One Is the Lonliest Number: the Effects of Isolation on the Behavioral Interactions of Juvelnille Land Hermit Crabs (Coenobiti

Total Page:16

File Type:pdf, Size:1020Kb

One Is the Lonliest Number: the Effects of Isolation on the Behavioral Interactions of Juvelnille Land Hermit Crabs (Coenobiti UC Berkeley Student Research Papers, Fall 2008 Title One is the lonliest number: The effects of isolation on the behavioral interactions of juvenile land hermit crabs (Coenobitidae) from the motus of Mo'orea, French Polynesia Permalink https://escholarship.org/uc/item/3f4961kq Author Van Zerr, Vanessa E. Publication Date 2008-12-01 eScholarship.org Powered by the California Digital Library University of California ONE IS THE LONLIEST NUMBER: THE EFFECTS OF ISOLATION ON THE BEHAVIORAL INTERACTIONS OF JUVELNILLE LAND HERMIT CRABS (COENOBITIDAE) FROM THE MOTUS OF MO’OREA, FRENCH POLYNESIA *WITH AN APPENDIX SURVEYING THE HERMIT CRAB SPECIES PRESENT ON SELECT MO’OREAN MOTUS. VANESSA E. VAN ZERR Integrative Biology, University of California, Berkeley, California 94720 USA, [email protected] Abstract. Hermit crabs interact with each other in a variety of ways involving spatial use (aggregations, migrations), housing (shells), mating, recognition of conspecifics, and food. To test if isolation from conspecifics affects the behavioral interactions of hermit crabs, crabs of the species Coenobita rugosus (Milne‐Edwards 1837) of Mo’orea, French Polynesia were isolated from each other for two days, four days, six days, fifteen days, and twenty‐two days. They were kept in individual opaque containers with separate running seawater systems to prevent them from seeing or smelling each other. Afterwards, the hermit crabs were put into a tank two at a time and their behavior was recorded and compared to the behaviors of non‐isolated crabs. Behaviors looked at fell into two categories: 1) “social” interactions, meaning that the crabs reacted to each other’s presence, and 2) “nonsocial” interactions, meaning that the crabs either ignored each other’s presence or actively avoided behavioral interactions with other crabs. Results indicated that although “social” behavior showed a slight decreasing trend over time, it was not significant; however, the amount of “nonsocial” avoidance behavior seen increased significantly the longer crabs were isolated. Key words: hermit crab, Coenobita, Calcinus, Dardanus, isolation, behavior, motu. INTRODUCTION: sex ratios are uneven (Wada S. 1999), and fights over the gastropod shells that they Hermit crabs, as crustaceans depend on to house their uncalcified (Decapoda: Anomura), reveal many vulnerable abdomens (Briffa M, Williams R. behaviors that provide insight into their 2006). Interestingly, aggressive behaviors interactions with conspecifics (Hazlett 1966, over food resources (detritus) are not Hazlett 1981). Depending on the species normally observed, thereby leading to the involved and nature of the contact, they will tentative conclusion that food is not a exhibit a variety of behaviors including: driving force behind hermit crab social aggregation (Tura 2000), stereotyped behavior (Hazlett 1981). displays of chelipeds or pereopods to In order to interact with each other communicate intraspecifically during socially, hermit crabs need to be able to aggressive interactions (Hazlett 1966), perceive each other and recognize chirping in certain Coenobitids (land hermit conspecifics in their environments. They crabs) during battles over resources (Hazlett can detect each other through seawater via 1966), mate guarding and defending when chemoreception (Diaz H, Forward Jr RB, Orihuela B, Rittschof D. 1994; Gherardi, F., Austral archipelago (Raevavae); the Society Tricarico, E., Atema, J. 2005) and crustaceans Islands (Tahiti, Mo’orea); and the Tuamotu are known to have eyes capable of detecting archipelago (Hikueru, Kaukura, Raraka, shapes and a range of electromagnetic Raroia, Takume) (Poupin J. 1996). Hermit frequencies on land and in water (Johnson et crabs in the family Coenobitidae are al 2002, Barry et al 1974, Chiou T. et al. terrestrial and have developed many 2008). Hermit crabs are also capable of adaptations to help them live on land distinguishing familiar social partners by a including having reduced gills, a planktonic binary recognition system that classifies larval stage, and a unique respiratory organ crabs into familiar and unfamiliar categories on their dorsal abdominal wall (the (Gherardi F. and Tiedemann J. 2004a; constraints of living in a shell limit the Gherardi F. and Tiedemann J. 2004b); growth of branchiostegal lungs) (Greenaway however, a hermit crab’s ability to recognize 2003). Furthermore, many are known to individual crabs has not yet been studied drink seawater, fully submerge themselves (Gherardi, F. and Tricarico, E. 2007). Hermit in seawater, or sit in damp sand after rains crabs, in particular Pagurus longicarpus, are (C. rugosus) in order to control their salt and known to remember familiar social partners water balance (Greenaway 2003). When for 4 to 6 days (Gherardi F and Atema J. threatened, Coenobitids are able to block the 2005). Furthermore, studies have shown opening of their shell like an operculum due that some related decapods, such as the