<<

Potsdam -Institut fur Klimafolgenforschung e.V. Potsdam Institute for C limate Impact Research DISCLAIMER

Portions of this document may be illegible in electronic image products. Images are produced from the best available original document. Potsdam Institute for Impact Research

Potsdam-Institut fur Klimafolgenforschung e.V.

P I K

Biennial Report Zweijahresbericht 1996 & 1997 Impressum

Herausgeber / Publisher. Potsdam-Institut fur Klimafolgenforschung e.V. (PIK) Potsdam Institute for Climate Impact Research (PIK)

Hausanschrift / mail or packages to Telegrafenberg C4 D-14473 Potsdam Germany

Postanschrift / postal address Postfach / P.0. Box 601203 D-14412 Potsdam Germany

Telephone: +49(0)331 -288-2500 Fax: +49(0)331-288-2600 e-mail: [email protected] Internet: http://www.pik-potsdam.de

Direktor / Director Professor Dr. Hans-Joachim Schellnhuber

Stellvertretender Direktor / Deputy Director Dr. Manfred Stock

Redaktion / Editors Gabriele Andre, Berlin Sabine vom Bruch, Berlin

Technische Betreuung, DTP / Technical realization Dietmar Gibietz-Rheinbay, PIK D&C Department

Bildnachweis Umschlag / Credits front and back cover Musee Conde, Chantilly, ms. 65/1284, Seite 1/ front cover: fol. 9 v°, Seite 4 / back cover: fol. 3 v° Pol de Limbourg Tres Riches Heures du due de Berry (Septembre et Mars) Bildrechte / by courtesy of Giraudon, Paris

Bildnachweis Fotos Innenteil / Photo credits inside photos on pages 19, 28, 35, 40, 47, 55, 62, 73, 78, 81, 85, 88, 92: Michael Luder, Potsdam photo on page 7, four photos on page 90: Lothar Lindenhan, Potsdam photo on page 93: Vision-Photos, Berlin photo on page 5: Petra Schellnhuber, Berlin figure 1 on page 1: Mariana Winterhager, Berlin

Druck und Buchbinderische Verarbeitung / Printing and binding Brandenburgische Universitatsdruckerei und Verlagsgesellschaft Potsdam mbH 1

Table of C ontents

Table of Contents

Introduction

The Potsdam Institute for Climate Impact Research (PIK) 1 \

Global Integrated Modelling and Assessment

POEM Potsdam System Modelling 7 QUESTIONS Global Change: Qualitative Dynamics of Syndromes and Transition to Sustainability 19 ICLIPS Integrated Assessment of Climate Protection Strategies 28

Transdiscipllnary Regional Studies______

RAGTIME Regional Assessment of Global Change Impacts Through Integrated Modelling in the Elbe Basin 35 WAVES Water Availability, Vulnerability of Ecosystems and Society in the Northeast of Brazil 40 EUROPA European Network Activities on Global Change 47

Sectoral Modelling and Assessment

AGREC Assessment of Agro-Economic Impacts of on Central and Western Europe 55 CHIEF Global Change Impacts on European Forests 62 RESOURCE Social Dimensions of Resource Use: Water Related Problems in the Mediterranean 68

III Table of C ontents

jScientific Departments

Integrated Systems Analysis 73 Climate Research 78 Global Change & Natural Systems 81 Global Change & Social Systems 85 Data & Computation 88 Scientific Cooperation Unit 92

Zusammenfassung Das Potsdam-Institut fur Klimafolgenforschung 97

Appendix

Publications 123 PIK in the Media 135 External Funding 139 Cooperations 144 Acronyms 150

IV Introduction

Introduction

lEJOBSM) REGIONAL FOCUS mams .

DEPARTMENT STRUCTURE « » PROJECT STRUCTURE

Fig. 1: Research activities at PIK.

