Butcher's Slough Self-Guided Trail

Total Page:16

File Type:pdf, Size:1020Kb

Butcher's Slough Self-Guided Trail ARcata MARSH & #8 - Restoration #10 - Freshwater Plant Zonation #12 - Skid 12 Skid WILDLIFE SANCTUARY 2 Lumber Mills Butcher’s Slough Did you notice This huge concrete “bunker” was used as a skid Arcata MThisa hugers hconcrete “bunker” was used as a skid for This freshwater marsh, estuary to the that there is a for the lumber mill operations. Logging trucks & the lumber mill operations. Logging trucks rumbled locally known as the Log north and the greater variety of rumbled down this trail, which was a paved road, Wildlife Sdownanc tthisua trail,ry which was a paved road, and unloaded Pond, was once a large pond freshwater marsh plants here in the and unloaded logs down the skid into the pond. logs down the skid into the pond. Logs were then full of floating logs waiting to the south were marsh than the Logs then were hauled by cables for processing hauled by cables for processing at the lumber mill. restored in 1985. nearby salt marsh? at the lumber mill. Too massive to be broken Butcher’s Slough to be cut into lumber and Butcher’s Slough, This is due in part up, this concrete structure was left as a historical Too massive to be broken up, this concrete structure Butcher’s plywood at the Durable Fir which had been to the less-salty reminder of the lumber mill days. To complete Self-Guidwased left T asr ana historicalil reminder of the lumber mill and Plywood Mills. As you moved to the east environment and the loop, return to the Arcata Marsh Interpretive days. To complete the loop, return to the Arcata Marsh walk around this pond, look side of the Log Pond Butcher’s Slough more-stable water Sedge in freshwater pond Center balcony for stop #13. Interpretive Center balcony for Stop #13. Slough for wood pilings sticking out when the mills were built, level than the tidal of the water. These are rem- was rerouted to the more-natural course you see waters of the salt marsh. Plant zonation also #13 - Preservation 13 Preservation nants from the lumber mills. today. There is an ongoing effort to remove non- occurs in the freshwater marsh. Here, water SELF-GUIDED TRAIL The log pond and mills were native cordgrass (Spartina densiflora) that grows depth determines where a plant can grow. Nearly 90% of the original wetland areas Nearly 90 percent of the original wetland areas bor- expanded in 1950 and sold Log Pond, circa 1960 in the salt marsh, as this species can easily out- Close to the shore, moist soil plants, like the bordering Humboldt Bay have been diked and dering Humboldt Bay have been diked and drained or in the early 1960s to the Van compete native species, resulting in reduced reed, are able to tolerate the water-logged, drained or filled for transportation, agriculture, filled for transportation, agriculture, housing, and in- Log Pond and Butcher’s Slough, “bird’s-eye” view Vleet Lumber Company. Poor lumber markets forced biodiversity. swampy soil. Emergent plants like the broadleaf housing, and industry. The lower 48 states have dustry. The lower 48 states have lost over half of their 8 The Log Pond, which had become a willow and cattail (Typha latifolia) occur in water up to 4 lost over half of our original wetlands as they the mills to close by 1969. The buildings deteriorated original wetlands as they were drained and converted Welcome to the Butcher’s Slough Self-Guided Trail. until 1976, when an extensive removal took place that alder thicket, was converted to a freshwater feet deep. As the water becomes deeper, were drained and converted to other uses. Come explore the sights and sounds of these marsh- marsh containing both open water and vegetated floating plants and submergent plants are more to other uses. included partially draining the log pond. The freshwater marsh and slough you have just The freshwater marsh and slough you have just lands. Give yourself about an hour for this easy, two- The Log Pond had filled with willow and alder by areas. The pond banks were terraced to allow a common. Mat formers and floating plants, like 7 thirds-of-a-mile loop. Look for egrets, marsh wrens, greater variety of aquatic plants to grow in the marsh pennywort (Hydrocotyle ranunculoides) explored are examples of how degraded explored are examples of how degraded wetlands can 9 1985 when restoration of its wetland habitat began. marsh. This greater diversity of plants, in turn, and duckweed (Lemna minor), that float on the wetlands can be restored. With the great loss of be restored. With the great loss of so many wetlands, and other creatures of the marsh. Find out how difficult supports a greater variety of animals and