Molecular Genetics of Epilepsy and Mental Retardation Limited to Females (EFMR)

Total Page:16

File Type:pdf, Size:1020Kb

Molecular Genetics of Epilepsy and Mental Retardation Limited to Females (EFMR) Molecular Genetics of Epilepsy and Mental Retardation Limited to Females (EFMR) A thesis submitted for the degree of Doctor of Philosophy to the University of Adelaide By Kim Hynes School of Molecular and Biomedical Science, Division of Genetics, University of Adelaide December 2009 Chapter 1 – Introduction ! ! ! " $ ' $! $" # # $ & !% $ $ % ! 1.1 Intellectual disability Intellectual disability (ID), also termed mental retardation (MR) (Salvador-Carulla and Bertelli, 2008), is a common disorder affecting an estimated 1.5-2% of the population in Westernised countries (reviewed in Leonard and Wen, 2002). ID is defined by the American Association on Mental Retardation (AAMR) as a disability characterized by significant limitations both in intellectual functioning and in adaptive behaviour that originates before age 18 (Luckasson et al., 2002). ID is subdivided into five categories based on a patient’s intelligence quotient (IQ). Class Intelligence quotient Profound <20 Severe 20-34 Moderate 35-49 Mild 50-69 Borderline 70-85 Table 1.1 The IQ criterion used to classify the severity of ID based on WHO guidelines (WHO, 1996) The most common forms of ID within the population are mild to moderate (Toniolo, 2000, Vasconcelos, 2004). The least common form is severe ID which only affects 0.3-0.5% of the population (Toniolo, 2000, Vasconcelos, 2004). ID can present on its own or more commonly as one of the comorbidities of a more complex syndrome such as Down syndrome (Toniolo, 2000). ID can present in infancy and early childhood but it is commonly diagnosed during school years, as IQ tests are more objective and only reliable in children over five (Reviewed in Toniolo, 2000, Vasconcelos, 2004, Shevell et al., 2003). The underlying causes of ID are highly heterogeneous and include both genetic and non- genetic factors. Non-genetic factors occur pre-natal or during early infancy and result in brain injury. Examples of these include infectious diseases, very premature birth, perinatal anoxia Chapter 1- 1 and foetal alcohol syndrome (Chelly and Mandel, 2001). Developmental disorders that affect the precise pattern of organization and connections in the brain can result in ID (Toniolo, 2000). Metabolic and mitochondrial disorders have also been associated with ID through inducing defects in neurons that alter brain housekeeping functions (Toniolo, 2000). This introduction will focus exclusively on genetic causes of ID and in particular X-linked intellectual disability (XLID). 1.2 X-Linked Intellectual Disability XLID is defined by the occurrence of ID (IQ<70) where the causative gene has been mapped to the X-chromosome (Gecz et al., 2009). Historically the categories of XLID have be further subdivided into syndromic (S-XLID) and non-syndromic (NS-XLID) forms, depending on whether further consistent abnormalities (in addition to ID) are found on physical examination, laboratory investigation or brain imaging (Mulley et al., 1992). However with increased understanding of the molecular basis of XLID a proportion of NS-XLID are turning out to be S-XLID. Once a causative gene has been identified in a multiple NS-XLID patients the specific phenotypes of these individuals with mutations in this gene can be compared as a group against normal individuals. Specific syndromal features can then be indentified for the group. For example, Fragile(X) (Fra(X)) syndrome which was initially characterised as NS- XLID, but is now the most widely recognised example of S-XLID (Ropers and Hamel, 2005). Although some syndromologists can pick some cases of Fra(X) by clinical observation alone, many Fra(X) cases are not so easily diagnosed and require laboratory testing for a definitive diagnosis. A further complexity to the S-XLID / NS-XLID subdivision is that mutations in a gene can result in patients with S-XLID and patients with NS-XLID. For example, mutations in ribosomal protein S6 kinase (RSK2) cause Coffin-Lowry syndrome (CLS) (Trivier et al., 1996) a disorder characterised by severe psychomotor retardation, facial and digital Chapter 1- 2 dysmorphisms and progressive skeletal deformations (Young, 1988). Mutations in RSK2 have also been identified in patients with NS-XLID who do not exhibit any of the facial, digital or skeletal features typical of CLS (Merienne et al., 1999). Genes on the X-chromosome have long been implicated in ID due to the ~25-30% excess of males with ID compared to females (Turner, 1996). More realistic recent estimates predict a contribution from