The Potsdam Institute for Climate Impact Research (PIK)

by Hans-Joachim Schellnhuber and Manfred Stock [The Potsdam Institute for Climate Impact Research tion is capable of interfering significantly with the global was founded in 1992, the year that the Rio Conference atmospheric dynamics had become overwhelming. was expected to grind out the blue-print for global But what should be done about this? Whether you sustainable development^This conference can be want to avoid, mitigate, adapt to or tolerate climate and seen as a reaction to primarily two fundamental Global Change, you have to know much more about changes going on in the world at that time: first, the the potential consequences of these options for plane­ birth of an awareness that anthropogenic climate tary and regional environmental management: What change may be a threat as real as the ozone depletion will the impacts be on nature, economy and lifestyle? in the stratosphere; second, the opening of a window What kind of scientific approach is appropriate for such for global environment and development governance impacts analysis and assessment? Which disciplines after the end of the Cold War. The foundation of PIK and methods from natural and social sciences have to as recommended by the German Science Council be integrated in order to reach solid conclusions? How (Wissenschaftsrat) is just one tiny facet reflecting the can we avoid the "Babylonian" confusion generally new attitude towards life on Earth emerging in the resulting from unsophisticated integration attempts? early nineties. For the scientific evidence that civiliza-

1 Introduction

At PIK we have begun to address these questions whole, consisting of cultures and nations that cannot using standard disciplinary recipes as well as innova ­ always be clearly distinguished from one another and tive transdisciplinary concepts. The scope of the scien­ yet have particular identities. In fact, without the exist­ tific challenge which the Institute has to meet is rather ence of such prototypical patterns and functional enti­ unique, particularly as there are no established models ties we would not be capable of perceiving reality in a or prototypes for conducting impact research in the structured way at all. Such semi-autonomous entities international community. Yet we feel that we have of reality are as a rule of "mesoscopic" character, i.e. made considerable progress along this sparsely popu ­ they form an oligarchy of a finite number of elements lated road in the last years, and the new biennial report on their respective scale levels. is going to demonstrate that. The last remarks may appear as bloodless epistemo ­ logical rhetoric to the reader. Their validity and useful­ The Conceptual Background of the PIK Approach ness could be demonstrated, however, by inspecting, to Environmental System Analysis say, the perpetual organization of civilization through a J~~The Institute's general philosophy and methodology small set of cultural archetypes, namely the entities have been described before (e.g., in the introduction to "village", "city", "landscape", "region" and "state". the first biennial report 1994/95). Here, wr^juMwaoMn Theoretical analysis of these entities and their inter­ emphasizeofhat the heterogeneity of the scientific tasks actions reveal the overall structure and dynamics of to be solved by PIK (ranging from empirical human settlement, and simulation exercises of any analysis to paradigms for ecosphere management) type and ambition should rather take advantage of the and the complexity of the environmental systems to be "granularity" found in reality. investigated call for a specific research strategy, which The temptation will be strong, of course, to try to con ­ generally compromises between high-precision analy- struct or deduce the respective pattern formation I sis and educated guesswork. quantitatively from "first principles" like the basic laws ^The basic PIK approach is to take up, process, sum­ of quantum mechanics or of molecular biology. Yet this marize and assess the empirical findings from a broad is an undertaking that is bound to fail. The rigorous variety of disciplines and institutions. Doing this yields theoretical derivation of effective large-scale equations a highly complex and interrelated knowledge base, of motion from microscopic dynamics has been possi ­ from which meteorological, hydrological, ecological, ble so far only for extremely simple or significantly sim­ socio-economic and transdisciplinary models are con ­ plified systems - often on the basis of rather rigorous structed. In essence, these models and their underly­ assumptions concerning the space of eligible solu ­ ing data bases constitute the Institute's core capital. By tions. The alternative approach, brute-force computer of , these models are used simulation, is generally inconclusive: how long would it for generating past, present, and future environmental take, for example, to mimic the behaviour of 1030 ele­ realities and scenarios. mentary particles until the faunic pattern "giraffe" is This concept sounds rather simple and straightfor ­ "invented"? And a computer-assisted individual-psy­ ward, yet constitutes an extraordinary challenge. For chological reconstruction of the social dynamics of the modelling and simulation becomes unfeasible or inop ­ 20th century is probably not capable of producing erable if too many details are taken into account, and it "Hitler" or "Gorbachev" as emergent types of politi ­ becomes superficial or useless if important aspects cians. are left out. Is there a way out of this dilemma? Recent But even if the bottom-up approach would overcome developments within and outside the Institute have for ­ the limitations in computational resources: it would not tunately demonstrated that such a way indeed exists explain the formation of those patterns. Computations by constructing models of truly intermediate complex ­ are, after all, no more and ho less than a specific kind ity. In the following, this strategy is explained briefly of experiment from which the scientific essence still and its consequences for impact research are indi­ has to be extracted by (occasionally ingenious) the cated. interpretation of the results. Considering real dynamic systems of genuine (rather Currently there is some hope among natural scientists than perceived) complexity, we realize that this com ­ and mathematicians that the big enigmas about the plexity is usually organized in a hierarchy of character­ make-up of our universe might be solved by finding istic patterns, types, or entities. This holds true for the one simple set of integrated field equations, which cosmos, which is structured into galaxies, milky ways would allow us to deduce the properties of quarks as and solar systems, as well as for the terrestrial bio ­ well as the curvature of space-time in one blow. sphere with its taxonomic make-up of species, eco ­ Whether this dream will come true or not, environ ­ systems and biomes, and for human civilization as a mental systems are definitely more complicated than