birds. water’s surface can occur at any water depth. so many wetlands, various types of manipulation various types of manipulation and modification can it is to be a plant in a salt marsh. See historic remnants and modification can help become restore and from the old lumber mill. 3 Butcher’s Slough Submergent plants like pondweed help restore and save wetlands. However, our first 6 #9 - Sounds of the Marsh (Potamogeton sp.) are an important food for save wetlands. However, our first priority must priority must be to preserve the remaining natural 5 After leaving the Interpretive Center, take the first The creek below you is an estuary called Butcher’s be to preserve the remaining natural wetlands, so Butcher trail on your left and follow the numbered sign posts. many waterfowl. See if you can see any of these wetlands, so that future generations may enjoy them. Slough 10 Slough. It is the tidally influenced portion of Jolly Listen! What sounds of the marsh do you hear? freshwater plants. that future generations may enjoy them. Log Pond Let’s go explore! Giant Creek. Estuaries are salty or brackish areas The buzz and drone of insects? Wind rustling through cattails and willows? Those odd grunts, GIS map here 11 where rivers meet the sea. #11 - Marsh Pennywort & Duckweed Wetland Detritus (decomposed plant and animal matter) wails, and chuckles you may hear belong to the 4 1 American Coot – one of the noisiest birds in the Mat formers and floating plants cover the washes down from the surrounding land and makes 3 What is a wetland? It’s a place that has been wet for marsh. In winter, this gregarious bird frequently water’s surface with mats and carpets of growth. 12 estuaries rich in nutrients. This “detritus soup” feeds can be seen swimming in the marsh. Look for a This growth can shade out other marsh plants enough time to develop specially adapted plants and the billions of microscopic animals that form the base slate-colored, duck-like bird with a black head like pondweed. Marsh pennywort shades out soils. The term wetland encompasses swamps, bogs, of the animal food chain in the marsh. This rich food and neck and white bill. If you are here at dusk, other plants and can eliminate the open water 2 mudflats, and marshes. This pond functions as a fresh- supply attracts many birds to estuaries. As you look listen for the song of the Northern Pacific preferred by waterfowl. You’ve probably water marsh. The overflow control structure allows out over the estuary, see if you can spot snowy or great Treefrog : a distinctive “shirk it, shirk it.” You already noticed this plant, with its strawberry- excess water to flow to Butcher’s Slough. egrets. These waders with their spear-like bills are might even see one hopping among the 1 plant-like leaves, growing in dense, floating mats 0 100 Feet A wildfire burned approximately 2 acres of this area excellent fishers. Both birds are mostly white. blackberry canes further down the trail. near the water’s edge. Duckweed, a floating on August 31, 2014. Fire is not a common occurrence The snowy egret has a black bill, black legs, and plant, forms lime-green carpets on the water’s in California coastal wetland ecosystems, but this yellow feet, while the larger great egret has a yellow Do you see any Black-crowned Night-Herons surface. This tiny plant, which is only a few habitat can be susceptible to fire in drought years. roosting in the Willows? millimeters long, is a favorite food of ducks. bill, black legs, and black feet. Allen Marsh, one of the waste water treatment Allen Marsh, one of the wastewater treatment Cattail Cinnamon teal in Snowy egret Great egret enhancement marshes enhancement marshes fresh-water wetland Photos by Leslie Scopes-Anderson, Gary Stone, Stan Harris, Camden Bruner, and Gretchen O’Brien. Text by Susan Branch, City of Arcata, American Coot and Friends of the Arcata Marsh. Layout design Northern Pacific Arcata Marsh InterpretivePhotos by Leslie Center Scopes Anderson, Gary Stone, Dr. Stan Harris, by Gretchen O’Brien. and Camden Bruner. Text by Susan Branch, City of Arcata, and Arcata Marsh Interpretive Center Black-crowned Treefrog 569 South G StreetFriends ofArcata, the Arcata CA Marsh. Layout design by Gretchen O’Brien Night-Heron Marsh pennywort and duckweed 707-826and Leslie-2359 Scopes Anderson. 569 South G Street, Arcata, CA 707-826-2359 4 Saltwater Plant Zonation 6 Salty Living 10 Freshwater Due to the high salt content of the water and soil Soil in the salt marsh is wet and salty, making it dif- Plant Zonation in this estuary, a limited number of plant species ficult for many plants to survive. Seaside arrow-grass Did you notice that there is a dominate this salt marsh.
