Bearing Damage and Failure Analysis Contents

Total Page:16

File Type:pdf, Size:1020Kb

Bearing Damage and Failure Analysis Contents Bearing damage and failure analysis Contents SKF – the knowledge engineering company ................................ 5 Introduction ......................................................... 7 1 Bearing life and bearing failures ....................................... 8 Factors influencing bearing service life .................................... 8 When to replace a bearing? ............................................ 9 2 Inspection and troubleshooting ........................................ 10 Inspection during operation .............................................. 10 Monitoring noise and vibration .......................................... 11 Monitoring temperature ............................................... 11 Monitoring lubrication conditions ........................................ 11 Inspection during a machine shutdown ..................................... 11 Inspecting bearings .................................................. 11 Inspecting seal counterfaces ............................................ 12 Troubleshooting ....................................................... 12 Common symptoms of bearing trouble .................................... 12 Trouble conditions and their solutions. 15 3 Path patterns ....................................................... 32 Normal raceway path patterns ............................................ 34 Radial bearings – radial load unidirectional and constant ...................... 34 Radial bearings – radial load rotating in phase and constant .................... 35 Radial bearings – axial load unidirectional and constant ....................... 36 Radial bearings – combination of radial and axial loads unidirectional and constant .. 37 Thrust bearings – axial load unidirectional and constant ...................... 37 Raceway path patterns from abnormal operating conditions ..................... 38 Radial bearings – radial load unidirectional and constant ...................... 38 Thrust bearings – axial load unidirectional and constant ...................... 40 4 ISO failure modes classification ........................................ 42 Failure modes classification – ISO workgroup ................................. 42 Failure modes ......................................................... 44 Fatigue ............................................................ 44 Wear ............................................................. 48 Corrosion .......................................................... 52 Electrical erosion .................................................... 55 Plastic deformation .................................................. 58 Fracture and cracking ................................................. 61 5 Damage and actions ................................................. 64 Subsurface initiated fatigue .............................................. 65 Surface initiated fatigue ................................................. 66 Abrasive wear. 68 Adhesive wear ........................................................ 70 Moisture corrosion ..................................................... 71 Fretting corrosion ...................................................... 73 False brinelling ........................................................ 75 Excessive current ...................................................... 76 Current leakage ....................................................... 77 Overload. 79 Indentations .......................................................... 81 Forced fracture ........................................................ 83 Fatigue fracture ....................................................... 84 Thermal cracking ...................................................... 85 6 Other investigations ................................................. 86 7 Case studies ........................................................ 88 Train derailment ....................................................... 88 Variable speed electric motor problem ...................................... 90 Clay mill problem ...................................................... 92 Jaw crusher problem ................................................... 94 8 Appendices ......................................................... 96 Appendix A: SKF classification adapted from ISO 15243:2004 .................... 96 Appendix B: Factors influencing bearing selection ............................. 97 Appendix C: Bearing damage and failures – modes and causes ................... 99 Appendix D: Collecting information ......................................... 100 Appendix E: Glossary ................................................... 101 SKF – the knowledge engineering company From one simple but inspired solution to a misalignment problem in a textile mill in Sweden, and fifteen employees in 1907, SKF has grown to become a global industrial knowledge leader. Over the years, we have built on our exper- Meeting the toughest challenges Working for a sustainable future tise in bearings, extending it to seals, mecha- Our network of knowledge and experience, Since 2005, SKF has worked to reduce the tronics, services and lubrication systems. along with our understanding of how our negative environmental impact from our Our knowledge network includes 46 000 core technologies can be combined, helps operations and those of our suppliers. Our employees, 15 000 distributor partners, us create innovative solutions that meet the continuing technology development resulted offices in more than 130 countries, and a toughest of challenges. We work closely with in the introduction of the SKF BeyondZero growing number of SKF Solution Factory our customers throughout