the X-chromosome of between 8-15% (Ropers, 2008, Ropers and Hamel, 2005). This is 2-4 times higher than expected based on the ~4% of the protein coding genes in the human genome being coded for on the X-chromosome (Ropers, 2008). The X- chromosome is a rich source of causative genes for ID. The human X-chromosome contains ~818 known protein-coding genes (Gecz et al., 2009). Roughly 40% of X-chromosome genes are expressed in the brain and are therefore candidate genes for XLID (Ropers and Hamel, 2005). Out of these a large number of genes have been screened for mutations in XLID patients and so far more than 90 genes have been implicated in XLID (Chiurazzi et al., 2008, Tarpey et al., 2009). However mutations in these genes only explain ~50% of families with suspected XLID (reviewed in Gecz et al., 2009). The absence of a definitive diagnosis leaves affected families without accurate genetic counselling and reproductive options such as prenatal diagnosis. ID has a high burden on society, not just on those families directly affected, as it also ranks highly in terms of health care expenditure in developed countries. ID is therefore one of the most important health issues in medicine. Whilst considerable effort has been put into the discovery of genes responsible for ID the landscape is far from complete and requires much more investigation to complete the picture. Chapter 1- 3 1.3 Strategies for identifying causative genes for XLID The identification of causative genes for XLID is not only important at a clinical level to aid those families and individuals affected, but it will also increase our understanding of normal brain function. For example, investigations into the function of FMR1, the gene involved in Fra(X) syndrome, have added to the knowledge of fundamental aspects of normal neuronal function (Willemsen et al., 2004). Gene discovery is considered easier in the case of S-XLID, compared to NS-XLID, as affected families and individuals can be classified and sub-grouped on the basis of physical, metabolic and/or behavioural characteristics, in addition to ID. Linkage data can therefore be combined for families and individuals in a particular sub-group, which greatly enhances the power of linkage analysis and has the potential to significantly reduce the linkage interval to be assessed for candidate genes. The task of gene discovery in monogenic disease has become easier with the availability of the human genome sequence and increased knowledge of gene function (Ropers and Hamel, 2005). However, on the other hand the unexpected degree of genetic heterogeneity and mutation pleiotropy observed for some disorders represents a considerable challenge, as seen for disorders caused by ARX (Aristaless-related homeobox) (Gecz et al., 2006) and ATRX (Gibbons and Higgs, 2000) mutations. Gene discovery for NS-XLID cases remains extremely difficult. Families with NS-XLID are impossible to separate in terms of their phenotype and need to be dealt with family by family because as a group they are clinically homogeneous. Progress in NS-XLID has been slow with less that 50% of causative genes identified due to extreme genetic heterogeneity which prevents the pooling of linkage information from unrelated families (Ropers and Hamel, 2005). Chapter 1- 4 In recent years the strategies used to identify causative genes in XLID have changed significantly. Previous success in gene identification has arisen through the use of breakpoint mapping in patients with rearrangements involving the X-chromosome, positional candidate screening of genes associated with fragile sites and linkage mapping with candidate gene screening (reviewed in Ropers and Hamel, 2005). These were primarily conducted on a patient/patient basis. More recent approaches to gene identification have seen a shift to semi- automated high throughput mutation-detection screening in large cohorts of families. Analysing linkage intervals from 125 families with NS-XLID revealed a potential mutation hotspot with clustering of the underlying mutations to the Xp11.2-11.3 which was predicted to carry 30% of causative genes (Ropers et al., 2003). Subsequent mutation screening of 50 genes expressed in the brain from the Xp11.2-11.3 region identified 5 novel XLMR genes (Ropers and Hamel, 2005, Freude et al., 2004, Jensen et al., 2005, Kalscheuer et al., 2003a, Shoichet et al., 2003, Tarpey et al., 2004). A further large-scale screen for causative point mutations in 90 known and candidate XLID genes in 600 suspected XLID families identified 73 mutations in 21 genes (de Brouwer et al., 2007). From this analysis they identified a causative mutation in 42% of families that contained an obligate female carrier (de Brouwer et al., 2007). It is likely that some of the 600 families analysed in this screen may not have ID due to X-linked genes, this is particularly relevant for the 191 families which only had affected individuals in a single generation with 2-5 affected brothers, there was still a significant proportion of XLID families with no apparent mutation in any of the previously identified and suspected XLID genes. To identify additional causative genes for XLID our laboratory in collaboration with others from the USA and UK embarked on a large scale, comprehensive screen, via high-through- put re-sequencing, of 718 X-chromosome genes in probands from 208 XLID or suspected XLID families (Tarpey et al., 2009). This effort led to the identification of at least 12 novel Chapter 1- 5 XLID genes and contributed to the identification of 4 additional XLID genes (Tarpey et al., 2009).
Recommended publications
  • Nuclear and Mitochondrial Genome Defects in Autisms
    UC Irvine UC Irvine Previously Published Works Title Nuclear and mitochondrial genome defects in autisms. Permalink https://escholarship.org/uc/item/8vq3278q Journal Annals of the New York Academy of Sciences, 1151(1) ISSN 0077-8923 Authors Smith, Moyra Spence, M Anne Flodman, Pamela Publication Date 2009 DOI 10.1111/j.1749-6632.2008.03571.x License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California THE YEAR IN HUMAN AND MEDICAL GENETICS 2009 Nuclear and Mitochondrial Genome Defects in Autisms Moyra Smith, M. Anne Spence, and Pamela Flodman Department of Pediatrics, University of California, Irvine, California In this review we will evaluate evidence that altered gene dosage and structure im- pacts neurodevelopment and neural connectivity through deleterious effects on synap- tic structure and function, and evidence that the latter are key contributors to the risk for autism. We will review information on alterations of structure of mitochondrial DNA and abnormal mitochondrial function in autism and indications that interactions of the nuclear and mitochondrial genomes may play a role in autism pathogenesis. In a final section we will present data derived using Affymetrixtm SNP 6.0 microar- ray analysis of DNA of a number of subjects and parents recruited to our autism spectrum disorders project. We include data on two sets of monozygotic twins. Col- lectively these data provide additional evidence of nuclear and mitochondrial genome imbalance in autism and evidence of specific candidate genes in autism. We present data on dosage changes in genes that map on the X chromosomes and the Y chro- mosome.
    [Show full text]
  • Differences Between Human and Chimpanzee Genomes and Their Implications in Gene Expression, Protein Functions and Biochemical Properties of the Two Species Maria V
    Suntsova and Buzdin BMC Genomics 2020, 21(Suppl 7):535 https://doi.org/10.1186/s12864-020-06962-8 REVIEW Open Access Differences between human and chimpanzee genomes and their implications in gene expression, protein functions and biochemical properties of the two species Maria V. Suntsova1 and Anton A. Buzdin1,2,3,4* From 11th International Young Scientists School “Systems Biology and Bioinformatics”–SBB-2019 Novosibirsk, Russia. 24-28 June 2019 Abstract Chimpanzees are the closest living relatives of humans. The divergence between human and chimpanzee ancestors dates to approximately 6,5–7,5 million years ago. Genetic features distinguishing us from chimpanzees and making us humans are still of a great interest. After divergence of their ancestor lineages, human and chimpanzee genomes underwent multiple changes including single nucleotide substitutions, deletions and duplications of DNA fragments of different size, insertion of transposable elements and chromosomal rearrangements. Human-specific single nucleotide alterations constituted 1.23% of human DNA, whereas more extended deletions and insertions cover ~ 3% of our genome. Moreover, much higher proportion is made by differential chromosomal inversions and translocations comprising several megabase-long regions or even whole chromosomes. However, despite of extensive knowledge of structural genomic changes accompanying human evolution we still cannot identify with certainty the causative genes of human identity. Most structural gene-influential changes happened at the level of expression regulation, which in turn provoked larger alterations of interactome gene regulation networks. In this review, we summarized the available information about genetic differences between humans and chimpanzees and their potential functional impacts on differential molecular, anatomical, physiological and cognitive peculiarities of these species.