Recommended publications
  • Exploring Our Wonderful Wetlands Publication
    Exploring Our Wonderful Wetlands Student Publication Grades 4–7 Dear Wetland Students: Are you ready to explore our wonderful wetlands? We hope so! To help you learn about several types of wetlands in our area, we are taking you on a series of explorations. As you move through the publication, be sure to test your wetland wit and write about wetlands before moving on to the next exploration. By exploring our wonderful wetlands, we hope that you will appreciate where you live and encourage others to help protect our precious natural resources. Let’s begin our exploration now! Southwest Florida Water Management District Exploring Our Wonderful Wetlands Exploration 1 Wading Into Our Wetlands ................................................Page 3 Exploration 2 Searching Our Saltwater Wetlands .................................Page 5 Exploration 3 Finding Out About Our Freshwater Wetlands .............Page 7 Exploration 4 Discovering What Wetlands Do .................................... Page 10 Exploration 5 Becoming Protectors of Our Wetlands ........................Page 14 Wetlands Activities .............................................................Page 17 Websites ................................................................................Page 20 Visit the Southwest Florida Water Management District’s website at WaterMatters.org. Exploration 1 Wading Into Our Wetlands What exactly is a wetland? The scientific and legal definitions of wetlands differ. In 1984, when the Florida Legislature passed a Wetlands Protection Act, they decided to use a plant list containing plants usually found in wetlands. We are very fortunate to have a lot of wetlands in Florida. In fact, Florida has the third largest wetland acreage in the United States. The term wetlands includes a wide variety of aquatic habitats. Wetland ecosystems include swamps, marshes, wet meadows, bogs and fens. Essentially, wetlands are transitional areas between dry uplands and aquatic systems such as lakes, rivers or oceans.
    [Show full text]
  • Freshwater Marsh and Coastal Salt Marsh. Both
    MARSH VEGETATION COMMUNITY There are two types of Marsh lands in San Diego County; Freshwater Marsh and Coastal Salt Marsh. Both of these communities are very important for wildlife, and both have had extensive reductions due to channelization, dredging and vegetation removal. Both communities have been reduced in area by 85-90 percent of their original area to less than 1,000 acres total. Coastal Salt Marsh is found within the tidal zone on the edge of lagoons and bays. The major locations of this community are the Tijuana Estuary, Penasquitos Lagoon and the mouth of the Santa Margarita River. Dominant plants in Coastal Salt Marsh are Glasswort (Salicornia), Alkali heath (Frankenia), Salt grass and Cordgrass. Two notable endangered birds occur within this community, the Light footed clapper rail and the Belding’s savannah sparrow. However, the Marsh lands are also important for shorebirds and the naturally occurring flow channels within Coastal Salt Marsh are important spawning areas for a number of fish species. Freshwater Marsh land is found along stream courses and near Riparian wetland areas. It was originally found near natural springs and ponded areas within the major stream channels. It has been affected by channelization and clearing of vegetation within stream channels. Dominant plants within Freshwater Marsh include rushes, cattails, bulrushes (or tules) and several species of small willows. There is often open water in depressions or natural springs. Freshwater Marsh is home to a number of species of birds including the Yellowthroat, a species of Warbler, several species of small herons as well as rails. Freshwater Marsh in its natural state has also served as habitat for native frog species, several of which are now endangered.