the asset life portfolio of products and services which im- sites around the world. cycle, helping them to profitably and prove efficiency and reduce energy losses, re spon sibly grow their businesses. as well as enable new technol ogies har- Research and development nessing wind, solar and ocean power. This We have hands-on experience in over forty combined approach helps reduce the en vir- industries based on our employees’ know- on mental impact both in our oper ations and ledge of real life conditions. In addition, our our customers’ oper ations. world-leading experts and university part- ners pioneer advanced theoretical research and development in areas including tribol- ogy, condition monitoring, asset manage- ment and bearing life theory. Our ongoing commitment to research and devel opment helps us keep our customers at the forefront of their industries. Working with SKF IT and logistics systems and application experts, SKF SKF Solution Factory makes SKF knowledge and manu facturing expertise Authorized Distributors deliver a valuable mix of product and application available locally to provide unique solutions and services to our customers. knowledge to customers worldwide. Design and develop n Ma tio nu a fac ic tu if re c a e n p d S te s Our knowledge SKF Life Cycle t Management n M o a i – your success i s n s ta i in m SKF Life Cycle Management is how we combine our technology a n m d o platforms and advanced ser vices, and apply them at each stage r c ep d a n of the asset life cycle, to help our customers to be more ir a all nst success ful, sustainable and profitable. Oper I ate and monitor Working closely with you Bearings SKF is the world leader in the design, development Our objective is to help our customers and manufacture of high performance rolling improve productivity, minimize main ten- bearings, plain bearings, bearing units and housings. ance, achieve higher energy and resource efficiency, and optimize designs for long service life and reliability. Machinery maintenance Condition monitoring technologies and main- Innovative solutions tenance services from SKF can help minimize Whether the application is linear or rotary unplanned downtime, improve operational efficiency and reduce maintenance costs. or a combination, SKF engineers can work with you at each stage of the asset life cycle to improve machine performance by looking at the entire application. This approach Sealing solutions doesn’t just focus on individual components SKF offers standard seals and custom engineered like bearings or seals. It looks at the whole sealing solutions to increase uptime, improve application to see how each com po nent in- machine reliability, reduce friction and power losses, and extend lubricant life. teracts with each other. Design optimization and verification SKF can work with you to optimize current Mechatronics or new designs with proprietary 3-D mod- SKF fly-by-wire systems for aircraft and drive-by- ell ing software that can also be used as a wire systems for off-road, agricultural and forklift virtual test rig to confirm the integrity of the applications replace heavy, grease or oil consuming mechanical and hydraulic systems. design. Lubrication solutions From specialized lubricants to state-of-the-art lubrication systems and lubrication management ser vices, lubrication solutions from SKF can help to reduce lubrication related downtime and lubricant consumption. Actuation and motion control With a wide assortment of products – from actu- ators and ball screws to profile rail guides – SKF can work with you to solve your most pressing linear system challenges. 6 Introduction Rolling bearings are among the most Consequently, by examining a failed or 3 Path patterns important components in the vast majority damaged bearing, it is possible in the major- Once damage has occurred, the bearing of
Recommended publications
  • Two-Dimensional Fretting Contact of Piezoelectric Materials Under a Rigid Conducting Cylindrical Punch
    Journal of Mechanics of Materials and Structures TWO-DIMENSIONAL FRETTING CONTACT OF PIEZOELECTRIC MATERIALS UNDER A RIGID CONDUCTING CYLINDRICAL PUNCH Jie Su, Liao-Liang Ke and Yue-Sheng Wang Volume 11, No. 5 December 2016 msp JOURNAL OF MECHANICS OF MATERIALS AND STRUCTURES Vol. 11, No. 5, 2016 dx.doi.org/10.2140/jomms.2016.11.535 msp TWO-DIMENSIONAL FRETTING CONTACT OF PIEZOELECTRIC MATERIALS UNDER A RIGID CONDUCTING CYLINDRICAL PUNCH JIE SU, LIAO-LIANG KE AND YUE-SHENG WANG This paper investigates the fretting contact between a transversely isotropic piezoelectric half-plane and a rigid cylindrical punch in a plane strain state. It is assumed that the punch is a perfect conductor with a constant electric potential within the contact region. Since the fretting contact problem is frictional and history dependent, the two bodies are brought into contact first by a monotonically increasing normal load, and then by a cyclic tangential load, which is less than that necessary to cause complete sliding. It is assumed that the contact region contains an inner stick region and two outer slip regions in which Coulomb’s friction law is applied. With the use of the superposition principle and Fourier integral transform technique, the problem is reduced to a set of coupled Cauchy singular integral equations. An iterative method is used to determine the unknown stick/slip region, normal contact pressure, electric charge and tangential traction. The effects of the friction coefficient, electric load and conductivity of the punch on the surface electromechanical fields are discussed during different loading phases. 1. Introduction Piezoelectric materials are important smart materials and have been widely used in various electrome- chanical devices such as actuators, sensors, transducers and micropower generators.