to adaptations of the left, dominant cheliped crayfish Cherax destructor, are also able to and the second ambulatory leg (Grubb recognize the faces of fight opponents, 1971). This behavior is seen frequently indicating the capability for certain displayed by C. rugosus during social crustaceans to have complex social interactions such as shell fights with interactions (Van der Velden, J. 2008). conspecifics (personal observation). These Considering the evidence that many hermit adaptations within Anomura seem to be crabs interact with each other socially, relatively recent in evolution with the studying the effects of the lack of social earliest known Coenobitid fossils dating to stimuli through isolation may provide many the Lower Miocene (Greenaway 2003). previously unrealized insights to their lives C. rugosus is also known to eat detritus, and ecology. including decaying algae, fish, small invertebrates, dead giant tortoise (on Aldabra), and feces (Grubb 1971, MATERIALS AND METHODS Greenaway 2003). They are occasionally cannibalistic (Barnes 1997, personal Coenobita rugosus natural history observation). All work was conducted on juveniles of Study site: the land hermit crab Coenobita rugosus (H. Milne Edwards, 1837) (Coenobitidae) All C. rugosus were collected from the (identified from Poupin, J. Internet, and shoreline of Motu Tiahura (Figure 2) personal communication). C. rugosus is (17°29’14.33”S, 149°54’37.50”W, elevation 7 broadly distributed throughout the Indo‐ meters) on the north side of Mo’orea, French West Pacific including Japan (Bonin, Polynesia (Figure 1) during the months of Amami, and Okinawa), the Territory of September through November 2008. Wallis and Futuna Islands, and French Polynesia. (Poupin, J., Internet). Within French Polynesia, C. rugosus is found in the crab chemical cues. Every isolation chamber had fourteen to sixteen small holes drilled into the sides to allow proper air ventilation. Crabs that were part of the communal crab experiments lived collectively in a large twelve‐liter tank with constant running seawater and coral rubble on which to climb. The setup provided crabs the choice of full submersion in seawater or air. Many were observed to switch back and forth. All crabs were fed a diet of cat food FIG. 1. Mo’orea, French every third day and seemed to thrive on it, Polynesia. Motu Fareone (A) and with many moving quickly to the location of Motu Tiahura (B) can be seen in the food on feeding days. Housing was also northwest corner. Image taken from cleaned every third day. Additionally, crabs Google Earth. were kept at ambient outside temperatures and humidities found in Cook’s Bay on Crab maintenance and preparation: Mo’orea. C. rugosus have been found along the shores of Cook’s Bay suggesting that the Isolation chambers consisted of conditions are equally favorable between individual opaque potting cups fitted with the two locations (personal observation). mesh and solid plastic bottoms with holes to provide water drainage. A piece of coral Experimental design: rubble was placed inside to increase the vertical distance a crab could crawl. Each Isolation times consisted of two days, isolation chamber had its own running four days, six days, fifteen days, and seawater system and was sealed with a lid twenty‐two days. Ten replicates were that had two holes drilled into it to allow the conducted for every experiment. For each seawater to enter. All cups were elevated to one of these intervals, two randomly prevent seawater pooling at the bottom. selected isolated crabs were paired and This was to avoid cross contamination of placed in a two‐liter tank at opposite ends. Crabs were only paired that came from the same isolation times, ie. only two six‐day isolated crabs were paired together, never a six‐day isolated crab and a two day isolated crab. To compare the results of the experiments, ten replicates were conducted in an identical manner with communally living crabs. Again, only communal crabs were paired with each other. The two‐liter experimental tanks were filled with 0.24 liters (half a cup) of seawater, allowing the FIG. 2. Motu Tiahura study crabs to have access to seawater if needed site. All crabs were collected from without being fully submerged. The an 80.5‐meter length of beach on experiment tank was then thoroughly rinsed the east side of the motu. Image with seawater three times and refilled taken from Google Earth. between sequential experiments to remove shell, fleeing from another crab, not moving all previous crab chemical cues. while normally extended from the shell, and Each crab pairing was observed for ten sitting in opposite corners of the tank minutes at a time and behavior was (widthwise, lengthwise, and diagonally). recorded in a notebook. Videos of behavior These behaviors are described in more detail were also taken at the end of each isolation in Appendix B at the end of this paper. period for three to five minutes. This was to record the initial behaviors of the hermit Experimental results crabs upon reintroduction to a crowded (approximately 20 individuals) The time crabs spent behaving socially environment. and nonsocially differed significantly depending on how long they had been Statistical analysis: isolated (Figure 3).