    [Show full text]
  • Ecosystem Element Conceptual Model Tidal Marsh
    Sacramento-San Joaquin Delta Regional Ecosystem Restoration Implementation Plan Ecosystem Element Conceptual Model Tidal Marsh Prepared by: Ronald T. Kneib, University of Georgia Marine Institute [email protected] and • Charles A. Simenstad, School of Aquatic & Fisheries Sciences, University of Washington • Matt L. Nobriga, CALFED Science Program • Drew M. Talley, San Francisco Bay National Estuarine Research Reserve, San Francisco State University, Romberg Tiburon Center Date of Model: October 2008 Status of Peer Review: Completed peer review on October 2008. Model content and format are suitable and model is ready for use in identifying and evaluating restoration actions. Suggested Citation: Kneib R, Simenstad C, Nobriga M, Talley D. 2008. Tidal marsh conceptual model. Sacramento (CA): Delta Regional Ecosystem Restoration Implementation Plan. For further inquiries on the DRERIP conceptual models, please contact Brad Burkholder at [email protected] or Steve Detwiler at [email protected]. PREFACE This Conceptual Model is part of a suite of conceptual models which collectively articulate the current scientific understanding of important aspects of the Sacramento-San Joaquin River Delta ecosystem. The conceptual models are designed to aid in the identification and evaluation of ecosystem restoration actions in the Delta. These models are designed to structure scientific information such that it can be used to inform sound public policy. The Delta Conceptual Models include both ecosystem element models (including process, habitat, and stressor models) and species life history models. The models were prepared by teams of experts using common guidance documents developed to promote consistency in the format and terminology of the models http://www.delta.dfg.ca.gov/erpdeltaplan/science_process.asp .
    [Show full text]
  • Responses of Tidal Freshwater and Brackish Marsh Macrophytes to Pulses of Saline Water Simulating Sea Level Rise and Reduced Discharge
    Wetlands (2018) 38:885–891 https://doi.org/10.1007/s13157-018-1037-2 ORIGINAL RESEARCH Responses of Tidal Freshwater and Brackish Marsh Macrophytes to Pulses of Saline Water Simulating Sea Level Rise and Reduced Discharge Fan Li1 & Steven C. Pennings1 Received: 7 June 2017 /Accepted: 16 April 2018 /Published online: 25 April 2018 # Society of Wetland Scientists 2018 Abstract Coastal low-salinity marshes are increasingly experiencing periodic to extended periods of elevated salinities due to the com- bined effects of sea level rise and altered hydrological and climatic conditions. However, we lack the ability to predict detailed vegetation responses, especially for saline pulses that are more realistic in nature than permanent saline presses. In this study, we exposed common freshwater and brackish plants to different durations (1–31 days per month for 3 months) of saline water (salinity of 5). We found that Zizaniopsis miliacea was more tolerant to salinity than the other two freshwater species, Polygonum hydropiperoides and Pontederia cordata. We also found that Zizaniopsis miliacea belowground and total biomass appeared to increase with salinity pulses up to 16 days in length, although this relationship was quite variable. Brackish plants, Spartina cynosuroides, Schoenoplectus americanus and Juncus roemerianus, were unaffected by the experimental treatments. Our ex- periment did not evaluate how competitive interactions would further affect responses to salinity but our results suggest the hypothesis that short pulses of saline water will increase the cover of Zizaniopsis miliacea and decrease the cover of Polygonum hydropiperoides and Pontederia cordata in tidal freshwater marshes, thereby reducing diversity without necessarily affecting total plant biomass.
    [Show full text]
  • Mangrove Elevation-Sea Level Rise Response Model
