Chimpanzee and Human Y Chromosomes Are Remarkably Divergent in Structure and Gene Content
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nuclear and Mitochondrial Genome Defects in Autisms
UC Irvine UC Irvine Previously Published Works Title Nuclear and mitochondrial genome defects in autisms. Permalink https://escholarship.org/uc/item/8vq3278q Journal Annals of the New York Academy of Sciences, 1151(1) ISSN 0077-8923 Authors Smith, Moyra Spence, M Anne Flodman, Pamela Publication Date 2009 DOI 10.1111/j.1749-6632.2008.03571.x License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California THE YEAR IN HUMAN AND MEDICAL GENETICS 2009 Nuclear and Mitochondrial Genome Defects in Autisms Moyra Smith, M. Anne Spence, and Pamela Flodman Department of Pediatrics, University of California, Irvine, California In this review we will evaluate evidence that altered gene dosage and structure im- pacts neurodevelopment and neural connectivity through deleterious effects on synap- tic structure and function, and evidence that the latter are key contributors to the risk for autism. We will review information on alterations of structure of mitochondrial DNA and abnormal mitochondrial function in autism and indications that interactions of the nuclear and mitochondrial genomes may play a role in autism pathogenesis. In a final section we will present data derived using Affymetrixtm SNP 6.0 microar- ray analysis of DNA of a number of subjects and parents recruited to our autism spectrum disorders project. We include data on two sets of monozygotic twins. Col- lectively these data provide additional evidence of nuclear and mitochondrial genome imbalance in autism and evidence of specific candidate genes in autism. We present data on dosage changes in genes that map on the X chromosomes and the Y chro- mosome. -
Differences Between Human and Chimpanzee Genomes and Their Implications in Gene Expression, Protein Functions and Biochemical Properties of the Two Species Maria V
Suntsova and Buzdin BMC Genomics 2020, 21(Suppl 7):535 https://doi.org/10.1186/s12864-020-06962-8 REVIEW Open Access Differences between human and chimpanzee genomes and their implications in gene expression, protein functions and biochemical properties of the two species Maria V. Suntsova1 and Anton A. Buzdin1,2,3,4* From 11th International Young Scientists School “Systems Biology and Bioinformatics”–SBB-2019 Novosibirsk, Russia. 24-28 June 2019 Abstract Chimpanzees are the closest living relatives of humans. The divergence between human and chimpanzee ancestors dates to approximately 6,5–7,5 million years ago. Genetic features distinguishing us from chimpanzees and making us humans are still of a great interest. After divergence of their ancestor lineages, human and chimpanzee genomes underwent multiple changes including single nucleotide substitutions, deletions and duplications of DNA fragments of different size, insertion of transposable elements and chromosomal rearrangements. Human-specific single nucleotide alterations constituted 1.23% of human DNA, whereas more extended deletions and insertions cover ~ 3% of our genome. Moreover, much higher proportion is made by differential chromosomal inversions and translocations comprising several megabase-long regions or even whole chromosomes. However, despite of extensive knowledge of structural genomic changes accompanying human evolution we still cannot identify with certainty the causative genes of human identity. Most structural gene-influential changes happened at the level of expression regulation, which in turn provoked larger alterations of interactome gene regulation networks. In this review, we summarized the available information about genetic differences between humans and chimpanzees and their potential functional impacts on differential molecular, anatomical, physiological and cognitive peculiarities of these species. -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
"The Genecards Suite: from Gene Data Mining to Disease Genome Sequence Analyses". In: Current Protocols in Bioinformat
The GeneCards Suite: From Gene Data UNIT 1.30 Mining to Disease Genome Sequence Analyses Gil Stelzer,1,5 Naomi Rosen,1,5 Inbar Plaschkes,1,2 Shahar Zimmerman,1 Michal Twik,1 Simon Fishilevich,1 Tsippi Iny Stein,1 Ron Nudel,1 Iris Lieder,2 Yaron Mazor,2 Sergey Kaplan,2 Dvir Dahary,2,4 David Warshawsky,3 Yaron Guan-Golan,3 Asher Kohn,3 Noa Rappaport,1 Marilyn Safran,1 and Doron Lancet1,6 1Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel 2LifeMap Sciences Ltd., Tel Aviv, Israel 3LifeMap Sciences Inc., Marshfield, Massachusetts 4Toldot Genetics Ltd., Hod Hasharon, Israel 5These authors contributed equally to the paper 6Corresponding author GeneCards, the human gene compendium, enables researchers to effectively navigate and inter-relate the wide universe of human genes, diseases, variants, proteins, cells, and biological pathways. Our recently launched Version 4 has a revamped infrastructure facilitating faster data updates, better-targeted data queries, and friendlier user experience. It