2 Introduction

physical ones; therefore a "common-sense approach" of rather broad questions demonstrating a profound to identifying and explaining the mesoscopic entities knowledge of the pertinent literature is comparatively dominating our ecological reality seems appropriate. well respected. of the intermediate kind fall Such an approach first recognizes the existence of between these extremes and continually have to resist these entities, then studies their characteristic (or typi­ the forces of attraction of the latter. cal) behaviour, and finally constructs appropriate theo ­ Up to now, however, our experience with the tasks of ries that match the observations as closely as possible Earth system analysis and climate impact research - or necessary. Such a procedure has proven to be has shown that we are indeed bound to remain on the very successful even in solid state physics, where a "narrow path of intermediacy" if we want to provide real zoo of quasi-particles prevails. useful answers to the most urgent questions. How PIK This does not , however, that the heuristic strat­ has been passing along that path in an act of balance egy just outlined must proceed along purely phenome ­ between pure and applied research - that is what this nological lines only. With the help of theories of biennial report is trying to demonstrate. medium analytical depth and range we may attempt to formally encode those patterns that have been discov ­ Departments and Core Projects as Management ered mainly by inspection - through parameterized dif­ and Research Structures ferential equations or empirical look-up tables for evo ­ From the beginning the Institute’s management struc­ lutionary rules, for instance. The resulting formalism ture was department-oriented. Four “classical” depart­ then allows models of intermediate complexity to be ments: Impact , Natural Systems, Socio ­ constructed and quantitative statements to be gener ­ economic Systems and Data & Computation are com ­ ated on the dynamics, the stability, and the synergies plemented by the Department for Integrated Systems of the constitutive elements. Analysis, which has the task to combine these fields. It This strategy plays a key role in the research strategy soon became evident, however, that we have to look at conducted at PIK. It is employed, for example, in the impact problems in a more general way to understand way we try to simulate forest succession under chang ­ their dynamics aiming at managing solutions. ing climatic conditions or global atmosphere-vegeta ­ The dynamics of Global Change and the relevant tion interaction by means of "functional types" (core processes in the Earth system are investigated at PIK projects CHIEF and POEM/DVGM, respectively). It is by inquiring into certain transdisciplinary key ques ­ reflected in the construction principle for the Earth sys­ tions. These key questions are beyond the scope of tem model CLIMBER, which anticipates characteristic any individual scientific discipline. Approaches from climatic structures and patterns, or in the hierarchy of these disciplines have to be combined using methods "hydrotopes" instrumental in the multi-scale descrip­ of systems analysis to form interdisciplinary research tion of the Elbe's ecohydrology (RAGTIME). It provides projects. These projects have been selected from the basic recipe for the semi-quantitative decomposi ­ proposals made by PIK scientists during an internal tion of the mega-phenomenon "Global Change" into evaluation process which involved the Institute’s archetypical "syndromes" (QUESTIONS) and plays a Scientific Advisory Board (SAB). The process resulted role in the formulation of effective (reduced-form) in several fundamental research topics, called “core modules for the integrated assessment of climate pro ­ projects ”. From the start, nine core projects were tection scenarios (ICLIPS). It is, in fact, rather easy to selected from about twenty proposals. Progress and trace this strategy through most of the Institute's cen­ success of the core projects are evaluated annually by tral or peripheral projects. the SAB, advising PIK how to continue, intensify or The resulting intermediate models attempt to combine decrease certain activities or even to close a core quantitative description and qualitative intuition in the project. In this context, the role of the scientific depart­ best possible way; thus they are often the only ade­ ments is to connect the core projects closely to the quate instruments to tackle complex ecosystems. methodological development in their disciplines, to Such instruments are not easy to set up, however, and support the scientific staff and to control the quality of even, more difficult to handle, as can be seen in the work and results. integrated modelling of river catchment areas. But At present, research is done in the eight core projects there is an additional price to be paid, which is con ­ listed below on global and regional scale from either nected with the criteria for success within the scientific an integrative perspective or with more sectoral community: it is easier to acquire reputation, as a rule, emphasis. As number nine, the European network by concentrating on a fairly limited and well-defined research activities combined in Europa are on the way subject matter and scrutinizing it with the highest to form a new core project; figure 1 gives an overview possible precision. Alternatively, the erudite discourse of these research activities at PIK.