Recommended publications
  • Hermit Crabs of the Genus Calcinus Dana, 1851 from Japan and Adjacent Waters (Decapoda, Anomura, Diogenidae): a Colour Variant of C
    HERMIT CRABS OF THE GENUS CALCINUS DANA, 1851 FROM JAPAN AND ADJACENT WATERS (DECAPODA, ANOMURA, DIOGENIDAE): A COLOUR VARIANT OF C. HAZLETTIHAIG & MCLAUGHLIN ' BY Y .. V -y: , AKIRAASAKURA1) / Natural History Museum, apd Institute, Chiba, 955-2, Aoba-cho, Chuo-ku, Chiba 260-8682, Japan , ABSTRACT Calcinus hazletti Haig & McLaughlin, originally described from Hawaii, was recently collected from Japanese waters. One individual from Kushimoto, Kii Peninsula, showed an unusual colour variation. RESUME Calcinus hazletti Haig & McLaughlin, decrite de Hawaii, a ete recemment recoltee dans les eaux japonaises. Un individu de Kushimoto, peninsule de Kii, a montre line variation de couleur inhabituellK. ' . ' V '' • INTRODUCTION " Calcinus hazletti Haig & McLaughlin, 1984, originally described from Hawaii, remained unknown from elsewhere uritil recently collected from shallow waters around the Ogasawara (Bonin) Islands, Japan (Asakura & Tachikawa, 2003]. This collection represented a major range extension of the species to the northwest. Haig & McLaughlin's (1984) account of the species from Hawaii described the colouration (based on a colour illustration provided by J. Forest and M. de Saint Laurent), as "shield pink or pale orange, tip of rostrum and anterolateral corners dark orange-red". Hoover's (1998) recent photograph of the species from Hawaii shows part of the dorsal surface of the shield. The colour of the photographed specimen agrees well with that described by Haig & McLaughlin (1984) and the more recent description given by Asakura
    [Show full text]
  • A New Calcinus (Decapoda: Anomura: Diogenidae) from the Tropical Western Atlantic, and a Comparison with Other Species of the Genus from the Region
    20 April 1994 PROC. BIOL. SOC. WASH. 107(1), 1994, pp. 137-150 A NEW CALCINUS (DECAPODA: ANOMURA: DIOGENIDAE) FROM THE TROPICAL WESTERN ATLANTIC, AND A COMPARISON WITH OTHER SPECIES OF THE GENUS FROM THE REGION Nestor H. Campos and Rafael Lemaitre Abstract.—A new species of a diogenid hermit crab, Calcinus urabaensis, is described from the Gulf of Uraba, on the Caribbean coast of Colombia. The new species is the third in the genus described from the western Atlantic, and can be distinguished from the other two known species of the genus Calcinus in the region, C. tibicen (Herbst) and C. verrilli (Rathbun), by differences in coloration and armature of the dactyl of the left cheliped, third pereopod, and telson. A comparison of the three species is included. Resumen.—Se describe una nueva especie de cangrejo ermitano pertenecienta a la familia Diogenidae, Calcinus urabaensis, colectada en el Golfo de Uraba, Caribe sur. La nueva especie es la tercera conocida de este genero en el Atlantico occidental, y se diferencia de las otras dos especies del genero Calcinus de la region, C tibicen (Herbst) y C. verrilli (Rathbun), en la coloracion y espinas del dactilo de la quela izquierda, tercer pereopodo, y telson. Se presenta una comparacion de las tres especies. Compared to other tropical regions of the junior synonyms of C tibicen (see Proven­ world oceans, the western Atlantic contains zano 1959; McLaughlin, pers. comm.). very few species of the diogenid genus Cal­ In 1985, during an expedition to the Gulf cinus Dana, 1852. Recent studies of Cal­ of Uraba, on the Caribbean coast of Colom­ cinus species in the Pacific, for example, have bia (Campos & Manjarres 1988), the senior shown that nine species occur on the Ha­ author collected a male hermit crab be­ waiian Islands (Haig & McLaughlin 1984), lieved to represent an undescribed species 11 species on the Mariana Islands (Wooster of Calcinus.
