Capacity of Freshwater Marsh to Process Nutrients in Diverted

Total Page:16

File Type:pdf, Size:1020Kb

Capacity of Freshwater Marsh to Process Nutrients in Diverted Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2004 Capacity of freshwater marsh to process nutrients in diverted Mississippi River water Craig Bonya' Johnson Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Recommended Citation Johnson, Craig Bonya', "Capacity of freshwater marsh to process nutrients in diverted Mississippi River water" (2004). LSU Master's Theses. 862. https://digitalcommons.lsu.edu/gradschool_theses/862 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. CAPACITY OF FRESHWATER MARSH TO PROCESS NUTRIENTS IN DIVERTED MISSISSIPPI RIVER WATER A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Masters of Science in The Department of Agronomy and Environmental Management by Craig Bonya’ Johnson B.S., Alcorn State University, 2002 December 2004 DEDICATION To my parents, Carl and Bobbie Johnson who have always been there through all of my dilemmas to guide, uphold, encourage, protect and most of all understand me. God has blessed me with two loving parents, who have worked hard to mold me into the individual that I am today. I’m blessed to have parents like mine as models for my life. I could not have made it this far without your motivation and dedication to my success. Thank you, Mom and Dad, I love you both. ii ACKNOWLEDGMENTS There are a number of wonderful people who contributed in countless ways toward the completion of this thesis. First and foremost, I would like to thank God for blessings me with the opportunity to accomplish this long desired goal. I would like to thank my major professor Dr. Ron Delaune, for his guidance, support and patience throughout my graduate studies. Thank you for pushing me out of my comfort zone to reach deeper within myself to achieve excellence. I would like to express my gratitude to Dr. Magdi Selim for his many words of encouragement and concerns about my interests. Your service is greatly appreciated and I am pleased you agreed to serve on my defense committee. I would also like to thank Dr. Robert Gambrell for serving on my graduate committee, and for teaching and providing assistance that has played a vital role in the successful completion of my graduate work. Furthermore, I would like to acknowledge the faculty and staff of the Louisiana State University Agronomy Department and Wetland Biogeochemistry Institute and everyone who supported me in concluding this research project. Special thanks to Jon West and Wendrall Moran for their assistance. In addition, would like to extend gratitude to Sea Grant for funding this research and making this project possible. Last but not least, I would like to extend an enormous, heartfelt thank you to my special companion, Annie Vaughan, who has spent tireless, labored nights to enhance this thesis with her insights and creativity. I will always appreciate your love and support. iii TABLE OF CONTENTS Page DEDICATION ................................................................................................................ii ACKNOWLEDGMENTS...............................................................................................iii LIST OF TABLES..........................................................................................................vi LIST OF FIGURES .......................................................................................................vii ABSTRACT.................................................................................................................viii CHAPTER 1: INTRODUCTION.....................................................................................1 1.1 Review of Literature..........................................................................................1 1.2 Water Quality....................................................................................................9 1.3 Wetlands.........................................................................................................12 1.4 Wetlands Function...........................................................................................12 1.5 Davis Pond Diversion Structure.......................................................................14 1.6 Thesis Objectives ............................................................................................17 CHAPTER 2: MATERIALS AND METHODS .............................................................18 2.1 Site Description...............................................................................................18 2.2 Sample Collection ...........................................................................................22 2.3 Cadium Reduction Method (NO3-N)................................................................22 2.4 Salicylate-Hypchlorite Method (NH4-N) ..........................................................23 2.5 Asorbic Acid Method (Phosphorus) .................................................................23 2.6 Carbon Analysis ..............................................................................................24 2.7 ICP and Irrigation Standard Test for Water Analysis.........................................24 2.8 Calculations.....................................................................................................25 CHAPTER 3: RESULTS ...............................................................................................27 3.1 Nitrate.............................................................................................................27 3.2 Phosphorus......................................................................................................34 3.3 Ammonia ........................................................................................................37 3.4 Total Organic Carbon ......................................................................................40 3.5 ICP and Standard Test for Irrigation Water.......................................................46 CHAPTER 4: DISCUSSION ........................................................................................59 4.1 Nitrate.............................................................................................................59 4.2 Phosphorus......................................................................................................61 4.3 Ammonia ........................................................................................................63 4.4 Total Organic Carbon ......................................................................................63 4.5 ICP and Standard Test for Irrigation Water.......................................................64 CHAPTER 5: CONCLUSION.......................................................................................66 iv REFERENCES..............................................................................................................69 VITA............................................................................................................................. 76 v LIST OF TABLES Table Page 2.1 Sampling Site Coordinates..................................................................20 3.1 NO3-N Concentrations (mg/m3)..........................................................29 3.2 NO3-N Nutrients Removal .................................................................33 3.3 SAS Statistics for NO3-N...................................................................36 3.4 SRP Concentrations (mg/m3) .............................................................38 3.5 SRP Nutrient Removal .......................................................................41 3.6 SAS Statistics for SRP........................................................................42 3 3.7 NH4-N Concentrations (mg/m ) ..........................................................44 3.8 SAS Statistics for NH4-N ...................................................................46 3.9 TOC Concentrations (ppm).................................................................47 3.10 SAS Statistics for TOC........................................................................50 3.11 ICP Analysis ......................................................................................52 3.12 Standard Test for Irrigation Water Analysis Concentrations .................54 3.13 ICP Threshold Values..........................................................................57 3.14 ICP Threshold Values of Standard Test for Irrigation Water .................58 vi LIST OF FIGURES Figure Page 1.1 The Phosphorus Cycle ...............................................................................................6 1.2 Nitrogen Transformation in Wetland and Aquatic Environment.................................10 2.1 Map of Barataria Basin.............................................................................................19 2.2 Sampling Sites .........................................................................................................21 3.1 Davis Pond Freshwater Diversion Pulse Events (m3/s)...............................................28 3.2 NO-3N Concentration Graph.....................................................................................30
Recommended publications
  • Exploring Our Wonderful Wetlands Publication
    Exploring Our Wonderful Wetlands Student Publication Grades 4–7 Dear Wetland Students: Are you ready to explore our wonderful wetlands? We hope so! To help you learn about several types of wetlands in our area, we are taking you on a series of explorations. As you move through the publication, be sure to test your wetland wit and write about wetlands before moving on to the next exploration. By exploring our wonderful wetlands, we hope that you will appreciate where you live and encourage others to help protect our precious natural resources. Let’s begin our exploration now! Southwest Florida Water Management District Exploring Our Wonderful Wetlands Exploration 1 Wading Into Our Wetlands ................................................Page 3 Exploration 2 Searching Our Saltwater Wetlands .................................Page 5 Exploration 3 Finding Out About Our Freshwater Wetlands .............Page 7 Exploration 4 Discovering What Wetlands Do .................................... Page 10 Exploration 5 Becoming Protectors of Our Wetlands ........................Page 14 Wetlands Activities .............................................................Page 17 Websites ................................................................................Page 20 Visit the Southwest Florida Water Management District’s website at WaterMatters.org. Exploration 1 Wading Into Our Wetlands What exactly is a wetland? The scientific and legal definitions of wetlands differ. In 1984, when the Florida Legislature passed a Wetlands Protection Act, they decided to use a plant list containing plants usually found in wetlands. We are very fortunate to have a lot of wetlands in Florida. In fact, Florida has the third largest wetland acreage in the United States. The term wetlands includes a wide variety of aquatic habitats. Wetland ecosystems include swamps, marshes, wet meadows, bogs and fens. Essentially, wetlands are transitional areas between dry uplands and aquatic systems such as lakes, rivers or oceans.
    [Show full text]
  • Freshwater Marsh and Coastal Salt Marsh. Both
    MARSH VEGETATION COMMUNITY There are two types of Marsh lands in San Diego County; Freshwater Marsh and Coastal Salt Marsh. Both of these communities are very important for wildlife, and both have had extensive reductions due to channelization, dredging and vegetation removal. Both communities have been reduced in area by 85-90 percent of their original area to less than 1,000 acres total. Coastal Salt Marsh is found within the tidal zone on the edge of lagoons and bays. The major locations of this community are the Tijuana Estuary, Penasquitos Lagoon and the mouth of the Santa Margarita River. Dominant plants in Coastal Salt Marsh are Glasswort (Salicornia), Alkali heath (Frankenia), Salt grass and Cordgrass. Two notable endangered birds occur within this community, the Light footed clapper rail and the Belding’s savannah sparrow. However, the Marsh lands are also important for shorebirds and the naturally occurring flow channels within Coastal Salt Marsh are important spawning areas for a number of fish species. Freshwater Marsh land is found along stream courses and near Riparian wetland areas. It was originally found near natural springs and ponded areas within the major stream channels. It has been affected by channelization and clearing of vegetation within stream channels. Dominant plants within Freshwater Marsh include rushes, cattails, bulrushes (or tules) and several species of small willows. There is often open water in depressions or natural springs. Freshwater Marsh is home to a number of species of birds including the Yellowthroat, a species of Warbler, several species of small herons as well as rails. Freshwater Marsh in its natural state has also served as habitat for native frog species, several of which are now endangered.