    Mangrove sea-level rise response modeling to inform planning Karen Thorne & Kevin Buffington USGS Western Ecological Research Center RAE Conference December 12th, 10:30-12 “A Web-Based Interactive Decision-Support Tool for Adaptation of Coastal Urban and Natural Ecosystems (ACUNE) in Southwest Florida” Project and Science Lead: Peter Sheng, University of Florida ([email protected]) Coordination Lead: Michael Savarese, Florida Gulf Coast University ([email protected]) Team: Christine Angelini, Mike Barry, Kevin Buffington, Justin Davis, Felix Jose, Ken Krause, David Letson, Vladimir Paramygin, Karen Thorne, Chuen “Andy” Hsu, Adail Rivera-Nieves, Sean Sharp, Kun Yang We are developing ACUNE to enable Adaption of Coastal Urban and Natural Systems for A Sustainable & Economically Healthy SW Florida in the Context of Increasing Future Inundation Risk Study Domain Largest Mangrove Forest in Gulf of Mexico region Ecosystem Services: Ecosystem Diversity, Fishery Habitat, Flood Protection Coastal Wetland Vulnerability to Sea-level rise • Projected sea-level rise pose a risk to coastal wetlands, including tidal marshes and mangroves • Mangroves provide wildlife habitat and valuable ecosystem services, including protecting infrastructure from flooding and storms • Mangroves provide a lot of carbon storage • Coastal wetlands require mineral and organic sediment inputs to build elevations to keep pace with sea-level rise. Red, white, and black mangroves in FL Mangrove ecosystems From: Lee et al. Global Ecology and Biogeography, 2014, 23: 726–743
    [Show full text]
  • Spatial Scale and Abundance Patterns of Large Fish Communities in Freshwater Marshes of the Florida Everglades
    WETLANDS, Vol. 24, No. 3, September 2004, pp. 652±664 q 2004, The Society of Wetland Scientists SPATIAL SCALE AND ABUNDANCE PATTERNS OF LARGE FISH COMMUNITIES IN FRESHWATER MARSHES OF THE FLORIDA EVERGLADES John H. Chick1, Carl R. Ruetz III2, and Joel C. Trexler Department of Biological Sciences, Florida International University Miami, Florida, USA 33199 1 Present address: Great Rivers Field Station Illinois Natural History Survey 8450 Montclair Ave. Brighton, Illinois, USA 62012 E-mail: [email protected] 2 Present address: Annis Water Resource Institute Grand Valley State University 740 West Shoreline Drive Muskegon, Michigan, USA 49441 Abstract: Anthropogenic habitat alterations and water-management practices have imposed an arti®cial spatial scale onto the once contiguous freshwater marshes of the Florida Everglades. To gain insight into how these changes may affect biotic communities, we examined whether variation in the abundance and community structure of large ®shes (SL . 8 cm) in Everglades marshes varied more at regional or intra- regional scales, and whether this variation was related to hydroperiod, water depth, ¯oating mat volume, and vegetation density. From October 1997 to October 2002, we used an airboat electro®sher to sample large ®shes at sites within three regions of the Everglades. Each of these regions is subject to unique water- management schedules. Dry-down events (water depth , 10 cm) occurred at several sites during spring in 1999, 2000, 2001, and 2002. The 2001 dry-down event was the most severe and widespread. Abundance of several ®shes decreased signi®cantly through time, and the number of days post-dry-down covaried signif- icantly with abundance for several species.
    [Show full text]
  • Ecology of Freshwater and Estuarine Wetlands: an Introduction
    ONE Ecology of Freshwater and Estuarine Wetlands: An Introduction RebeCCA R. SHARITZ, DAROLD P. BATZER, and STeveN C. PENNINGS WHAT IS A WETLAND? WHY ARE WETLANDS IMPORTANT? CHARACTERISTicS OF SeLecTED WETLANDS Wetlands with Predominantly Precipitation Inputs Wetlands with Predominately Groundwater Inputs Wetlands with Predominately Surface Water Inputs WETLAND LOSS AND DeGRADATION WHAT THIS BOOK COVERS What Is a Wetland? The study of wetland ecology can entail an issue that rarely Wetlands are lands transitional between terrestrial and needs consideration by terrestrial or aquatic ecologists: the aquatic systems where the water table is usually at or need to define the habitat. What exactly constitutes a wet- near the surface or the land is covered by shallow water. land may not always be clear. Thus, it seems appropriate Wetlands must have one or more of the following three to begin by defining the wordwetland . The Oxford English attributes: (1) at least periodically, the land supports predominately hydrophytes; (2) the substrate is pre- Dictionary says, “Wetland (F. wet a. + land sb.)— an area of dominantly undrained hydric soil; and (3) the substrate is land that is usually saturated with water, often a marsh or nonsoil and is saturated with water or covered by shallow swamp.” While covering the basic pairing of the words wet water at some time during the growing season of each year. and land, this definition is rather ambiguous. Does “usu- ally saturated” mean at least half of the time? That would This USFWS definition emphasizes the importance of omit many seasonally flooded habitats that most ecolo- hydrology, soils, and vegetation, which you will see is a gists would consider wetlands.