    [Show full text]
  • Spermatophore Morphology of the Endemic Hermit Crab Loxopagurus Loxochelis (Anomura, Diogenidae) from the Southwestern Atlantic - Brazil and Argentina
    Invertebrate Reproduction and Development, 46:1 (2004) 1- 9 Balaban, Philadelphia/Rehovot 0168-8170/04/$05 .00 © 2004 Balaban Spermatophore morphology of the endemic hermit crab Loxopagurus loxochelis (Anomura, Diogenidae) from the southwestern Atlantic - Brazil and Argentina MARCELO A. SCELZ01*, FERNANDO L. MANTELATT02 and CHRISTOPHER C. TUDGE3 1Departamento de Ciencias Marinas, FCEyN, Universidad Nacional de Mar del Plata/CONICET, Funes 3350, (B7600AYL), Mar del Plata, Argentina Tel. +54 (223) 475-1107; Fax: +54 (223) 475-3150; email: [email protected] 2Departamento de Biologia, Faculdade de Filosojia, Ciencias e Letras de Ribeirao Preto (FFCLRP), Universidade de Sao Paulo (USP), Av. Bandeirantes 3900, Ribeirao Preto, Sao Paulo, Brasil 3Department of Systematic Biology, National Museum ofNatural History, Smithsonian Institution, Washington, DC 20013-7012, USA Received 10 June 2003; Accepted 29 August 2003 Summary The spermatophore morphology of the endemic and monotypic hermit crab Loxopagurus loxochelis from the southwestern Atlantic is described. The spermatophores show similarities with those described for other members of the family Diogenidae (especially the genus Cliba­ narius), and are composed of three major regions: a sperm-filled, circular flat ampulla; a columnar stalk; and a pedestal. The morphology and size of the spermatophore of L. loxochelis, along with a distinguishable constriction or neck that penetrates almost halfway into the base of the ampulla, are characteristic of this species. The size of the spermatophore is related to hermit crab size. Direct relationships were found between the spermatophore ampulla width, total length, and peduncle length with carapace length of the hermit crab. These morphological characteristics and size of the spermatophore ofL.
    [Show full text]
  • Downloaded from Brill.Com10/11/2021 08:33:28AM Via Free Access 224 E
    Contributions to Zoology, 67 (4) 223-235 (1998) SPB Academic Publishing bv, Amsterdam Optics and phylogeny: is there an insight? The evolution of superposition eyes in the Decapoda (Crustacea) Edward Gaten Department of Biology, University’ ofLeicester, Leicester LEI 7RH, U.K. E-mail: [email protected] Keywords: Compound eyes, superposition optics, adaptation, evolution, decapod crustaceans, phylogeny Abstract cannot normally be predicted by external exami- nation alone, and usually microscopic investiga- This addresses the of structure and in paper use eye optics the tion of properly fixed optical elements is required construction of and crustacean phylogenies presents an hypoth- for a complete diagnosis. This largely rules out esis for the evolution of in the superposition eyes Decapoda, the use of fossil material in the based the of in comparatively on distribution eye types extant decapod fami- few lies. It that arthropodan specimens where the are is suggested reflecting superposition optics are eyes symplesiomorphic for the Decapoda, having evolved only preserved (Glaessner, 1969), although the optics once, probably in the Devonian. loss of Subsequent reflecting of some species of trilobite have been described has superposition optics occurred following the adoption of a (Clarkson & Levi-Setti, 1975). Also the require- new habitat (e.g. Aristeidae,Aeglidae) or by progenetic paedo- ment for good fixation and the fact that complete morphosis (Paguroidea, Eubrachyura). examination invariably involves the destruction of the specimen means that museum collections Introduction rarely reveal enough information to define the optics unequivocally. Where the optics of the The is one of the compound eye most complex component parts of the eye are under investiga- and remarkable not on of its fixation organs, only account tion, specialised to preserve the refrac- but also for the optical precision, diversity of tive properties must be used (Oaten, 1994).