    [Show full text]
  • Ecosystem Element Conceptual Model Tidal Marsh
    Sacramento-San Joaquin Delta Regional Ecosystem Restoration Implementation Plan Ecosystem Element Conceptual Model Tidal Marsh Prepared by: Ronald T. Kneib, University of Georgia Marine Institute [email protected] and • Charles A. Simenstad, School of Aquatic & Fisheries Sciences, University of Washington • Matt L. Nobriga, CALFED Science Program • Drew M. Talley, San Francisco Bay National Estuarine Research Reserve, San Francisco State University, Romberg Tiburon Center Date of Model: October 2008 Status of Peer Review: Completed peer review on October 2008. Model content and format are suitable and model is ready for use in identifying and evaluating restoration actions. Suggested Citation: Kneib R, Simenstad C, Nobriga M, Talley D. 2008. Tidal marsh conceptual model. Sacramento (CA): Delta Regional Ecosystem Restoration Implementation Plan. For further inquiries on the DRERIP conceptual models, please contact Brad Burkholder at [email protected] or Steve Detwiler at [email protected]. PREFACE This Conceptual Model is part of a suite of conceptual models which collectively articulate the current scientific understanding of important aspects of the Sacramento-San Joaquin River Delta ecosystem. The conceptual models are designed to aid in the identification and evaluation of ecosystem restoration actions in the Delta. These models are designed to structure scientific information such that it can be used to inform sound public policy. The Delta Conceptual Models include both ecosystem element models (including process, habitat, and stressor models) and species life history models. The models were prepared by teams of experts using common guidance documents developed to promote consistency in the format and terminology of the models http://www.delta.dfg.ca.gov/erpdeltaplan/science_process.asp .
    [Show full text]
  • Responses of Tidal Freshwater and Brackish Marsh Macrophytes to Pulses of Saline Water Simulating Sea Level Rise and Reduced Discharge
    Wetlands (2018) 38:885–891 https://doi.org/10.1007/s13157-018-1037-2 ORIGINAL RESEARCH Responses of Tidal Freshwater and Brackish Marsh Macrophytes to Pulses of Saline Water Simulating Sea Level Rise and Reduced Discharge Fan Li1 & Steven C. Pennings1 Received: 7 June 2017 /Accepted: 16 April 2018 /Published online: 25 April 2018 # Society of Wetland Scientists 2018 Abstract Coastal low-salinity marshes are increasingly experiencing periodic to extended periods of elevated salinities due to the com- bined effects of sea level rise and altered hydrological and climatic conditions. However, we lack the ability to predict detailed vegetation responses, especially for saline pulses that are more realistic in nature than permanent saline presses. In this study, we exposed common freshwater and brackish plants to different durations (1–31 days per month for 3 months) of saline water (salinity of 5). We found that Zizaniopsis miliacea was more tolerant to salinity than the other two freshwater species, Polygonum hydropiperoides and Pontederia cordata. We also found that Zizaniopsis miliacea belowground and total biomass appeared to increase with salinity pulses up to 16 days in length, although this relationship was quite variable. Brackish plants, Spartina cynosuroides, Schoenoplectus americanus and Juncus roemerianus, were unaffected by the experimental treatments. Our ex- periment did not evaluate how competitive interactions would further affect responses to salinity but our results suggest the hypothesis that short pulses of saline water will increase the cover of Zizaniopsis miliacea and decrease the cover of Polygonum hydropiperoides and Pontederia cordata in tidal freshwater marshes, thereby reducing diversity without necessarily affecting total plant biomass.