3 Introduction

Scientific Advisory General Meeting I | Contribution of the Board of Trustees Board MitgUeder- — departments to the Kuratorium Wissenschafilicher versammlung core projects Beirut

^ Scientific Staffs Director Management Vorstand Wissenschaftliche Departments Abteilungen . Stabsstelle ,

Integrated Scientific Systems Analysis Climate Natural Systems Social Systems Administration Cooperation Unit Research Naturliclie Jntegrierte SozieUe Sysleme Wissenschaflliche Klimaforschung Sysleme Computation Service Syslemanalyse Funktionsemheiten

Core Projects QUESTIONS

AGREC RESOURCE djjenlTichkeit J POEM RAGTIME ICLIPS WAVES

CHIEF

EUROPA

Kern- projekte

Fig. 2: Organization scheme of the PIK departments and core projects.

PIK Core Projects by Research Focus

Global perspective Regional focus Sectoral view

Poem Europa AGREC Potsdam Earth System European Network Activities Agro-Economic Impacts of Modelling Climate Change on German Agriculture in the Context of Global Change

ICLIPS Ragtime C hief ’ Integrated Assessment of Regional Assessment of Global Change Impacts on Climate Protection Strategies Global Change Impacts European Forests Through Integrated Modelling in the Elbe River Basin

Questions Waves Resource Global Change: Qualitative Water Availability, Social Dimensions of Dynamics of Syndromes and Vulnerability of Ecosystems Resource Use - Water- Transition to Sustainability and Society in the Northeast Related Socio-economic of Brazil Problems in the ‘ Mediterranean

4 Introduction

1992 1993 1994 1995 1996 1997 1998 1992 1993 1994 1995 1996 1997 1998

Fig, 3: Development of external project funding (Drittmittel) at PIK in Fig. 4: Increase of employees and collaborators in the history of PIK. Thousands of DM In the history of PIK.