    [Show full text]
  • Observations on the Biology of the Hermit Crab, Coenobita Compressus H
    Rev. Bio!' Tl'Op.. 20(2). 265-273. 1972 Observations on the biology of the hermit crab, Coenobita compressus H. Milne Edwards (Decapoda; Anomura) on the west coast of the Americas* by Eldon E. BaU" t, (Received for pubJi(ation )uly 5, 1972) AnSTRACT: The 5emi·terre,t¡ial hwnit rompl'eJ!llf, IS one erab, Cut/wbitll of tbe most conspicuous supra-littoral invertcbrates on the \Vest coast of the Amtrican UOpiC5. During Stanfvrcl Qctanographic Expeditivn lS. which 5�mplcd lhe intenidal Hora anJ fau"" al variouó points betwc�n Peru ami California, information \Vas (ollcctcd on lhe nahlral history of this species over a \Vide ran,¡;c oí lalitudes and habitatl, Thi5 information, whieh i, sumo mari!�d here, includes detJils on color, distribution, local names, type of .\ hell oc�\lpied, pcrccntage of fcm�k, ovigerous al \'ariou, localities, food and \'JriOllS a:;pteb oi beha,'i()!'. 111e semi·terrcstrial hcrmit crab H. MiJl1C Edwards CQ(J10bit" compl'l'JJtti IS a conspicuous and frcqucntly abundant iohabitant of the supra.Jittoral zone of thc castcrn tropical Pacific fl'OlTI Mcxico to Pcru. However, aside fmm brid mentions in the papers of (2), BRlGHT (1), and I-IAIG, el al. (3), GLASSELL there is little information available 00 the natural histo¡y of this species. ConsiderabJe mformation on the biology of was Coellohifa wmpreJJtiJ obtained as part of a survey oE the hermit crab fauna o[ the castern tropical Pa· cific during Stanford Oceanogra hlC Expcditioo 18 from l\pril to June p 1968. 11115 cxpcdition, abüard lhe RV Te Vega, sampled lhc mteríldal fauna and Íiora from Paila, Perú (50S) to Bahía Magdalena, Ba¡a California (24"N), A mal.' of this cruisc and a station list are prcscnted in Fi¡z.urc 1 ;tnd TabIe 1, rcspcctively.
    [Show full text]
  • Reappraisal of Hermit Crab Species (Crustacea: Anomura: Paguridea) Reported by Camill Heller in 1861, 1862 and 1865
    Ann. Naturhist. Mus. Wien 103 B 135 - 176 Wien, Dezember 2001 Reappraisal of hermit crab species (Crustacea: Anomura: Paguridea) reported by Camill Heller in 1861, 1862 and 1865 P.A. McLaughlin1 & P.C. Dworschak2 Abstract Redescriptions based on the type material are presented for 11 species of hermit crabs described as new by Camill Heller (HELLER 1861a, c, 1862, 1865): Coenobita violascens HELLER, 1862, Diogenes avarus HELLER, 1865 - for which a lectotype is designated, Diogenes senex HELLER, 1865, Pagurus varipes HELLER, 1861 [= Dardanus tinctor (FORSKÅL, 1775)], Pagurus depressus HELLER, 1861 [= Dardanus lago- podos (FORSKÅL, 1775)], Calcinus rosaceus HELLER, 1861, Calcinus nitidus HELLER, 1865, Clibanarius carnifex HELLER, 1861, Clibanarius signatus HELLER, 1861, Paguristes barbatus (HELLER, 1862) and Paguristes ciliatus HELLER, 1862. For 7 of those, detailed figures are provided. In addition, the material from the Red Sea along with the hermit crabs obtained during the circumnavigation of the earth by the fri- gate 'Novara' and identified by him have been reevaluated and necessary corrections made. Keywords: Crustacea, Anomura, Paguridea, Camill Heller, Novara, lectotype designation Zusammenfassung Elf Arten von Einsiedlerkrebsen, die Camill Heller als neue Arten beschrieb (HELLER 1861a, c, 1862, 1865), werden hier anhand des Typenmaterials wiederbeschrieben: Coenobita violascens HELLER, 1862, Diogenes avarus HELLER, 1865 - für die ein Lectotypus designiert wird, Diogenes senex HELLER, 1865, Pagurus varipes HELLER, 1861 [= Dardanus tinctor (FORSKÅL, 1775)], Pagurus depressus HELLER, 1861 [= Dardanus lago- podos (FORSKÅL, 1775)], Calcinus rosaceus HELLER, 1861, Calcinus nitidus HELLER, 1865, Clibanarius carnifex HELLER, 1861, Clibanarius signatus HELLER, 1861, Paguristes barbatus (HELLER, 1862) und Paguristes ciliatus HELLER, 1862. Zu sieben Arten davon werden detailierte Zeichnungen präsentiert.