also provides a stronger foundation for the GeneCards suite of companion databases and analysis tools. Improved data unification includes gene-disease links via MalaCards and merged biological pathways via PathCards, as well as drug information and proteome expression. VarElect, another suite member, is a phenotype prioritizer for next-generation sequencing, leveraging the GeneCards and MalaCards knowledgebase. It au- tomatically infers direct and indirect scored associations between hundreds or even thousands of variant-containing genes and disease phenotype terms. Var- Elect’s capabilities, either independently or within TGex, our comprehensive variant analysis pipeline, help prepare for the challenge of clinical projects that involve thousands of exome/genome NGS analyses. -
Y Chromosomes of the Proposed
Sequencing and Annotating New Mammalian Y Chromosomes A White Paper Proposal, July, 2006 Steve Rozen1, Wesley C. Warren2, George Weinstock3, Stephen J. O’Brien4, Richard A. Gibbs3, Richard K. Wilson2, David C. Page1 1 Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142 2 Genome Sequencing Center, Washington University School of Medicine, St Louis, Missouri 63108 3 Human Genome Sequencing Center, Baylor College of Medicine, Houston, Texas 77030 4 Laboratory of Genomic Diversity, National Cancer Institute, Frederick, Maryland 21702 Overview: Y chromosome sequence is essential for understanding human and mammalian evolution and biology The only Y chromosome that has been completely sequenced in any species is that of humans1,2, although sequencing of the chimpanzee and mouse Y chromosomes is in progress2-4. Here we propose to sequence and annotate the Y chromosomes of seven additional mammals at varying distances from human: Macaca mulatta (rhesus macaque) Callithrix jacchus (white-tufted-ear marmoset), Rattus norvegicus (laboratory rat), Bos taurus (domestic bull), Felis catus (domestic cat), Canis familiaris (dog), and Monodelphis domestica (laboratory opossum). We recognize that NHGRI approved rat Y chromosome sequencing as part of additional rat finishing5 and that the bull Y chromosome falls within the scope of the Bovine Genome Project, led by the Baylor sequencing center6. Inclusion of the rat and bull Y chromosomes is intended (i) to clarify collaborative intentions among the submitting sequencing centers (ii) to ensure coordination and agreement of the definitions of the most useful levels of completion of these chromosomes and (iii) to emphasize coherent biological rationales for sequencing and annotating the seven proposed Y chromosomes in terms of their relevance to human evolution, biology, and disease. -
Y Chromosome
G C A T T A C G G C A T genes Article An 8.22 Mb Assembly and Annotation of the Alpaca (Vicugna pacos) Y Chromosome Matthew J. Jevit 1 , Brian W. Davis 1 , Caitlin Castaneda 1 , Andrew Hillhouse 2 , Rytis Juras 1 , Vladimir A. Trifonov 3 , Ahmed Tibary 4, Jorge C. Pereira 5, Malcolm A. Ferguson-Smith 5 and Terje Raudsepp 1,* 1 Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4458, USA; [email protected] (M.J.J.); [email protected] (B.W.D.); [email protected] (C.C.); [email protected] (R.J.) 2 Molecular Genomics Workplace, Institute for Genome Sciences and Society, Texas A&M University, College Station, TX 77843-4458, USA; [email protected] 3 Laboratory of Comparative Genomics, Institute of Molecular and Cellular Biology, 630090 Novosibirsk, Russia; [email protected] 4 Department of Veterinary Clinical Sciences, College of Veterinary Medicine, Washington State University, Pullman, WA 99164-6610, USA; [email protected] 5 Department of Veterinary Medicine, University of Cambridge, Cambridge CB3 0ES, UK; [email protected] (J.C.P.); [email protected] (M.A.F.-S.) * Correspondence: [email protected] Abstract: The unique evolutionary dynamics and complex structure make the Y chromosome the most diverse and least understood region in the mammalian genome, despite its undisputable role in sex determination, development, and male fertility. Here we present the first contig-level annotated draft assembly for the alpaca (Vicugna pacos) Y chromosome based on hybrid assembly of short- and long-read sequence data of flow-sorted Y. -
Replication Profile of PCDH11X and PCDH11Y, a Gene Pair Located In
Chromosome Research (2007) 15:485Y498 # Springer 2007 DOI: 10.1007/s10577-007-1153-y Replication profile of PCDH11X and PCDH11Y, a gene pair located in the non-pseudoautosomal homologous region Xq21.3/Yp11.2 N. D. Wilson1, L. J. N. Ross2, J. Close2, R. Mott1,T.J.Crow2 & E. V. Volpi1* 1Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX3 7BN, UK; Tel: +44-1865-287646; Fax: +44-1865-287533; E-mail: [email protected]; 2Prince of Wales International Centre for SANE Research, Warneford Hospital, Oxford, UK *Correspondence Received 4 November 2006. Received in revised form and accepted for publication by Wendy Bickmore 15 April 2007 Key words: PCDH11X/Y, replication asynchrony, replication timing, X-inactivation, Xq21.3/Yp11.2 homology block Abstract In order to investigate the replication