    [Show full text]
  • Supplemental Tables4.Pdf
    Yano_Supplemental_Table_S4 Gene ontology – Biological process 1 of 9 Fold List Pop Pop GO Term Count % PValue Bonferroni Benjamini FDR Genes Total Hits Total Enrichment DLC1, CADM1, NELL2, CLSTN1, PCDHGA8, CTNNB1, NRCAM, APP, CNTNAP2, FERT2, RAPGEF1, PTPRM, MPDZ, SDK1, PCDH9, PTPRS, VEZT, NRXN1, MYH9, GO:0007155~cell CTNNA2, NCAM1, NCAM2, DDR1, LSAMP, CNTN1, 50 5.61 2.14E-08 510 311 7436 2.34 4.50E-05 4.50E-05 3.70E-05 adhesion ROR2, VCAN, DST, LIMS1, TNC, ASTN1, CTNND2, CTNND1, CDH2, NEO1, CDH4, CD24A, FAT3, PVRL3, TRO, TTYH1, MLLT4, LPP, NLGN1, PCDH19, LAMA1, ITGA9, CDH13, CDON, PSPC1 DLC1, CADM1, NELL2, CLSTN1, PCDHGA8, CTNNB1, NRCAM, APP, CNTNAP2, FERT2, RAPGEF1, PTPRM, MPDZ, SDK1, PCDH9, PTPRS, VEZT, NRXN1, MYH9, GO:0022610~biological CTNNA2, NCAM1, NCAM2, DDR1, LSAMP, CNTN1, 50 5.61 2.14E-08 510 311 7436 2.34 4.50E-05 4.50E-05 3.70E-05 adhesion ROR2, VCAN, DST, LIMS1, TNC, ASTN1, CTNND2, CTNND1, CDH2, NEO1, CDH4, CD24A, FAT3, PVRL3, TRO, TTYH1, MLLT4, LPP, NLGN1, PCDH19, LAMA1, ITGA9, CDH13, CDON, PSPC1 DCC, ENAH, PLXNA2, CAPZA2, ATP5B, ASTN1, PAX6, ZEB2, CDH2, CDH4, GLI3, CD24A, EPHB1, NRCAM, GO:0006928~cell CTTNBP2, EDNRB, APP, PTK2, ETV1, CLASP2, STRBP, 36 4.04 3.46E-07 510 205 7436 2.56 7.28E-04 3.64E-04 5.98E-04 motion NRG1, DCLK1, PLAT, SGPL1, TGFBR1, EVL, MYH9, YWHAE, NCKAP1, CTNNA2, SEMA6A, EPHA4, NDEL1, FYN, LRP6 PLXNA2, ADCY5, PAX6, GLI3, CTNNB1, LPHN2, EDNRB, LPHN3, APP, CSNK2A1, GPR45, NRG1, RAPGEF1, WWOX, SGPL1, TLE4, SPEN, NCAM1, DDR1, GRB10, GRM3, GNAQ, HIPK1, GNB1, HIPK2, PYGO1, GO:0007166~cell RNF138, ROR2, CNTN1,
    [Show full text]
  • Supplementary Table 1: Adhesion Genes Data Set
    Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like,
    [Show full text]
  • Hedgehog Signaling, Epithelial-To-Mesenchymal Transition and Mirna (Review)
    271-275 1/8/08 15:18 Page 271 INTERNATIONAL JOURNAL OF MOLECULAR MEDICINE 22: 271-275, 2008 271 Hedgehog signaling, epithelial-to-mesenchymal transition and miRNA (Review) YURIKO KATOH1 and MASARU KATOH2 1M&M Medical Bioinformatics, Hongo 113-0033; 2Genetics and Cell Biology Section, National Cancer Center, Tokyo 104-0045, Japan Received May 19, 2008; Accepted June 26, 2008 DOI: 10.3892/ijmm_00000019 Abstract. SHH, IHH, and DHH are lipid-modified secreted strictly controlled before clinical application of synthetic proteins binding to Patched receptors, and CDON, BOC or miRNA. Peptide mimetic and RNA aptamer could also be GAS1 co-receptors. In the absence of Hedgehog signaling, utilized as Hedgehog signaling inhibitors or EMT suppressors. GLI1 is transcriptionally repressed, GLI2 is phosphorylated by GSK3 and CK1 for the FBXW11 (ßTRCP2)-mediated degradation, and GLI3 is