The overall PIK research concept forms a matrix struc­ BANG Secretariat, both of which are located at PIK. ture of departments and core projects shown in Third, additional project funding from a variety of figure 2. This structure is a schematic representation sources is continuously acquired. of the interdisciplinary linkage. However, to fulfil all The development of this additional budget of external scientific tasks represented by the boxes in this struc­ project funding, as well as the corresponding increase ture adequately, is beyond the resources of PIK s in the number of staff members at PIK, are shown in regular staff. Therefore three ways of extra support are figure 3 and figure 4 for the period 1992 -1998. These used. First, a small additional budget is available for figures and the development they show are represent­ postdocs, students and visiting scientists working for ing the growth phase of PIK’s research strategy into several months up to some years at PIK. Second, Global Change and Earth system analysis. The con ­ international and national scientific cooperation with ceptual background of PIK’s research approach and other institutions is highly encouraged at PIK, by the interdisciplinary structure organising PIK’s re­ organizing conferences, workshops or joint projects. search activities can be traced in the results described These activities are particularly supported through the in our biennial report. German national IGBP Bureau and the international

Hans-Joachim Schellnhuber Director of the Potsdam institute for Climate Impact Research and Professor for Theoretical Physics at the University of Potsdam. Heisenberg Fellow. Research activities at the University of California in Santa Barbara and Santa Cruz. Formerly Professor (1989) and later Director at the Institute for Chemistry and Biology of the Marine Environment in Oldenburg. German Chair of the International Geosphere Biosphere Programme and Vice Chair of the Global Change National Committee of the German Science Foundation (DFG). Member of the German Advisory Council on Global Change since 1992, Chair since 1996.

5 Introduction

6 Global Integrated Modelling and Assessment

POEM Potsdam Earth System Modelling

Convening Project Leader: Hans-Joachim Schellnhuber Project Leaders: Martin Claussen, Wolfgang Cramer, Yuri Svirezhev

A major challenge for the scientific community today is to explore the dynamic behaviour of the Earth system, as well as its resilience to large scale perturbations, such as the continuing release of fossil fuel com­ bustion products into the atmosphere or the alteration/ffagmentation of vegetation. The POEM project addresses this task on three different, but related, scales, (i) by developing a dynamic modelof the land biosphere and its response/feedback mechanisms to the atmosphere, (ii) by devel­ oping a mechanistic, intermediate-resolution modelof all major compo­ nents of the Earth system (atmosphere, , biosphere, ), (iii) by developing a model of the long-term evolutionary dynamics of the geophysical Earth system. Together, the resulting models will be used to study the stability of the Earth system under a broad range of scenarios for modified boundary conditions.

From left to right: Martin Claussen, Hans-Joachim Schellnhuber, Yuri Svirezhev, Wolfgang Cramer.

Motivation There is increasing evidence that the dynamics of the Human interventions play a significant role for the Earth system cannot be determined by studying its Earth system. We are currently altering the character subsystems alone. Due to the nonlinear synergisms of the Earth with an increasing rate, and the present between the subsystems the response of the entire dynamic stability of the Earth system itself may be Earth system to external perturbation drastically differs endangered. During the last 10,000 years, the climate from the sum of the responses of the individual sub­ has been rather stable in comparison with the 100,000 system or a combination of a few of them. As a con ­ years before. The development of agriculture and the sequence, an integrated analysis of the fully coupled associated civilizations during this phase of climatic Earth system is required to approach a solution to the stability is probably not coincidental. An important and problem. exciting question is therefore whether the Earth sys­ tem could return to a more unstable mode if the con ­ Component Models centration of greenhouse gases in the atmosphere Several PIK projects have been studying integrated continues to increase. It seems plausible that changes systems analysis, modelling, and mod ­ in the North Atlantic current could have caused drastic elling of vegetation dynamics, all at the global scale. climate instabilities in the past and that the same could Since 1997, these efforts have been brought together happen in a warmer climate. If so, then this could be a in the POEM activity. As a first step three model com ­ major threat to human society. ponents are set up which all focus on particular pro ­ The core project POEM addresses the problem of cesses of the geosphere-biosphere interaction at Earth system stability by analysing the dynamic pro ­ different time scales: cesses between the geosphere (the abiotic world) and • The short-term (days to centuries) atmosphere- the biosphere (the living world). The geosphere itself biosphere interactions and vegetation dynamics are can be subdivided into the atmosphere, the hydro ­ addressed by the development of a Dynamic Global sphere (mainly the ), the cryosphere (ice Vegetation Model (DGVM), incorporating physiology masses), and the lithosphere (the upper solid Earth). and stand dynamics (including disturbances).

