhauser et al. 05) • RXJ1609 b (Lafrenière et al. 08) • … • HD106906 b (Su et al. 2013) • HD203030 b (Miles-Paez et al. 2017) • …

Arthur Vigan - AO4ASTRO - 2019-03-28 Credit to G. Chauvin for the timeline 17 A short timeline of discoveries...

1990 2000 2008 2010 2020

Coronography +IR detectors +8-m telescopes +differential with AO imaging Gl229 B discovery (Nakajima et al. 1995) 2M1207 b (Chauvin et al. 2004) First low-mass ratio companions HR8799 bcd, b, � Pic b • Stars with debris-disk (Marois+ 2008; Kalas+ 2008; Lagrange+ 2008) • Mp/M* < 1% • Semi-major axis < 100 au

Fomalhaut � Pic HR8799

Arthur Vigan - AO4ASTRO - 2019-03-28 Credit to G. Chauvin for the timeline 18 A short timeline of discoveries...

1990 2000 2010 2013 2020

Coronography +IR detectors +8-m telescopes +differential with AO imaging Gl229 B discovery (Nakajima et al. 1995) 2M1207 b (Chauvin et al. 2004) First low-mass ratio companions HR8799 bcd, Fomalhaut b, � Pic b • Stars with debris-disk HR8799 e, HD95086 b, GJ504 b • Mp/M* < 1% (Marois+ 2010; Rameau+ 2013; Kuzuhara+ 2013) • Semi-major axis < 100 au

GJ504

HR8799

HD95086

Arthur Vigan - AO4ASTRO - 2019-03-28 Credit to G. Chauvin for the timeline 19 A short timeline of discoveries...

1990 2000 2010 2015 2020

Coronography +IR detectors +8-m telescopes +differential +ExAO with AO imaging +dedicated instruments Gl229 B discovery (Nakajima et al. 1995) 2M1207 b (Chauvin et al. 2004) First imagers detections HR8799 bcd, Fomalhaut b, � Pic b • 51 Eri b: GPI, T3 dwarf with CH4 HR8799 e, HD95086 b, GJ504 b • HIP 65426 b: SPHERE, L7 dusty dwarf (Marois+ 2010; Rameau+ 2013; Kuzuhara+ 2013) • PDS 70 b: SPHERE, L dusty dwarf, transition disk 51 Eri b, HIP65426 b, PDS 70 b (Macintosh+ 201; Chauvin+ 2017 Keppler+ 2018)

PDS 70

Arthur Vigan - AO4ASTRO - 2019-03-28 Credit to G. Chauvin for the timeline 20 Science with direct imaging

1/ Physics of giant exoplanets Photometry & Spectroscopy Atmosphere & physical properties

2/ Architecture & stability of 3/ Occurrence & formation planetary systems Statistical properties (occurrence, stellar & disk/ position host dependency, disk properties) Orbits, dynamical interactions, Formation theories resonances & long-term evolution

Arthur Vigan - AO4ASTRO - 2019-03-28 21 Planetary formation in real-time

Detection of fine structures in circumstellaire disks: spirals, gaps, rings, ...

SAO 206462

SAO 206462 TW Hya HR4796 Herbig Ae/Be , ~9 Myr T Tauri K6Vs star, TWA, 8 Myr A0V star, TWA, 8 Myr SPHERE/IRDIS RDI SPHERE/IRDIS DPI GPI H-band ADI Maire et al. (2017) Van Boekel et al. (2016) Perrin et al. (2014)

Candidate embedded proto-: importance of gas First confirmed proto-planet!

HD142527; MagAO-VisAO Arthur Vigan - AO4ASTRO - 2019-03-28HD100546; NaCo HD169142; NaCo PDS70; SPHERE 22 Close et al. (2014) Quanz et al. (2013) Reggiani et al. (2014) Keppler et al. (2018) Study of planetary systems

Planets and multi-belt architectures

HD95086 HR8799 A8, ScoCen, 17 Myr, 83.8pc A5, Colunba, 30 Myr, 39.4pc Warm, inner belt: 7-10 au, 175K (SED) Warm, inner belt: 6-16 au, 150K (SED) Cold, outer belt: 106-320 au, 55K Cold, outer belt: 145-425 au, 45K

Su et al. (2017) Booth et al. (2016)

Arthur Vigan - AO4ASTRO - 2019-03-28 23 Study of planetary systems

Planets and multi-belt architectures

HD95086 HR8799 A8, ScoCen, 17 Myr, 83.8pc A5, Colunba, 30 Myr, 39.4pc Warm, inner belt: 7-10 au, 175K (SED) Warm, inner belt: 6-16 au, 150K (SED) Cold, outer belt: 106-320 au, 55K Cold, outer belt: 145-425 au, 45K

Rameau et al. (2013) Marois et al. (2008, 2018)

Arthur Vigan - AO4ASTRO - 2019-03-28 24 Study of planetary systems

Planets and multi-belt architectures

HD95086 HR8799 A8, ScoCen, 17 Myr, 83.8pc A5, Colunba, 30 Myr, 39.4pc Warm, inner belt: 7-10 au, 175K (SED) Warm, inner belt: 6-16 au, 150K (SED) Cold, outer belt: 106-320 au, 55K Cold, outer belt: 145-425 au, 45K

Architecture of planetary systems, dynamical stability, migration/ejection...