timing properties of PCDH11X and PCDH11Y, a pair of protocadherin genes located in the hominid-specific non-pseudoautosomal homologous region Xq21.3/Yp11.2, we conducted a FISH-based comparative study in different human and non-human primate (Gorilla gorilla) cell types. The replication profiles of three genes from different regions of chromosome X (ZFX, XIST and ATRX) were used as terms of reference. Particular emphasis was given to the evaluation of allelic replication asynchrony in relation to the inactivation status of each gene. The human cell types analysed include neuronal cells and ICF syndrome cells, considered to be a model system for the study of X inactivation. PCDH11 appeared to be generally characterized by replication asynchrony in both male and female cells, and no significant differences were observed between human and gorilla, in which this gene lacks X-Y homologous status. -
Variability of Sexual Phenotype in 46,XX(SRY+) Patients: the Influence of Spreading X Inactivation Versus Position Effects
420 LETTER TO JMG J Med Genet: first published as 10.1136/jmg.2004.022053 on 29 April 2005. Downloaded from Variability of sexual phenotype in 46,XX(SRY+) patients: the influence of spreading X inactivation versus position effects A Sharp, K Kusz, J Jaruzelska, W Tapper, M Szarras-Czapnik, J Wolski, P Jacobs ............................................................................................................................... J Med Genet 2005;42:420–427. doi: 10.1136/jmg.2004.022053 uring male meiosis the X and Y chromosomes pair along much of their length, with a single obligatory Key points recombination event usually occurring in the pseudo- D 1 autosomal region (PAR) at the tip of Xp and Yp, thus N We have studied causes of incomplete masculinisation maintaining identity of the sex chromosome PARs.2 in 15 individuals with segments of Yp translocated onto Occasionally illegitimate crossover occurs outside the PAR, distal Xp. In each case we mapped X and Y resulting in the transfer of Y specific sequences onto the X breakpoints, determined X inactivation ratios, and chromosome. Such translocations between distal Xp and Yp performed expression studies of translocated Y genes occur relatively frequently, resulting in the generation of by allele specific RT-PCR. We confirm the presence of a 46,XX individuals, the majority of whom display an overtly Yp inversion polymorphism predisposing to X/Y male phenotype due to transfer of the SRY gene onto the translocation. 3–5 short arm of the paternal X. However, a small number of Yp N Expression studies found very little evidence for translocations are associated with hermaphroditism, defined spreading of X inactivation into Yp chromatin. -
Characterization of X-Linked SNP Genotypic Variation in Globally Distributed Human Populations Genome Biology 2010, 11:R10
Casto et al. Genome Biology 2010, 11:R10 http://genomebiology.com/2010/11/1/R10 RESEARCH Open Access CharacterizationResearch of X-Linked SNP genotypic variation in globally distributed human populations Amanda M Casto*1, Jun Z Li2, Devin Absher3, Richard Myers3, Sohini Ramachandran4 and Marcus W Feldman5 HumanAnhumanulation analysis structurepopulationsX-linked of X-linked variationand provides de geneticmographic insights variation patterns. into in pop- Abstract Background: The transmission pattern of the human X chromosome reduces its population size relative to the autosomes, subjects it to disproportionate influence by female demography, and leaves X-linked mutations exposed to selection in males. As a result, the analysis of X-linked genomic variation can provide insights into the influence of demography and selection on the human genome. Here we characterize the genomic variation represented by 16,297 X-linked SNPs genotyped in the CEPH human genome diversity project samples. Results: We found that X chromosomes tend to be more differentiated between human populations than autosomes, with several notable exceptions. Comparisons between genetically distant populations also showed an excess of X- linked SNPs with large allele frequency differences. Combining information about these SNPs with results from tests designed to detect selective sweeps, we identified two regions that were clear outliers from the rest of the X chromosome for haplotype structure and allele frequency distribution. We were also able to more precisely define the geographical extent of some previously described X-linked selective sweeps. Conclusions: The relationship between male and female demographic histories is likely to be complex as evidence supporting different conclusions can be found in the same dataset. -
Gender-Specific Expression of Ubiquitin-Specific Peptidase 9 Modulates Tau Expression and Phosphorylation: Possible Implications for Tauopathies