    [Show full text]
  • Calcinus Vachoni Forest, 1958, and Calcinus Seurati Forest, 1951, from the Coral Reefs of Taiwan (Crustacea: Decapoda: Anomura)
    J. Taiwan Mus. 50(1): 21-31 June 1997 21 Identity of two hermit crabs, Calcinus vachoni Forest, 1958, and Calcinus seurati Forest, 1951, from the coral reefs of Taiwan (Crustacea: Decapoda: Anomura) Hsi-Te Shih1i and Sin-Che Lee Accepted May 13, 1997 m SS^ra +J£S : ) #^W»«I^¥T«J 50 (1) : 21-31 mmmmmmmM. 9 Calcinus vachoni Forest, 1958 ffll!R?j!! Calcinus seurati Forest, 1951 ° ilFB mmmm&)m& > im^mM®, ft y&jitomEffiftmmtiL± fe • && mmmm^^MjvbMm&mm > im^mmm^m ft® M&SMTO^-M<F > BKPS ± » ±«J£?L6^^W^ , ^MW^ fottft MJWi4fa##t ; ffii£$«ft«f« Calcinus laevimanus (Randall, 1839)M#J£JRffofl#l0J9#tMMKfo*fcR • SR« 39 & K® * PI BfetfcttSiB! fefP *Ci* 0f^h ' >fc Wt m« ^ mmm±&)ftft MMffi•TO 'ft Abstract Two Calcinus hermit crab species were collected from the coral reefs of Taiwan. Calcinus vachoni Forest, 1958, new to Taiwan, was collected under large rocks or on the branches of corals at about 0 to 3 m depth, while C. seurati Forest, 1951, was found on the high intertidal pool of the coral reefs. These two species are easily re­ cognized by their apparent coloration (shown on the living color plates). Further dis­ cussion is made of the color variation of eyestalks of C. vachoni. Since the nomen­ clature of these two species adopted in some previous publications is misleading, we define their taxonomic status and delimit their distributions correctly. Key words: Crustacea, Anomura, new record, taxonomy, zoogeography. ^^^m^m 1 Institute of Marine Biology, National Sun Yat-sen University, Kaohsiung, Taiwan 804, R.O.C.
    [Show full text]
  • Ga7459. B) Polyonyx Pedalis, 1 Female 4.56×4.73 Mm, Mayotte, St
    23 Figure 11. A) Polyonyx biunguiculatus, 1 male 2.68×3.23 mm, Mayotte, St. 23, MNHN- Ga7459. B) Polyonyx pedalis, 1 female 4.56×4.73 mm, Mayotte, St. 19, MNHN-Ga7464 (coloration altered by preservative). C) Polyonyx triunguiculatus, 1 male 3.69×4.37, Mayotte, St. 23, MNHN-Ga7438. D) Polyonyx aff. boucheti, 1 ovigerous female 2.20×3.24 mm, Mayotte, St. 12, MNHN-Ga7465. Polyonyx triunguiculatus Zehntner, 1894 Polyonyx triunguiculatus (Figure 11 C) - Haig, 1966: 44 (Mayotte, lagoon, small blocks and coarse sands, coll. A. Crosnier, September 1959, 2 males 2.7 and 3.2 mm, 1 female 1.9 mm, 2 ovigerous females 3.1 and 3.2 mm; same, coarse sands, 50 m, 1 male 3.7 mm, 1 female 3.3 mm, MNHN). - BIOTAS collections, Glorioso, 3-7 May 2009, det. J. Poupin from photo, St. GLOR-2, reef platform and shallow canyons with dead Acropora digitifera head, 7-14 m, specimen MEPA 948; St. GLOR-5, reef slope East side, 17 m, specimen MEPA 1045. - Mayotte, KUW fieldwork November 2009, St. 14, La Prudente bank, 15-17 m, 2 males 3.38×4.13 and 3.31×3.79 mm, 1 ovigerous female 3.29×4.20, 1 juvenile broken, MNHN-Ga7436; St. 17, North reef, 22 m, 1 male 3.43×3.94, 1 ovigerous female 3.10×3.97 mm, MNHN-Ga7437; St. 23, Choizil pass ‘Patate à Teddy’, 15-30 m, 1 male 3.69×4.37, 1 female 2.72×3.12 mm, MNHN-Ga7438; St. 25, islet M'tzamboro, 15-20 m, 1 ovigerous female 3.46×4.45 mm, 1 female 2.74×3.06 mm, 2 ovigerous females 2.89×3.44 and 3.40×3.99 mm, 1 female not measured, MNHN-Ga7439; St.