    [Show full text]
  • Salt Marsh and Mangrove Swamp
    May is Wetlands Month Salt Marsh Characteristics About the Park May is Wetlands Month Upper Tampa Bay Park opened in 1982. The park HYDROLOGY consists of 596 acres within the 2,144 acres of Salt marshes are estuarine wetlands often found Hillsborough County Preserve which was originally on low energy shorelines and in bays and a part of the 3,000acre Bower Tract. In the late estuaries. The hydrology is driven by daily tidal 1960’s and early 1970’s, the Bower Tract was fluctuations and wind events. Tides are water slated to become a large waterfront development level fluctuations that are driven by lunar cycles. called Bay Port Colony. However, it never came to Sediment accumulation ensures that marsh be, partly due to a burgeoning grassroots depths do not get too deep. environmental movement in the Tampa Bay area. The park and preserve properties were acquired by SOILS Hillsborough County through the 1970’s. Today, Soil types within salt marshes vary depending on the Park hosts both wetland and upland community tidal energy, proximity to channels, and external types as diverse as tidal marsh, high marsh, Salt Marsh and inputs. Soils can include muck, sand or limestone. mangrove swamp, freshwater marsh, pine The rotten egg smell of hydrogen sulfide is very flatwoods and coastal upland hammock. The park common here. contains an Environmental Study Center and Mangrove Swamp provides other activities such as picnicking, VEGETATION canoeing, and hiking on numerous trails or Upper Tampa Bay Park Salt marshes are treeless with a dense boardwalks. herbaceous layer. Vegetation is dominated by salt-tolerant grasses, rushes and succulent Week 4 Episode species which are sorted based on hydrology and salinity.
    [Show full text]
  • Humboldt Lagoons State Park 115336 Highway 101 North Trinidad, CA 95570 (707) 488-2169
    Our Mission The mission of California State Parks is Humboldt to provide for the health, inspiration and education of the people of California by helping to preserve the state’s extraordinary biological Part of the country’s Lagoons diversity, protecting its most valued natural and cultural resources, and creating opportunities largest lagoon system State Park for high-quality outdoor recreation. supports a rich variety of marsh plants, birds and other animals California State Parks supports equal access. Prior to arrival, visitors with disabilities who while providing need assistance should contact the park at (707) 488-2169. This publication is available ample opportunity in alternate formats by contacting: for recreation. CALIFORNIA STATE PARKS P.O. Box 942896 Sacramento, CA 94296-0001 For information call: (800) 777-0369. (916) 653-6995, outside the U.S. 711, TTY relay service www.parks.ca.gov Discover the many states of California.™ SaveTheRedwoods.org/csp Humboldt Lagoons State Park 115336 Highway 101 North Trinidad, CA 95570 (707) 488-2169 © 2011 California State Parks V isitors to Humboldt Lagoons actively pursued cultural and language State Park see part of the largest revitalization, viewing Humboldt Lagoons lagoon system in the United States. State Park as part of their heritage. Lagoons are shallow, enclosed bodies NATURAL HISTORY of water along the coast—separated from the ocean by coastal strands or The Lagoons spits of land. Water flows in and out of Humboldt Lagoons State Park consists of the lagoons when it breaches (breaks four separate areas from south to north: through) these spits. Big Lagoon, Dry Lagoon, Stone Lagoon and The park offers activities that Freshwater Lagoon.
    [Show full text]
  • Campus Lagoon
    Hatlen Arts Music 582 Theatre 305 411 MSR Storke LOT 7 Bio Arts LOT 429 Plaza Library Lotte Lehmann SIF Concert Hall 3 579 Art Bio Museum Psych. II LOT Life Sci. UCEN Faculty 592 University Corwin 23 Pavillion Club Multi- Walking Tour of Cultural Road Center Theater College of LOT LOT 8 Creative Studies Santa Rosa Hall 9 Old Little Anacapa Hall Ortega Theatre 1 931 000 2 LOT LOT 4 LOT 2 UCSB 27 3 Carrillo San Miguel Santa Cruz Hall Manzanita Hall De La Village San Nicolas Guerra 4 Housing & Hall Residential Services LOT Channel LOT Centennial Islands University House 6 5 15 5 House Road Campus Lagoon Lagoon Ramp 9 10 325 319 Marine Restoration Projects 342 6 7 Lagoon 555 Biotechnology Marine Science 338 Laboratory UCSB’s Cheadle Center for Biodiversity and Island Institute 334 465 200 202 Ecological Restoration (CCBER) manages and 11 restores campus natural areas. The center offers 8 14 550 internships, hosts seminars, and houses the 205 university’s herbarium and vertebrate collections. 12 N ccber.ucsb.edu 1/4 mile 13 Campus Campus Lagoon Area Restoration Trails Point University of California, Santa Barbara 1 These small Shorebird Habitat. islands and shallow-water zones were created along the 3 5 northern edge of Campus Lagoon to mitigate the nearby Manzanita Village Restoration Bioswales. Approximately 40% of the UCen expansion project’s infringement on the lagoon’s Project. Funded by UCSB Housing and Residential stormwater runoff from Manzanita Village flows through 100-foot buffer. They are a successful example of how Services, restoration of this site began in August 2002 and some section of bioswale.
