applied sciences Review Interface Engineering Strategies for Fabricating Nanocrystal-Based Organic–Inorganic Nanocomposites Jaehan Jung 1, Mincheol Chang 2,3,* and Hyeonseok Yoon 2,3,* ID 1 Department of Materials Science and Engineering, Hongik University, Sejong 30016, Korea;
[email protected] 2 School of Polymer Science and Engineering, Chonnam National University, Gwangju 61186, Korea 3 Alan G. MacDiarmid Energy Research Institute, Chonnam National University, Gwangju 61186, Korea * Correspondence:
[email protected] (M.C.);
[email protected] (H.Y.); Tel.: +82-62-530-1771 (M.C.); +82-62-530-1778 (H.Y.) Received: 9 July 2018; Accepted: 13 August 2018; Published: 15 August 2018 Abstract: Hybrid organic–inorganic nanocomposites have attracted considerable attention because they have the advantages of both conjugated polymers (CPs) and nanocrystals (NCs). Recent developments in the interfacial engineering of CP–NC organic–inorganic nanocomposites enabled the formation of an intimate contact between NCs and CPs, facilitating electronic interactions between these two constituents. To design CP–NC nanocomposites, several approaches have been introduced, including ligand refluxing, direct grafting methods, direct growth of NCs in proximity to CPs, and template-guided strategies. In this review, the general reactions of ligand exchange processes, purification methods, and characterization techniques have been briefly introduced. This is followed by a highlight of recent advances in the synthesis of hybrid CP–NC nanocomposites and newly