    [Show full text]
  • Field Keys to Common Hawaiian Marine Animals and Plants
    DOCUMENT RESUME ED 197 993 SE 034 171 TTTTE Field Keys to Common Hawaiian Marine Animals and Plants: INSTITUTTON Hawaii State Dept. of Education, Honolulu. Officeof In::tructional Services. SEPOPT NO RS-78-5247 PUB DATE Mar 78 NOT? 74p.: Not available in he*:dcopy due to colored pages throughout entire document. EDRS PRICE MFO1 Plus Postage. PC Not Available frcm EPRS. DESCRIPTORS *Animals: Biology: Elementary Secondary Education: Environmental Education: *Field Trips: *Marine Biology: Outdoor Education: *Plant Identification: Science Educat4on TDENTIFTERS Hawaii ABSTRACT Presented are keys for identifyingcommon Hawaiian marine algae, beach plants, reef corals,sea urci.ins, tidepool fishes, and sea cucumbers. Nearly all speciesconsidered can be distinguished by characte-istics visible to- thenaked eye. Line drawings illustrate most plants atd animals included,and a list of suggested readings follows each section. (WB) *********************************************************************** Reproductions supplied by FDPS are the best thatcan be lade from the original document. **************************t***************************************** Field Keys to Common Hawaiian Marine Animals and Plants Office of Instructional Services/General Education Branch Department of Education State of Hawaii RS 78-5247 March 1978 "PERMISSION TO REPRODUCE THIS U S DEPARTMENT OF HEALTH. MATERIAL HAS BEEN GRANTED BY EDUCATION &WELFARE NATIONAL INSTITUTE OF EDUCATION P. Tz_urylo THIS DOCUMENT HAS BEEN qEPRO. DuCED EXACTLY AS PECE1VEDPO.` THE PE PSON OP OPC,AN7ATION ORIGIN. TING IT POINTS Or vIEW OR OPINIONS SATED DO NOT NECESSARILY PE PPE. TO THE EDUCATIONAL RESOURCES SENTO<<IC I AL NATIONAL INSTITUTE 0, INFORMATION CENTER (ERIC)." EDuCA T,ON POSIT.ON OR CY O A N 11 2 The Honorable George R. Arlyoshl Governor, State of Hawaii BOARD OF EDUCATION Rev.
    [Show full text]
  • SHELTER USE by CALCINUS V E W L I , BERMUDA's EX?)Elflc
    SHELTER USE BY CALCINUS VEWLI, BERMUDA'S EX?)ELflC HELMIT CL4B Lisa Jacqueline Rodrigues A thesis submitted in conformity with the requirements for the degree of Master of Science Graduate Department of Zoology University of Toronto 0 Copyright by Lisa Jacqueline Rodrigues 2000 National Library Bibliothèque nationale du Canada Acquisitions and Acquisitions et Bibliographic Services services bibliographiques 395 Wellington Street 395, rue Wellington Ottawa ON K1A ON4 Ottawa ON K1A ON4 Canada Canada Your irrS Votre mféretut? Our üb Notre rdfénme The author has granted a non- L'auteur a accordé une licence non exclusive licence allowing the exclusive permettant a la National Library of Canada to Bibliothèque nationale du Canada de reproduce, loan, distribute or sell reproduire, prêter, distribuer ou copies of this thesis in microform, vendre des copies de cette thèse sous paper or electronic formats. la forme de microfiche/nlm, de reproduction sur papier ou sur format électronique. The author retains ownership of the L'auteur conserve la propriété du copyright in this thesis. Neither the droit d'auteur qui protège cette thèse. thesis nor substantial extracts bom it Ni la thèse ni des extraits substantiels may be printed or otherwise de celle-ci ne doivent être imprimés reproduced without the author's ou autrement reproduits sans son permission. autorisation. Shelter use by Calcinus vemlli, Bermuda's endemic hennit crab. Master of Science, 2000 Lisa Jacqueline Rodngues Department of Zoology University of Toronto Calcinus vemlli, a hennit crab endemic to Bermuda, is unusual in that it inbabits both gastropod shells (Centhium Iitteratum) and gastropod tubes (Dendropoma irremlare and Dendropoma annulatus; Vermicularia knomi and Vermicularia spirata).