Mol Neurobiol DOI 10.1007/s12035-016-0299-z Gender-Specific Expression of Ubiquitin-Specific Peptidase 9 Modulates Tau Expression and Phosphorylation: Possible Implications for Tauopathies Sandra Köglsberger1 & Maria Lorena Cordero-Maldonado1 & Paul Antony1 & Julia Ilona Forster1 & Pierre Garcia 1 & Manuel Buttini1 & Alexander Crawford1 & Enrico Glaab1 Received: 22 May 2016 /Accepted: 14 November 2016 # The Author(s) 2016. This article is published with open access at Springerlink.com Abstract Public transcriptomic studies have shown that sev- literature, we derive a data-congruent model for a USP9-de- eral genes display pronounced gender differences in their ex- pendent regulatory mechanism modulating MAPT expression pression in the human brain, which may influence the mani- via BACH1 and SMAD4. Overall, the analyses suggest USP9 festations and risk for neuronal disorders. Here, we apply a may contribute to molecular gender differences observed in transcriptome-wide analysis to discover genes with gender- tauopathies and provide a new target for intervention strate- specific expression and significant alterations in public post- gies to modulate MAPT expression. mortem brain tissue from Alzheimer’s disease (AD) patients compared to controls. We identify the sex-linked ubiquitin- Keywords Transcriptomics .Tau .Tauopathies .Alzheimer’s specific peptidase 9 (USP9) as an outstanding candidate gene disease . Gender differences . Zebrafish with highly significant expression differences between the genders and male-specific underexpression in -
The Human Y Chromosome and Its Role in the Developing Male Nervous System
Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1285 The Human Y chromosome and its role in the developing male nervous system MARTIN M. JOHANSSON ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-554-9331-8 UPPSALA urn:nbn:se:uu:diva-261789 2015 Dissertation presented at Uppsala University to be publicly examined in Zootissalen (EBC 01.01006), Evolutionsbiologiskt centrum, EBC, Villavägen 9, Uppsala, Friday, 23 October 2015 at 13:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: David Skuse (University College London Behavioural Sciences Unit). Abstract Johansson, M. M. 2015. The Human Y chromosome and its role in the developing male nervous system. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1285. 63 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-554-9331-8. Recent research demonstrated that besides a role in sex determination and male fertility, the Y chromosome is involved in additional functions including prostate cancer, sex-specific effects on the brain and behaviour, graft-versus-host disease, nociception, aggression and autoimmune diseases. The results presented in this thesis include an analysis of sex-biased genes encoded on the X and Y chromosomes of rodents. Expression data from six different somatic tissues was analyzed and we found that the X chromosome is enriched in female biased genes and depleted of male biased ones. The second study described copy number variation (CNV) patterns in a world-wide collection of human Y chromosome samples. Contrary to expectations, duplications and not deletions were the most frequent variations. -
The Role of the Pro47ser Polymorphism of the Tr53 Gene in Predisposition to Breast Cancer
The American Journal of Medical Sciences and Pharmaceutical Research IMPACT FACTOR – (ISSN 2689-1026) 2020: 5. 286 Published: December 30, 2020 | Pages: 64-73 OCLC - 1121105510 Doi: https://doi.org/10.37547/TAJMSPR/Volume02Issue12-11 The Role Of The Pro47ser Polymorphism Of The Tr53 Gene In Predisposition To Breast Cancer Nodirjon Shakhriqulovich Avezov Institute Of Biophysics And Biochemistry At The National University Of Uzbekistan, Tashkent, Uzbekistan Dilbar Abdullaevna Kodirova Journal Website: Institute Of Biophysics And Biochemistry At The National University Of Uzbekistan,Tashkent, http://usajournalshub.c om/index,php/TAJMSP Uzbekistan R Copyright: Original Khakimov Golib Abdullevich content from this work Republican Specialized Scientific-Practical Medical Center Of Oncology And Radiology, may be used under the terms of the creative Tashkent, Uzbekistan commons attributes 4.0 licence. Aminjon Karimovich Karimov Tashkent Pharmaceutical Institute, Uzbekistan Allomakhon Nizamovna Maksudova Tashkent Pharmaceutical Institute, Uzbekistan Mukhametamin Mametjanovich Shertaev Tashkent Pediatric Medical Institute, Uzbekistan Kodirjon Tukhtaboevich Boboev Republican Specialized Scientific And Practical Medical Center Of Hematology, Tashkent, Uzbekistan ABSTRACT Numerous scientific studies have been carried out on the predisposition of the Pro47Ser polymorphism of the TR53 gene to breast cancer in women living in most countries of the world. However, no studies have been conducted on the susceptibility of this Pro47Ser gene polymorphism to breast cancer in Uzbek women. In this article, genotyping of the Pro47Ser polymorphism of the TR53 gene was performed for the first time in 207 Uzbek women. According to the results of our study, the functionally dangerous T allele of the Pro47Ser polymorphism of the TR53 gene was statistically significantly higher than that in healthy donors in patients with breast cancer; (ch2 = 8.2; p = 0.004; OR = 11.2; 95% CI: 1.422-88.38; RR = 10.7; 95% CI: 1.382-82.82).