    [Show full text]
  • Mangrove Elevation-Sea Level Rise Response Model
    Mangrove sea-level rise response modeling to inform planning Karen Thorne & Kevin Buffington USGS Western Ecological Research Center RAE Conference December 12th, 10:30-12 “A Web-Based Interactive Decision-Support Tool for Adaptation of Coastal Urban and Natural Ecosystems (ACUNE) in Southwest Florida” Project and Science Lead: Peter Sheng, University of Florida ([email protected]) Coordination Lead: Michael Savarese, Florida Gulf Coast University ([email protected]) Team: Christine Angelini, Mike Barry, Kevin Buffington, Justin Davis, Felix Jose, Ken Krause, David Letson, Vladimir Paramygin, Karen Thorne, Chuen “Andy” Hsu, Adail Rivera-Nieves, Sean Sharp, Kun Yang We are developing ACUNE to enable Adaption of Coastal Urban and Natural Systems for A Sustainable & Economically Healthy SW Florida in the Context of Increasing Future Inundation Risk Study Domain Largest Mangrove Forest in Gulf of Mexico region Ecosystem Services: Ecosystem Diversity, Fishery Habitat, Flood Protection Coastal Wetland Vulnerability to Sea-level rise • Projected sea-level rise pose a risk to coastal wetlands, including tidal marshes and mangroves • Mangroves provide wildlife habitat and valuable ecosystem services, including protecting infrastructure from flooding and storms • Mangroves provide a lot of carbon storage • Coastal wetlands require mineral and organic sediment inputs to build elevations to keep pace with sea-level rise. Red, white, and black mangroves in FL Mangrove ecosystems From: Lee et al. Global Ecology and Biogeography, 2014, 23: 726–743
    [Show full text]
  • Spatial Scale and Abundance Patterns of Large Fish Communities in Freshwater Marshes of the Florida Everglades
    WETLANDS, Vol. 24, No. 3, September 2004, pp. 652±664 q 2004, The Society of Wetland Scientists SPATIAL SCALE AND ABUNDANCE PATTERNS OF LARGE FISH COMMUNITIES IN FRESHWATER MARSHES OF THE FLORIDA EVERGLADES John H. Chick1, Carl R. Ruetz III2, and Joel C. Trexler Department of Biological Sciences, Florida International University Miami, Florida, USA 33199 1 Present address: Great Rivers Field Station Illinois Natural History Survey 8450 Montclair Ave. Brighton, Illinois, USA 62012 E-mail: [email protected] 2 Present address: Annis Water Resource Institute Grand Valley State University 740 West Shoreline Drive Muskegon, Michigan, USA 49441 Abstract: Anthropogenic habitat alterations and water-management practices have imposed an arti®cial spatial scale onto the once contiguous freshwater marshes of the Florida Everglades. To gain insight into how these changes may affect biotic communities, we examined whether variation in the abundance and community structure of large ®shes (SL . 8 cm) in Everglades marshes varied more at regional or intra- regional scales, and whether this variation was related to hydroperiod, water depth, ¯oating mat volume, and vegetation density. From October 1997 to October 2002, we used an airboat electro®sher to sample large ®shes at sites within three regions of the Everglades. Each of these regions is subject to unique water- management schedules. Dry-down events (water depth , 10 cm) occurred at several sites during spring in 1999, 2000, 2001, and 2002. The 2001 dry-down event was the most severe and widespread. Abundance of several ®shes decreased signi®cantly through time, and the number of days post-dry-down covaried signif- icantly with abundance for several species.
    [Show full text]
  • Ecology of Freshwater and Estuarine Wetlands: an Introduction
    ONE Ecology of Freshwater and Estuarine Wetlands: An Introduction RebeCCA R. SHARITZ, DAROLD P. BATZER, and STeveN C. PENNINGS WHAT IS A WETLAND? WHY ARE WETLANDS IMPORTANT? CHARACTERISTicS OF SeLecTED WETLANDS Wetlands with Predominantly Precipitation Inputs Wetlands with Predominately Groundwater Inputs Wetlands with Predominately Surface Water Inputs WETLAND LOSS AND DeGRADATION WHAT THIS BOOK COVERS What Is a Wetland? The study of wetland ecology can entail an issue that rarely Wetlands are lands transitional between terrestrial and needs consideration by terrestrial or aquatic ecologists: the aquatic systems where the water table is usually at or need to define the habitat. What exactly constitutes a wet- near the surface or the land is covered by shallow water. land may not always be clear. Thus, it seems appropriate Wetlands must have one or more of the following three to begin by defining the wordwetland . The Oxford English attributes: (1) at least periodically, the land supports predominately hydrophytes; (2) the substrate is pre- Dictionary says, “Wetland (F. wet a. + land sb.)— an area of dominantly undrained hydric soil; and (3) the substrate is land that is usually saturated with water, often a marsh or nonsoil and is saturated with water or covered by shallow swamp.” While covering the basic pairing of the words wet water at some time during the growing season of each year. and land, this definition is rather ambiguous. Does “usu- ally saturated” mean at least half of the time? That would This USFWS definition emphasizes the importance of omit many seasonally flooded habitats that most ecolo- hydrology, soils, and vegetation, which you will see is a gists would consider wetlands.