processed to a cleaved repressor. In Contents the presence of Hedgehog signaling, Smoothened is relieved from Patched-mediated suppression due to the Hedgehog- 1. Introduction dependent internalization of Patched, which leads to 2. Hedgehog signaling pathway MAP3K10 (MST) activation and SUFU inactivation for the 3. Epithelial-to-mesenchymal transition (EMT) stabilization and nuclear accumulation of GLI family 4. Hedgehog and EMT members. GLI activators then upregulate CCND1, CCND2 5. MicroRNA (miRNA) for cell cycle acceleration, FOXA2, FOXC2, FOXE1, 6. Perspectives FOXF1, FOXL1, FOXP3, POU3F1, RUNX2, SOX13, TBX2 for cell fate determination, JAG2, INHBC, and INHBE for 1. Introduction stem cell signaling regulation. Hedgehog signals also up- regulate SFRP1 in mesenchymal cells for WNT signaling Hedgehog family members are key regulators of embryo- regulation. Epithelial-to-mesenchymal transition (EMT) during genesis, adult tissue homeostasis, and carcinogenesis (1-5).
    [Show full text]
  • Mutations in CDON, Encoding a Hedgehog Receptor, Result in Holoprosencephaly and Defective Interactions with Other Hedgehog Receptors
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector ARTICLE Mutations in CDON, Encoding a Hedgehog Receptor, Result in Holoprosencephaly and Defective Interactions with Other Hedgehog Receptors Gyu-Un Bae,1,2,4,6 Sabina Domene´,3,4,7 Erich Roessler,3 Karen Schachter,1,8 Jong-Sun Kang,2,5,* Maximilian Muenke,3,5,* and Robert S. Krauss1,5 Holoprosencephaly (HPE), a common human congenital anomaly defined by a failure to delineate the midline of the forebrain and/or midface, is associated with diminished Sonic hedgehog (SHH)-pathway activity in development of these structures. SHH signaling is regulated by a network of ligand-binding factors, including the primary receptor PTCH1 and the putative coreceptors, CDON (also called CDO), BOC, and GAS1. Although binding of SHH to these receptors promotes pathway activity, it is not known whether interactions between these receptors are important. We report here identification of missense CDON mutations in human HPE. These mutations diminish CDON’s ability to support SHH-dependent gene expression in cell-based signaling assays. The mutations occur outside the SHH-binding domain of CDON, and the encoded variant CDON proteins do not display defects in binding to SHH. In contrast, wild-type CDON associates with PTCH1 and GAS1, but the variants do so inefficiently, in a manner that parallels their activity in cell-based assays. Our findings argue that CDON must associate with both ligand and other hedgehog-receptor components, particularly PTCH1, for signaling to occur and that disruption of the latter interactions is a mechanism of HPE.