    [Show full text]
  • Anomura (Crustacea Decapoda) from the Mayotte Region, Western Indian Ocean
    ATOLL RESEARCH BULLETIN NO. 593 ANOMURA (CRUSTACEA DECAPODA) FROM THE MAYOTTE REGION, WESTERN INDIAN OCEAN Joseph Poupin, Jean-Marie Bouchard, Vincent Dinhut, Régis Cleva, and Jacques Dumas ANOMURA (CRUSTACEA DECAPODA) FROM THE MAYOTTE REGION, WESTERN INDIAN OCEAN Joseph Poupin, Jean-Marie Bouchard, Vincent Dinhut, Régis Cleva and Jacques Dumas Atoll Research Bulletin No. 593 23 October 2013 All statements made in papers published in the Atoll Research Bulletin are the sole responsibility of the authors and do not necessarily represent the views of the Smithsonian Institution or of the editors of the Bulletin. Articles submitted for publication in the Atoll Research Bulletin should be original papers and must be made available by authors for open access publication. Manuscripts should be consistent with the “Author Formatting Guidelines for Publication in the Atoll Research Bulletin.” All submissions to the Bulletin are peer reviewed and, after revision, are evaluated prior to acceptance and publication through the publisher’s open access portal, Open SI (http://opensi.si.edu). Published by SMITHSONIAN INSTITUTION SCHOLARLY PRESS P.O. Box 37012, MRC 957 Washington, D.C. 20013-7012 www.scholarlypress.si.edu The rights to all text and images in this publication are owned either by the contributing authors or third parties. Fair use of materials is permitted for personal, educational, or noncommercial purposes. Users must cite author and source of content, must not alter or modify the content, and must comply with all other terms or restrictions that may be applicable. Users are responsible for securing permission from a rights holder for any other use. ISSN: 0077-5630 (online) i CONTENT CONTENT .............................................................................................................................
    [Show full text]
  • Air Perez PV Art2020.Pdf
    Nauplius ORIGINAL ARTICLE THE JOURNAL OF THE Air-exposure behavior: a restricted BRAZILIAN CRUSTACEAN SOCIETY or a common conduct among intertidal hermit crabs? e-ISSN 2358-2936 www.scielo.br/nau Marta Perez-Miguel1 orcid.org/0000-0002-6285-7515 www.crustacea.org.br Ingo S. Wehrtmann2, 3 orcid.org/0000-0002-6826-7938 Pilar Drake1 orcid.org/0000-0003-3221-1358 Jose A. Cuesta1 orcid.org/0000-0001-9482-2336 1 Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC). Avda. República Saharaui, 2, 11519 Puerto Real, Cádiz, Spain. MP-M E-mail: [email protected] PD E-mail: [email protected] JAC E-mail: [email protected] 2 Unidad de Investigación Pesquera y Acuicultura (UNIP) of the Centro de Investigación en Ciencias del Mar y Limnología (CIMAR), Universidad de Costa Rica. 11501-2060 San José, Costa Rica. ISW E-mail: [email protected] 3 Museo de Zoología, Escuela de Biología, Universidad de Costa Rica. 11501-2060 San José, Costa Rica. ZOOBANK: http://zoobank.org/urn:lsid:zoobank.org:pub:C7D42A69-A8DF-4999- 90F1-C3A19CB0557D ABSTRACT A new behavior related to shell care was recently reported for the intertidal hermit crab Clibanarius erythropus (Latreille, 1818) in the Gulf of Cádiz (southwestern Europe). It also has been observed in other species of the diogenid genera Clibanarius Dana, 1952, and Calcinus Dana, 1951, however, it has not been described as an active behavior. In the present study, intertidal hermit crabs from different species and localities were sampled to assess if air-exposure is a shell cleaning behavior restricted to some species of intertidal hermit crabs or if it is a more generalized behavior among species inhabiting intertidal habitats.
    [Show full text]