    [Show full text]
  • Plain Bearings
    PB_FBcvrs_8-29-16_Layout 1 8/29/16 8:35 PM Page 1 RBC AEROSPACE BEARINGS RBC Aerospace Bearing Products RBC Bearings Incorporated has been producing bearings in the USA since 1919. RBC offers a full line of aerospace bearings, including unique custom configurations. Spherical Bearings Rod End Bearings • MS approved to AS81820 • MS approved to AS81935 Plain Bearings (formerly MIL-B-81820) (formerly MIL-B-81935) • Boeing and Airbus approved • Boeing and Airbus approved • Self-lubricating • Metal-to-Metal • Self-lubricating • Metal-to-Metal • Loader slots • High temperature • Loader slots • High temperature • Low coefficient of friction • Low coefficient of friction • Special configurations and materials • Special configurations and materials Thin Section Ball Bearings Cargo Roller Bearings • Standard cross-sections to one inch • Boeing approved PLAIN BEARINGS • Stainless steel and other materials are • Features precision ground, semi-ground, unique design solutions available • Sizes to 40 inches and unground ball bearings • Seals available on all sizes and • Offered in caged and full complement to complex problems standard cross-sections configurations • Super duplex configurations Journal Bearings Track Rollers • MS approved to AS81934 • MS approved to AS39901 (formerly MIL-B-81934) (formerly MIL-B-3990) • Boeing and Airbus approved • Boeing and Airbus approved • Plain and flanged • Self-lubricating • ATF single row and ATL double row • High temperature • High loads • Sealed with lube holes and grooves • Available in inch and metric sizes
    [Show full text]
  • Mounting and Dismounting of Rolling Bearings
    Mounting and Dismounting of Rolling Bearings Schaeffler Technologies AG & Co. KG Every care has been taken to ensure the Georg-Schäfer-Straße 30 correctness of the information contained 97421 Schweinfurt in this publication but no liability can be Germany accepted for any errors or omissions. We Internet www.fag.com reserve the right to make technical changes. E-Mail [email protected] In Germany: © Schaeffler Technologies AG & Co. KG Phone 0180 5003872 Issued: 2012, June Fax 0180 5003873 This publication or parts thereof may not be From other countries: Phone +49 9721 91-0 reproduced without our permission. WL 80100/3 EA / 2012062 / Printed in Germany by kraus by 80100/3 EA / 2012062 Printed in Germany WL Fax +49 9721 91-3435 WL 80 100/3 EA Bearings Rolling of and Dismounting Mounting 80 100/3 EA WL Selection of FAG Publications The following publications are selected from the numerous FAG publications available. Further information on request. Catalogue WL 41520 FAG Rolling Bearings Publ. No. WL 00106 W.L.S. Rolling Bearing Learning System Publ. No. WL 80102 How to Mount and Dismount Rolling Bearings Hydraulically Publ. No. WL 80103 FAG Hydraulic Nuts Publ. No. WL 80107 FAG Induction Heating Equipment Publ. No. WL 80111 Rolling Bearing Mounting Cabinet and Mounting Sets – A fundamental course for vocational training Publ. No. WL 80123 All about the Rolling Bearing – FAG Training Courses on Rolling Bearings Theory and Practice Publ. No. WL 80134 FAG Video: Mounting and Dismounting of Rolling Bearings Publ. No. WL 80135 FAG Video: Hydraulic Methods for the Mounting and Dismounting of Rolling Bearings Publ.