Arthur Vigan - AO4ASTRO - 2019-03-28 25 Physics of giant exoplanets

Measuring the photons from the planets: physics of their atmospheres • temperature • clouds • gravity • non-equilibrium chemistry

Arthur Vigan - AO4ASTRO - 2019-03-28 26 Physics of giant exoplanets

Measuring the photons from the planets: physics of their atmospheres • temperature • clouds • gravity • non-equilibrium chemistry

Rameau et al., GPIES collaboration

Arthur Vigan - AO4ASTRO - 2019-03-28 27 Occurence and formation of giant planets

How frequent are giant gaseous exoplanets? BA FGK M All N=110 N=155 N=118 N=384

100 0.1

0.7 0.9 0.1 0.5

0.9 0.3 0.5 0.7

0.5 0.7 0.3 0.3 Bowler et al. (2016) ) Jup

10 0.5

0.3

0.3

0.1 0.1

0.1 Planet Mass (M

1 0.1

1 10 100 1 10 100 1 10 100 1 10 100 1000

Semimajor Axis (AU) 0.4 Direct Imaging M a =5−13 MJup, =30−300 AU 0.3 • Low occurence rate: <10% Radial Velcity K > 20 m/s, a < 2.5 AU BA +3.7 • Lower than RV for semi-major 2.8 − 2.3 % 0.2 axes < 2.5 UA FGK M All < 4.1%

Planet Fraction +0.7 • Indication of a different < 3.9% 0.6 − 0.5 % formation process? 0.1

0.0 Arthur Vigan - AO4ASTRO - 2019-03-28 0.0 0.5 1.0 1.5 2.0 0.5 1.0 1.5 28 (MSun) Occurence and formation of giant planets

Can we infer what is the most common formation scenario from observations? ➙ core-accretion (CA) vs. gravitationnel instability (GI) vs. gravo-turbulent fragmentation NaCo-LP - Vigan et al. (2017) SHINE - Vigan et al. (in prep.)

• GI not dominant process based on current data Arthur Vigan - AO4ASTRO - 2019-03-28 • CA population difficult to probe, even with SPHERE/GPI 29 What are our limitations today?

Quasi-static Low-order speckles residuals

AO temporal error

Arthur Vigan - AO4ASTRO - 2019-03-28 30 Expected vs. observed contrast performance

Where we are today

Where we thought we would be

Arthur Vigan - AO4ASTRO - 2019-03-28 31 Exoplanet sensitivity

Arthur Vigan - AO4ASTRO - 2019-03-28 32 Some new directions?

• Higher-order, faster AO • Improved NCPA control • Visible AO for detection of H� emission • Higher spectral resolution • Image reconstruction from AO telemetry

SPHERE GPI

Vigan et al. (in prep.) Bailey et al. (2016) Cantalloube et al. (in prep.)

• Wind-driven halo often dominates at 1 kHz: �0 ≾1 ms • Not major issue for point-sources ➙ filtering + ADI • Major issue for disks!

Arthur Vigan - AO4ASTRO - 2019-03-28 33 Some new directions?

• Higher-order, faster AO • Improved NCPA control • Visible AO for detection of H� emission • Higher spectral resolution • Image reconstruction from AO telemetry

50 nm rms 49 nm rms 5 nm rms 3 nm rms t = days t = 5-10 min t = 2-3 sec

• NCPA control affects coronagraph rejection • Raw contrast • Processed contrast (stability of speckles) • Many NCPA control strategies... few implemented and in operation Arthur Vigan - AO4ASTRO - 2019-03-28 34 Some new directions?

• Higher-order, faster AO • Improved NCPA control • Visible AO for detection of H� emission • Higher spectral resolution • Image reconstruction from AO telemetry

Mordasini et al. (2012)

Haffert et al. (submitted)

MUSE NFM data @ 665 nm

• High-potential for very young accreting companions • Gain with better AO to be quantified

Arthur Vigan - AO4ASTRO - 2019-03-28 35 Some new directions?

• Higher-order, faster AO • Improved NCPA control • Visible AO for detection of H� emission • Higher spectral resolution • Image reconstruction from AO telemetry Hoeijmakers et al. (2018) ADI

No detection

Spectral correlation with "Molecular mapping" templates

1.0 0.8 0.6 0.4 CO 0.2 0.0 1.0 0.8 0.6 0.4 H O 0.2 2 0.0 1.0 0.8 0.6 Strong detection 0.4 CH 0.2 4 Sparks & Ford (2002) 0.0 1.0 Riaud & Schneider (2007) 0.8 0.6 Emission relative to continuum 0.4 NH 0.2 3 Arthur Vigan - AO4ASTRO - 2019-03-280.0 36 2.0 2.1 2.2 2.3 2.4 2.5 Wavelength (µm) Some new directions?

• Higher-order, faster AO • Improved NCPA control • Visible AO for detection of H� emission • Higher spectral resolution • Image reconstruction from AO telemetry Snellen et al. (2015)

• Possibly improved characterization • Detection boost for medium and high-resolution • New science from RV information: rotation speed, orbital motion • Possible detection of unseen companions (Gaia, RV) or confirmation of candidates Arthur Vigan - AO4ASTRO - 2019-03-28 37 Conclusions: a bright future for imaging!

• Tremendous progress in 20 with (Ex)AO and coronagraphy • New generation of instruments can really help to address many science cases: • Atmospheric physics & chemistry, formation, occurence • Synergies with other methods pave the way for the next 20 years!

GAIA

XAO imagers

ELT-MICADO, HARMONI METIS JWST

TESS, CHEOPS PLATO EPICS?

ESPRESSO/HIRES

Arthur Vigan - AO4ASTRO - 2019-03-28 Credit G. Chauvin 38