    [Show full text]
  • And Belowground Primary Production in Coastal Wetlands: Implications for Climate Change-Induced Community Shifts
    Estuaries and Coasts DOI 10.1007/s12237-016-0177-y A Landscape-Scale Assessment of Above- and Belowground Primary Production in Coastal Wetlands: Implications for Climate Change-Induced Community Shifts Camille L. Stagg1 & Donald R. Schoolmaster Jr.1 & Sarai C. Piazza1 & Gregg Snedden1 & Gregory D. Steyer2 & Craig J. Fischenich3 & Robert W. McComas3 Received: 20 April 2016 /Revised: 23 September 2016 /Accepted: 29 September 2016 # Coastal and Estuarine Research Federation (outside the USA) 2016 Abstract Above- and belowground production in coastal production, and its influence was dependent upon wetland wetlands are important contributors to carbon accumulation type. We concluded that (1) salinity had a negative effect on and ecosystem sustainability. As sea level rises, we can expect production within wetland type, and this relationship was shifts to more salt-tolerant communities, which may alter strongest in the fresh marsh (0–2 PSU) and (2) along the these ecosystem functions and services. Although the direct overall landscape gradient, production was maintained by influence of salinity on species-level primary production has mechanisms at the scale of wetland type, which were likely been documented, we lack an understanding of the landscape- related to plant energetics. Regardless of wetland type, we level response of coastal wetlands to increasing salinity. What found that belowground production was significantly greater are the indirect effects of sea-level rise, i.e., how does primary than aboveground production. Additionally, inter-annual var- production vary across a landscape gradient of increasing sa- iation, associated with severe drought conditions, was ob- linity that incorporates changes in wetland type? This is the served exclusively for belowground production, which may first study to measure both above- and belowground produc- be a more sensitive indicator of ecosystem health than above- tion in four wetland types that span an entire coastal gradient ground production.
    [Show full text]
  • X.0 Freshwater Marsh
    X.0 FRESHWATER MARSH X.1 OVERVIEW OF THE FRESHWATER MARSH VEGETATION COMMUNITY Freshwater marshes occur worldwide in low areas of the landscape where water collects or where a relatively impermeable soil or geologic layer causes water to pond (Crandell 2017). Freshwater marshes, including the littoral zone of lakes, are unique transitional habitats that occur at the interface between the terrestrial and aquatic environments (Gulis, Kuehn, and Suberkroop 2009). Emergent plants, such as cattails (Typha) or common reed (Phragmites), are common inhabitants of freshwater marshes. These plants often have very high rates of primary production, making freshwater marshes among the most productive ecosystems on the planet. In California, freshwater marshes are found throughout the state, occurring in many different climates and elevations (Cheadle Center for Biodiversity & Ecological Restoration 2017). They typically occur in nutrient-rich mineral soils that drain slowly and are waterlogged or saturated for most or all of the year. Freshwater marshes occur in drainages, seepages, and other perennially moist, low places often found along stream courses and near riparian wetland areas (County of San Diego Dept. of Planning and Land Use, n.d.). Some freshwater marshes are vernal, filling with winter and spring rains and drying out in the summer (Cheadle Center for Biodiversity & Ecological Restoration 2017). They often have open water in depressions or natural springs (County of San Diego Dept. of Planning and Land Use, n.d.). In San Diego, freshwater marshes are found in small isolated areas along the major stream courses, such as the San Diego, San Dieguito, San Luis Rey, and Santa Margarita Rivers, as well as the upper ends of the major lagoons (County of San Diego Dept.
    [Show full text]