    [Show full text]
  • Hybrid Ceramic Ball Bearings
    BEARING SPECIFIC BSA website Follow us on TOPICS BEARING BRIEFS Bearing Installation & Fitting Hybrid Ceramic Ball Bearings Bearing Repair Hybrid Ceramic Ball Bearings Linear Bearings Plane Bearings Seal Selection Spherical Plain Bearings Vibration Analysis Wear Sleeves and Other Shaft Repair Options Planetary Roller Screws The term “hybrid ceramic ball bearing” normally refers to a bearing assembly consisting of inner and outer rings of standard bearing steel, with silicon nitride (Si3N4) ceramic Bearings for the Food & balls. For some applications, the properties of the bearing with ceramic balls offer Beverage Industry functional improvements in several different areas over a conventional all-steel bearing. Split Roller Bearing There is a very significant cost penalty for the hybrid ceramic design that largely limits Technology its present-day use to certain high-end applications. However, this cost gap is expected to shrink over time with advances in ceramic ball manufacturing technology. Bearing Mounting Tools Bearings for Machine Tool Spindles BEARING INDUSTRY One of the predominant present-day applications for hybrid bearings is angular INFORMATION contact sets for high-speed machine tool spindles. This application utilizes some of the key properties of the ceramic balls compared to steel: Bearing Standards Organizations • Lower mass. The mass of a ceramic ball is about 40% of that of a steel ball of the same size. This Brief History of Bearings means the hybrid ceramic bearing operates with The Domestic Bearing less friction, less ball skidding, lower moment Industry: Investing in the from gyro-spin, and therefore, lower operating Future temperature for a given speed, and higher limiting History of Adhesives speed for a given size – by a margin of 20% or more.
    [Show full text]
  • Automotive Bearing Applications
    Automotive Bearing Applications Course No: M02-035 Credit: 2 PDH Robert P. Tata, P.E. Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 07677 P: (877) 322-5800 [email protected] Automotive Bearing Applications Copyright 2012 Robert P Tata All rights reserved Table of Contents Introduction 3 Front Wheel Bearings 6 Rear Wheel Bearings 10 Integral Wheel Bearings 14 Integral Waterpump Bearings 20 Differential Bearings 22 Transmission Bearings 26 Figures Figure 1 - Bearing Loads 5 Figure 2 - Automotive Front Wheel Bearing Load (Straight Ahead Driving) 8 Figure 3 - Automotive Front Wheel Bearing Load (Cornering) 9 Figure 4 - Automotive Rear Axle Shaft and Bearing 12 Figure 5 - Drawn Cup Roller Bearing 13 Figure 6 - Integral Spindle Drive Wheel Assembly 16 Figure 7 - Integral Spindle Non-Drive Wheel Assembly 17 Figure 8 - Front Non-Drive Wheel Bearing Assembly 18 Figure 9 - Front Drive Wheel Bearing Assembly 19 Figure 10 - Automotive Waterpumps 21 Figure 11 - Drive Axle Differential 24 Figure 12 - Spiral Bevel Gears 25 Figure 13 - Planetary Gears 27 Appendices Appendix A 28 2 Introduction There are fundamental principles that the automotive bearing Application Engineer uses to evaluate the forces (loads) that are imposed on bearings and how they affect the operating life of a bearing in a mechanical device. Following are some of the basic principles that are used. The loads on bearings are either radial or thrust. The sketch at the top of Figure 1 shows that radial loads act perpendicular to the bearing axis of rotation and thrust loads act parallel to the axis of rotation.