    [Show full text]
  • Salt Marsh and Mangrove Swamp
    May is Wetlands Month Salt Marsh Characteristics About the Park May is Wetlands Month Upper Tampa Bay Park opened in 1982. The park HYDROLOGY consists of 596 acres within the 2,144 acres of Salt marshes are estuarine wetlands often found Hillsborough County Preserve which was originally on low energy shorelines and in bays and a part of the 3,000acre Bower Tract. In the late estuaries. The hydrology is driven by daily tidal 1960’s and early 1970’s, the Bower Tract was fluctuations and wind events. Tides are water slated to become a large waterfront development level fluctuations that are driven by lunar cycles. called Bay Port Colony. However, it never came to Sediment accumulation ensures that marsh be, partly due to a burgeoning grassroots depths do not get too deep. environmental movement in the Tampa Bay area. The park and preserve properties were acquired by SOILS Hillsborough County through the 1970’s. Today, Soil types within salt marshes vary depending on the Park hosts both wetland and upland community tidal energy, proximity to channels, and external types as diverse as tidal marsh, high marsh, Salt Marsh and inputs. Soils can include muck, sand or limestone. mangrove swamp, freshwater marsh, pine The rotten egg smell of hydrogen sulfide is very flatwoods and coastal upland hammock. The park common here. contains an Environmental Study Center and Mangrove Swamp provides other activities such as picnicking, VEGETATION canoeing, and hiking on numerous trails or Upper Tampa Bay Park Salt marshes are treeless with a dense boardwalks. herbaceous layer. Vegetation is dominated by salt-tolerant grasses, rushes and succulent Week 4 Episode species which are sorted based on hydrology and salinity.
    [Show full text]
  • Humboldt Lagoons State Park 115336 Highway 101 North Trinidad, CA 95570 (707) 488-2169
    Our Mission The mission of California State Parks is Humboldt to provide for the health, inspiration and education of the people of California by helping to preserve the state’s extraordinary biological Part of the country’s Lagoons diversity, protecting its most valued natural and cultural resources, and creating opportunities largest lagoon system State Park for high-quality outdoor recreation. supports a rich variety of marsh plants, birds and other animals California State Parks supports equal access. Prior to arrival, visitors with disabilities who while providing need assistance should contact the park at (707) 488-2169. This publication is available ample opportunity in alternate formats by contacting: for recreation. CALIFORNIA STATE PARKS P.O. Box 942896 Sacramento, CA 94296-0001 For information call: (800) 777-0369. (916) 653-6995, outside the U.S. 711, TTY relay service www.parks.ca.gov Discover the many states of California.™ SaveTheRedwoods.org/csp Humboldt Lagoons State Park 115336 Highway 101 North Trinidad, CA 95570 (707) 488-2169 © 2011 California State Parks V isitors to Humboldt Lagoons actively pursued cultural and language State Park see part of the largest revitalization, viewing Humboldt Lagoons lagoon system in the United States. State Park as part of their heritage. Lagoons are shallow, enclosed bodies NATURAL HISTORY of water along the coast—separated from the ocean by coastal strands or The Lagoons spits of land. Water flows in and out of Humboldt Lagoons State Park consists of the lagoons when it breaches (breaks four separate areas from south to north: through) these spits. Big Lagoon, Dry Lagoon, Stone Lagoon and The park offers activities that Freshwater Lagoon.