    [Show full text]
  • Role of Cytonemes in Wnt Transport Eliana Stanganello and Steffen Scholpp*
    © 2016. Published by The Company of Biologists Ltd | Journal of Cell Science (2016) 129, 665-672 doi:10.1242/jcs.182469 COMMENTARY Role of cytonemes in Wnt transport Eliana Stanganello and Steffen Scholpp* ABSTRACT dependent or canonical Wnt signaling (reviewed in Logan and Wnt signaling regulates a broad variety of processes during Nusse, 2004). Paracrine signaling activity is fundamental to the embryonic development and disease. A hallmark of the Wnt morphogenetic function of Wnt proteins in tissue patterning. signaling pathway is the formation of concentration gradients by However, the extracellular transport mechanism of this morphogen Wnt proteins across responsive tissues, which determines cell fate from the signal-releasing cell to the recipient cell is still debated. in invertebrates and vertebrates. To fulfill its paracrine function, Recent data suggest that Wnt proteins are distributed on long trafficking of the Wnt morphogen from an origin cell to a recipient cell signaling filopodia known as cytonemes, which allow contact- must be tightly regulated. A variety of models have been proposed to dependent, juxtacrine signaling over a considerable distance. We explain the extracellular transport of these lipid-modified signaling have recently shown that, in zebrafish, Wnt8a is transported on proteins in the aqueous extracellular space; however, there is still actin-containing cytonemes to cells, where it activates the signaling considerable debate with regard to which mechanisms allow the required for the specification of neural plate cells (Stanganello et al., precise distribution of ligand in order to generate a morphogenetic 2015). Concomitantly, the Wnt receptor Frz was identified on gradient within growing tissue. Recent evidence suggests that Wnt cytonemes to enable the retrograde transport of Wnt proteins on proteins are distributed along signaling filopodia during vertebrate these protrusions during flight muscle formation in Drosophila and invertebrate embryogenesis.
    [Show full text]
  • "The Genecards Suite: from Gene Data Mining to Disease Genome Sequence Analyses". In: Current Protocols in Bioinformat
    The GeneCards Suite: From Gene Data UNIT 1.30 Mining to Disease Genome Sequence Analyses Gil Stelzer,1,5 Naomi Rosen,1,5 Inbar Plaschkes,1,2 Shahar Zimmerman,1 Michal Twik,1 Simon Fishilevich,1 Tsippi Iny Stein,1 Ron Nudel,1 Iris Lieder,2 Yaron Mazor,2 Sergey Kaplan,2 Dvir Dahary,2,4 David Warshawsky,3 Yaron Guan-Golan,3 Asher Kohn,3 Noa Rappaport,1 Marilyn Safran,1 and Doron Lancet1,6 1Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel 2LifeMap Sciences Ltd., Tel Aviv, Israel 3LifeMap Sciences Inc., Marshfield, Massachusetts 4Toldot Genetics Ltd., Hod Hasharon, Israel 5These authors contributed equally to the paper 6Corresponding author GeneCards, the human gene compendium, enables researchers to effectively navigate and inter-relate the wide universe of human genes, diseases, variants, proteins, cells, and biological pathways. Our recently launched Version 4 has a revamped infrastructure facilitating faster data updates, better-targeted data queries, and friendlier user experience. It also provides a stronger foundation for the GeneCards suite of companion databases and analysis tools. Improved data unification includes gene-disease links via MalaCards and merged biological pathways via PathCards, as well as drug information and proteome expression. VarElect, another suite member, is a phenotype prioritizer for next-generation sequencing, leveraging the GeneCards and MalaCards knowledgebase. It au- tomatically infers direct and indirect scored associations between hundreds or even thousands of variant-containing genes and disease phenotype terms. Var- Elect’s capabilities, either independently or within TGex, our comprehensive variant analysis pipeline, help prepare for the challenge of clinical projects that involve thousands of exome/genome NGS analyses.