    [Show full text]
  • Tapered Roller Bearing Solutions for Industrial
    Add Value and Reliability to your Equipment through Proper Bearing Selection TAPERED ROLLER BEARING SOLUTIONS CUSTOMER NEEDS PEER’s knowledgeable and industry focused Application Engineers col- FOR INDUSTRIAL EQUIPMENT laborate with your technical team to understand the application, operat- ing environment, applied load, and performance expectations. In doing APPLICATION so, PEER will match the right PEER solution to meet your application performance requirement. By understanding the environment surrounding the bearing, PEER can assess the PEER® Bearing offers ENVIRONMENT need to prevent contaminant ingress and retain lubricant by selecting a sealed TRB solution. • A wide range of agricultural, radial, mounted unit ball bearings, and tapered roller bearings When a pre-determined bench end-play (clearance or preload) is critical for maxi- • Valued bearing solutions for agricultural, electrical, fluid, HVAC, mizing bearing performance, PEER will produce pre-assembled matched pairs. The industrial transmission, material handling and off-highway advantage is a major reduction in your assembly time and reduced risk of early failure applications due to improper clearance setting. • ISO/TS 16949 certified production facilities MOUNTING • Dedicated Research and Development center Understanding applied load during operation is critical to maximize tapered roller • Global application and customer support bearing performance. PEER Application Engineers utilize performance prediction tools to analyze bearing stress as part of the bearing selection and validation process. In certain applications, PEER engineered internal geometries are proven to lead to Brazil Italy APPLIED LOAD greater machine reliability without increasing bearing size or cost. PEER Bearing Brazil PEER Bearing Avenida Marginal do Ribeirão dos Cristais, 200 Via Martin Luther King, 38/2 Scala B Bloco 1.100 - Ref.
    [Show full text]
  • Rolling Bearings and Seals in Electric Motors and Generators
    Rolling bearings and seals in electric motors and generators ® SKF, @PTITUDE, BAKER, CARB, DUOFLEX, DURATEMP, ICOS, INSOCOAT, MARLIN, MICROLOG, MONOFLEX, MULTILOG, SEAL JET, SKF EXPLORER, SYSTEM 24 and WAVE are registered trademarks of the SKF Group. © SKF Group 2013 The contents of this publication are the copyright of the publisher and may not be reproduced (even extracts) unless permission is granted. Every care has been taken to ensure the accuracy of the information contained in this publication but no liability can be accepted for any loss or damage whether direct, indirect or consequential arising out of the use of the information contained herein. PUB 54/P7 13459 EN · August 2013 This publication supersedes publication 5230 E and 6230 EN. Certain image(s) used under license from Shutterstock.com. 1 Rolling bearings in electric machines 1 2 Bearing systems 2 3 Seals in electric machines 3 4 Tolerances and fits 4 5 Lubrication 5 6 Bearing mounting, dis mounting and motor testing 6 7 Bearing damage and corrective actions 7 8 SKF solutions 8 Rolling bearings and seals in electric motors and generators A handbook for the industrial designer and end-user 2 Foreword This SKF applications, lubrication and maintenance handbook for bearings and seals in electric motors and generators has been devel oped with various industry specialists in mind. For designers of electric machines1), this handbook provides the information needed to optimize a variety of bearing arrangements. For specialists working in various industries using electric machines, there are recommendations on how to maximize bearing service life from appropriate mounting, mainten ance and lubrication.
    [Show full text]
  • Spherical Plain Bearings Quadlube®, Spreadlock® Seal, Impacttuff
    QuadLube®, SpreadLock® Seal, ImpactTuff®, DuraLube™ Spherical Plain Bearings Innovative product features that provide unique performance advantages. High load capacity, re-lubrication options, and patented designs. ISO 9001:2000 www.rbcbearings.com 800.390.3300 RBC Bearings Incorporated (RBC Bearings, RBC) has had a long tradi- RBC Sphercial Plain Bearings tion of innovation, commitment, and quality since the company was founded in 1919. Today, RBC Bearings has grown into a world-class RBC has been a pioneer in spherical plain bearing technology since manufacturer of standard and custom-engineered bearings and related inventing the fractured outer race design many years ago. Since that products, with a product focus on research, testing, and development of time, RBC has continued to introduce industry leading innovations such the best product for specific applications. as high misalignment, angular contact, extended inner ring, tapered bore, and extended lubrication groove spherical plain bearing designs. What We Manufacture These advanced products are used wherever pivoting, high load bearing applications are found. Most typically, RBC spherical plain bearings RBC Bearings, with facilities throughout North America and Europe, are employed in hydraulic cylinder rod ends, vehicle suspensions, provides bearings and precision products for applications in the con- heavy equipment articulated joints, and other severe duty uses. struction, mining, material handling, transportation and off-highway equipment, robotics and automation, farming, machine tool, and semi- Industries served include off-highway mobile construction equipment, conductor equipment industries. Through RBC Aerospace Bearings, large agricultural machinery, mining equipment, forestry products, and the company is a major manufacturer of highly-engineered bearings and other large equipment requiring bearings that provide misalignment precision products for military, defense, and commercial aerospace capabilities while carrying high loads.