    [Show full text]
  • Download File
    Hazard Mitigation Technical Assistance Program Contract No. EMW-2000-CO-0247 Task Order 415 Hurricane Katrina Rapid Response Wind Water Line (WWL) Data Collection – Louisiana FEMA-1603-DR-LA Final Report June 9, 2006 Submitted to: Federal Emergency Management Agency Region IV Atlanta, GA Prepared by: URS Group, Inc. 200 Orchard Ridge Drive Suite 101 Gaithersburg, MD 20878 FOR PUBLIC RELEASE HMTAP Task Order 415 June 9, 2006 Table of Contents Abbreviations and Acronyms------------------------------------------------------------------------------- iii Glossary of Terms -------------------------------------------------------------------------------------------- iv Background------------------------------------------------------------------------------------------------------1 Overview of Impacts in Louisiana--------------------------------------------------------------------------3 Purpose---------------------------------------------------------------------------------------------------------11 Methodology---------------------------------------------------------------------------------------------------15 Findings and Observations --------------------------------------------------------------------------------25 Conclusion -----------------------------------------------------------------------------------------------------31 List of Figures Figure 1: Hurricane Katrina Storm Track-----------------------------------------------------------------1 Figure 2: FEMA-1603-DR-LA Disaster Declaration ---------------------------------------------------5
    [Show full text]
  • Mercury Bioaccumulation in Estuarine Food Webs
    Ecological Applications, 22(2), 2012, pp. 606–623 Ó 2012 by the Ecological Society of America Mercury bioaccumulation in estuarine food webs 1,2,4 3 BRIAN FRY AND MATTHEW M. CHUMCHAL 1Department of Oceanography and Coastal Sciences, Louisiana State University, Baton Rouge, Louisiana 70803 USA 2Australian Rivers Institute, Griffith University, Nathan Campus, Kessels Road, Queensland 4121 Australia 3Biology Department, Texas Christian University, Fort Worth, Texas 76129 USA Abstract. We tested for unintended mercury contamination problems associated with estuarine floodplain restoration projects of the Louisiana coastal zone, USA. Barataria Bay and Breton Sound are two neighboring deltaic estuaries that were isolated by levees from the Mississippi River about 100 years ago. These estuaries recently have been reconnected to the nutrient-rich Mississippi River, starting major river diversion (input) flows in 1991 for Breton Sound and in 2004 for Barataria Bay. We collected .2100 fish over five years from 20 stations in these estuaries to test two hypotheses about Hg bioaccumulation: (H1) Background Hg bioaccumulation in fish would be highest in low-salinity upper reaches of estuaries, and (H2) recent river inputs to these upper estuarine areas would increase Hg bioaccumulation in fish food webs. For H1, we surveyed fish Hg concentrations at several stations along a salinity gradient in Barataria Bay in 2003–2004, a time when this estuary lacked strong river inputs. Results showed that average Hg concentrations in fish communities were lowest (150 ng/g dry mass) in higher salinity areas and ;2.43 higher (350 ng/g) in low-salinity oligohaline and freshwater upper reaches of the estuary.
    [Show full text]
  • Butcher's Slough Self-Guided Trail
    ARcata MARSH & #8 - Restoration #10 - Freshwater Plant Zonation #12 - Skid 12 Skid WILDLIFE SANCTUARY 2 Lumber Mills Butcher’s Slough Did you notice This huge concrete “bunker” was used as a skid Arcata MThisa hugers hconcrete “bunker” was used as a skid for This freshwater marsh, estuary to the that there is a for the lumber mill operations. Logging trucks & the lumber mill operations. Logging trucks rumbled locally known as the Log north and the greater variety of rumbled down this trail, which was a paved road, Wildlife Sdownanc tthisua trail,ry which was a paved road, and unloaded Pond, was once a large pond freshwater marsh plants here in the and unloaded logs down the skid into the pond. logs down the skid into the pond. Logs were then full of floating logs waiting to the south were marsh than the Logs then were hauled by cables for processing hauled by cables for processing at the lumber mill. restored in 1985. nearby salt marsh? at the lumber mill. Too massive to be broken Butcher’s Slough to be cut into lumber and Butcher’s Slough, This is due in part up, this concrete structure was left as a historical Too massive to be broken up, this concrete structure Butcher’s plywood at the Durable Fir which had been to the less-salty reminder of the lumber mill days. To complete Self-Guidwased left T asr ana historicalil reminder of the lumber mill and Plywood Mills. As you moved to the east environment and the loop, return to the Arcata Marsh Interpretive days.
    [Show full text]