    [Show full text]
  • PRMT7 Ablation in Cardiomyocytes Causes Cardiac Hypertrophy and Fibrosis Through Β-Catenin Dysregulation
    PRMT7 Ablation in Cardiomyocytes Causes Cardiac Hypertrophy and Fibrosis Through β-Catenin Dysregulation Byeong-Yun Ahn Sungkyunkwan University School of Medicine Myong-Ho Jeong Sungkyunkwan University School of Medicine Jung-Hoon Pyun Sungkyunkwan University School of Medicine Hyeon-Ju Jeong Sungkyunkwan University School of Medicine Tuan Anh Vuong Sungkyunkwan University School of Medicine Ju-Hyeon Bae Sungkyunkwan University School of Medicine Subin An Sungkyunkwan University School of Medicine Su Woo Kim Sungkyunkwan University School of Medicine Yong Kee Kim Sookmyung Women's University Dongryeol Ryu Sungkyunkwan University School of Medicine Hyun-Ji Kim Sungkyunkwan University School of Medicine Hana Cho Sungkyunkwan University School of Medicine Gyu-Un Bae ( [email protected] ) Sookmyung Women's University College of Pharmacy https://orcid.org/0000-0003-4262-1895 Jong-Sun Kang Sungkyunkwan University School of Medicine Research Article Page 1/24 Keywords: PRMT7, cardiomyopathy, Wnt, β-Catenin Posted Date: August 19th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-798227/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 2/24 Abstract Angiotensin II (AngII) has potent cardiac hypertrophic effects mediated through activation of hypertrophic signaling like Wnt/b-Catenin signaling. In the current study, we examined the role of protein arginine methyltransferase 7 (PRMT7) in cardiac function. PRMT7 was greatly decreased in hypertrophic hearts chronically infused with AngII and cardiomyocytes treated with AngII. PRMT7 depletion in rat cardiomyocytes resulted in hypertrophic responses. Consistently, mice lacking PRMT7 exhibited displayed the cardiac hypertrophy and brosis. PRMT7 overexpression abrogated the cellular hypertrophy elicited by AngII, while PRMT7 depletion exacerbated the hypertrophic response caused by AngII.
    [Show full text]
  • Keep Your Friends Close: Cell–Cell Contact and Skeletal Myogenesis
    Downloaded from http://cshperspectives.cshlp.org/ on October 2, 2021 - Published by Cold Spring Harbor Laboratory Press Keep Your Friends Close: Cell–Cell Contact and Skeletal Myogenesis Robert S. Krauss, Giselle A. Joseph, and Aviva J. Goel Department of Cell, Developmental, and Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029 Correspondence: [email protected] Development of skeletal muscle is a multistage process that includes lineage commitment of multipotent progenitor cells, differentiation and fusion of myoblasts into multinucleated myofibers, and maturation of myofibers into distinct types. Lineage-specific transcriptional regulation lies at the core of this process, but myogenesis is also regulated by extracellular cues. Some of these cues are initiated by direct cell–cell contact between muscle precursor cells themselves or between muscle precursors and cells of other lineages. Examples of the latter include interaction of migrating neural crest cells with multipotent muscle progenitor cells, muscle interstitial cells with myoblasts, and neurons with myofibers. Among the sig- naling factors involved are Notch ligands and receptors, cadherins, Ig superfamily members, and Ephrins and Eph receptors. In this article we describe recent progress in this area and highlight open questions raised by the findings. keletal muscle is the most abundant tissue in based on expression of distinct myosin heavy Sthe vertebrate body and necessary for breath- chain (MyHC) isoforms and metabolic capabil- ing, metabolic homeostasis, and locomotion. ities (Schiaffino and Reggiani 2011; Talbot and Development of skeletal muscle occurs in a se- Maves 2016). quential, multistage process that includes spec- Myogenic specification and differentiation ification of multipotent progenitors to lineage- are coordinated by the myogenic basic helix– committed myoblasts, differentiation of myo- loop–helix (bHLH) transcription factors Myf5, blasts into multinucleated myofibers, and mat- MyoD, myogenin, and MRF4.