    [Show full text]
  • Commercial Vehicle Bearing Catalogue Timken
    COMMERCIAL VEHICLE BEARING CATALOGUE TIMKEN OVERVIEW GROW STRONGER WITH TIMKEN Every day, people around the world count on the strength of Timken. Our expertise in metallurgy, friction management and mechanical power transmission helps them accelerate improvements in productivity and uptime. We supply products and services that can help keep your operations moving forward, whether you need drive train kits for commercial vehicles, durable housings for bearings in dirty environments, couplings that avoid metal-to-metal contact between motors and gearboxes, repair services for bearings and gearboxes, roller chain for dry, abrasive and high-moisture applications or other products or services for your applications. When you choose Timken, you receive more than high-quality products and services: You gain a worldwide team of highly trained and experienced Timken people committed to working collaboratively with you to improve your business. Globally, our 17,000 people provide reliable answers for a wide range of operations in manufacturing, mining, medical equipment, aerospace, transportation, oil and gas – and other diverse industries. COMMECOMMERCIALRCIAL VEH VEHICLEICLE BE BEARINGSARINGS TIMKEN OVERVIEW INCREASE YOUR EQUIPMENT UPTIME In addition to high-quality bearings and mechanical power transmission components, we provide valuable integrated products and services. For example, we offer repair services and equipment monitoring equipment that can alert you to problems before they impact your uptime. Additionally, we offer a broad selection of seals, premium lubricants, lubricators, couplings and chain to keep your operations moving smoothly. Our 12 technology and engineering centers in the United States, Europe and Asia help pioneer tomorrow’s innovations with extensive basic and applied scientific research programs.
    [Show full text]
  • Signature Redacted August 7, 2015 C Ifdb Y
    Scale-up of a High-Technology Manufacturing Startup: Improving Product Reliability Through Systematic Failure Analysis and Accelerated Life Testing MASSACHUSETTS INSTITUTE by OF TECHNOLOGY, All Shabbir OCT 0 12015 B.A.Sc. Mechanical Engineering, University of Waterloo (2014) LIBRARIES Submitted to the Department of Mechanical Engineering in partial fulfillment of the requirements for the degree of Master of Engineering in Manufacturing at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September 2015 @ Ali Shabbir, MMXV. All rights reserved. The author hereby grants to MIT permission to reproduce and to distribute publicly paper and electronic copies of this thesis document in whole or in part in any medium now known or hereafter created. Signature redacted A uthor . ......... ........... Department of Mechanical Engineering Signature redacted August 7, 2015 C ifdb y...................------------ David E. Hardt Ralph E. and Eloise F. Cross Professor of echanical Engineering Accepted by ..... ............ Signature redacted ...... David E. Hardt Chairman, Department Committee on Graduate Theses Scale-up of a High-Technology Manufacturing Startup: Improving Product Reliability Through Systematic Failure Analysis and Accelerated Life Testing by Ali Shabbir Submitted to the Department of Mechanical Engineering on August 7, 2015, in partial fulfillment of the requirements for the degree of Master of Engineering in Manufacturing Abstract Ensuring product reliability is a key driver of success during the scale-up of a high- technology manufacturing startup. Reliability impacts the company image and its financial health, however most manufacturing startups do not have a solid under- standing of their product's reliability. The purpose of this thesis is to introduce systematic failure analysis to the engineering design process and to establish a frame- work for testing and analyzing product life so that imperative business decisions and design improvements could be made with regards to reliability.
    [Show full text]
  • Influence of Surface Topography on Torsional Fretting Wear Under Flat-On-Flat Contact
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by University of Huddersfield Repository Influence of surface topography on torsional fretting wear under flat-on-flat contact Wenlong Lu1, Po Zhang1,*, Xiaojun Liu1,Wenzheng Zhai1,Mingzhuo Zhou1,Jian Luo1,Wenhan Zeng2,Xiangqian Jiang2 1The State Key Laboratory of Digital Manufacturing Equipment and Technology, School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China 2EPSRC Centre for Innovative Manufacturing in Advanced Metrology, University of Huddersfield, Huddersfield, HD1 3DH, UK Abstract: Influence of surface topography on torsional fretting under flat-on-flat contact were investigated. Contact surfaces of the lower specimens were prepared by milling with different initial surface roughness while the upper specimens were polished. Results indicate that with the increase of surface roughness, friction torque and accumulated dissipated energy present a first increase and then decrease tendency and are higher when the texture is perpendicular to the relative movement direction. The wear volume and wear rate present increasing and decreasing tendencies separately for textures parallel and perpendicular to the relative movement direction, and they are higher when the texture is parallel to the relative movement direction. The results can provide guidance for the initial surface design to reduce fretting wear. Keywords: surface roughness; texture direction; torsional fretting; friction and wear 1. Introduction Surface topography is the local deviation of a surface from a perfectly flat plane, and it has become increasingly important in many fields, such as materials, tribology and machine condition monitoring [1-2]. In many industrial applications the fretting degradation process is inevitable.
    [Show full text]
  • Rolling Bearing Failure Analysis
    Rolling Bearing Failure Analysis Contents 1. BEARING FAILURE ANALYSIS 3 1.1 DETERMINATION OF OPERATING DATA 3 1.2 LUBRICANT SAMPLING 4 1.3 INSPECTION OF THE BEARING ENVIRONMENT 4 1.4 ASSESSMENT OF BEARING IN MOUNTED CONDITION 5 1.5 DISMOUNTING THE DAMAGED BEARING 5 1.6 ASSESSMENT OF THE COMPLETE BEARING 5 1.7 ASSESSMENT OF BEARING COMPONENTS 6 1.8 ROLLING BEARING DAMAGE SYMPTOMS AND THEIR CAUSES 7 2. ROLLING BEARING DAMAGE 9 2.1 DAMAGE RELATING TO BEARING RINGS 9 2.1.1 FRETTING CORROSION 10 2.1.2 TRACKS IN THE CASE OF INADEQUATE LUBRICATION 11 2.1.3 TRACKS IN THE CASE OF CONTAMINATION IN BEARING OR LUBRICANT 12 2.1.4 UNUSUAL TRACKS WITH DETRIMENTAL RADIAL PRELOAD 13 2.1.5 TRACKS WITH OVAL DEFORMATION 14 2.1.6 DETRIMENTAL AXIAL PRE-LOAD 15 2.1.7 TRACKS WITH MISALIGNMENT 16 2.1.8 FATIGUE OF ROLLING BEARINGS DUE TO MISALIGNMENT 17 2.1.9 FATIGUE AS A RESULT OF POOR LUBRICATION 18 2.1.10 CORROSION 19 2.1.11 FALSE BRINELLING 20 2.1.12 PASSAGE OF ELECTRIC CURRENT 21 2.1.13 RING FRACTURES 22 2.1.14 SLIPPAGE TRACKS 24 2.1.15 SCORE MARKS 25 2.1.16 DAMAGE DUE TO OVERHEATING 26 2.1.17 ASSESSMENT OF LIP CONTACT 27 2.2 DAMAGE RELATING TO BEARING CAGES 28 2.2.1 CAGE WEAR DUE TO STARVED LUBRICATION AND CONTAMINATION 28 2.2.2 WEAR DUE TO EXCESS SPEED 28 2.2.3 WEAR DUE TO ROLLER SKEWING 29 2.2.4 WEAR IN BALL BEARING CAGES DUE TO TILTING 30 2.2.5 CAGE FRACTURE 31 2.2.6 DAMAGE DUE TO INCORRECT MOUNTING 31 Rolling Bearing Failure Analysis 1.
    [Show full text]