    [Show full text]
  • Sex-Specific Transcriptome Differences in Human Adipose
    G C A T T A C G G C A T genes Article Sex-Specific Transcriptome Differences in Human Adipose Mesenchymal Stem Cells 1, 2, 3 1,3 Eva Bianconi y, Raffaella Casadei y , Flavia Frabetti , Carlo Ventura , Federica Facchin 1,3,* and Silvia Canaider 1,3 1 National Laboratory of Molecular Biology and Stem Cell Bioengineering of the National Institute of Biostructures and Biosystems (NIBB)—Eldor Lab, at the Innovation Accelerator, CNR, Via Piero Gobetti 101, 40129 Bologna, Italy; [email protected] (E.B.); [email protected] (C.V.); [email protected] (S.C.) 2 Department for Life Quality Studies (QuVi), University of Bologna, Corso D’Augusto 237, 47921 Rimini, Italy; [email protected] 3 Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; fl[email protected] * Correspondence: [email protected]; Tel.: +39-051-2094114 These authors contributed equally to this work. y Received: 1 July 2020; Accepted: 6 August 2020; Published: 8 August 2020 Abstract: In humans, sexual dimorphism can manifest in many ways and it is widely studied in several knowledge fields. It is increasing the evidence that also cells differ according to sex, a correlation still little studied and poorly considered when cells are used in scientific research. Specifically, our interest is on the sex-related dimorphism on the human mesenchymal stem cells (hMSCs) transcriptome. A systematic meta-analysis of hMSC microarrays was performed by using the Transcriptome Mapper (TRAM) software. This bioinformatic tool was used to integrate and normalize datasets from multiple sources and allowed us to highlight chromosomal segments and genes differently expressed in hMSCs derived from adipose tissue (hADSCs) of male and female donors.
    [Show full text]
  • Deregulation of Cell Adhesion Molecules Is Associated with Progression and Poor Outcomes in Endometrial Cancer: Analysis of the Cancer Genome Atlas Data
    1906 ONCOLOGY LETTERS 19: 1906-1914, 2020 Deregulation of cell adhesion molecules is associated with progression and poor outcomes in endometrial cancer: Analysis of The Cancer Genome Atlas data XIANGJUN HE1, SHU LEI1,2, QI ZHANG1, LIPING MA1, NA LI1 and JIANLIU WANG2 1Central Laboratory and Institute of Clinical Molecular Biology; 2Department of Obstetrics and Gynecology, Peking University People's Hospital, Beijing 100044, P.R. China Received June 18, 2019; Accepted November 15, 2019 DOI: 10.3892/ol.2020.11295 Abstract. Cell adhesion molecules (CAMs) determine the 11 times of that in those without elevation of these 6 CAMs. behavior of cancer cells during metastasis. Although some Similar results were obtained when relapse-free survival (RFS) CAMs are dysregulated in certain types of cancer and time was used during the analysis. Prognostic reliability of the are associated with cancer progression, to the best of our six-gene model was validated using data of an independent knowledge, a comprehensive study of CAMs has not been cohort from the International Cancer Genome Consortium. In undertaken, particularly in endometrial cancer (EC). In the conclusion, a combination of CAM alterations contributed to present study the expression of 225 CAMs in EC patients progression and aggressiveness of EC. The six-gene signature with various clinicopathological phenotypes were evaluated was effective for predicting worse OS and RFS in patients by statistical analysis using publicly available data from The with EC and could be complementary to the present clinical Cancer Genome Atlas database. The Kaplan-Meier method, prognostic criteria. and univariate and multivariate Cox proportional hazards regression models were used for survival analyses.
    [Show full text]