7 Global Integrated Modelling and Assessment

• At the intermediate time-range of centuries to millen­ current scenarios of changing and rainfall nia the feedback between atmosphere, ocean, vege ­ differ from place to place. tation and inland ice becomes important. This is These dynamics have strong implications for the over ­ described by the CLIMBER (CLIMate and Bio- all system and hence for the future of a sustainable sphERe) model. earth, for several reasons. First, the time constants of • The long-term evolution and development of the bio ­ carbon pools on land, most of which are connected to geochemical cycles is influenced by variations in the vegetation or the soil, span a wide range from minutes luminosity of the sun, plate tectonics, and changes in to centuries. This is due to rapid (mostly light-driven) the geosphere, which is the focus of the CO-Evolu- changes in the photosynthesis in plants, the relatively tionary biosphere and geosphere Model (COEM). slow build-up of biomass in most ecosystems and the Recent studies have shown that the Earth system may slow to very slow decay of organic matter in the soil. have several stable states with a complex transition Due to this mixture of relevant time scales, it is ques ­ structure. Hence the analysis of short and inter­ tionable whether ecosystems can ever be in full equi ­ mediate-scale changes of the geosphere-biosphere librium with the climate. This disequilibrium is even interaction must be embedded in the long-term evolu ­ more crucial in times of rapid change in climate and tion - the actual state of the geosphere-biosphere C02, since it prohibits the estimation of carbon pools interaction depends on the Earth’s history. For exam­ from the present climate and demands a full account of ple, theoretical studies have shown that in the present- system history. day climate, a large part of the Sahara could be either A second cause of concern are the physical feedbacks sparsely covered by some desert shrubs (as it is between land vegetation and atmospheric circulation. today) or more or less densely covered by subtropical Vegetation structure directly affects roughness and vegetation. Hence the actual state of the desert can albedo of the land surface, and it does so differently, only be explained by analysing both the interaction depending on the time of the year, the stage of the between the atmosphere and the vegetation of the vegetation development, or the local land use. Overall, Sahara as well as its historical development. the physical and biogeochemical feedbacks of vegeta ­ By dividing the analysis of geosphere-biosphere inter­ tion in the Earth system may therefore accelerate or action into three time scales it is implicitly assumed delay any general trends, and the balance between that the interaction across these time scales is weak. these may be different in different regions. However, this is not yet clear at all. Therefore, in addi­ tion to the three model components, POEM encom ­ Developing a New Class of Model passes a synthesis component which will be launched From a modelling perspective, the most important ele­ after its initial phase. ments of land vegetation, with respect to its dynamic The POEM model components, DGVM, CLIMBER and behaviour on the global scale, are the pools of live and COEM, as well as first results will be described in the dead biomass, and all processes affecting into, following sections. After that, three specific, POEM- between and out of these pools. In the past, most of connected projects (ETEMA, Millennia and MGBM) these fluxes have been modelled using formulations of are presented. the relation between the environment and a predeter­ mined structure of vegetation, the environment being described in terms of radiation, temperature, humidity Dynamic Global Vegetation Model - DGVM and carbon dioxide. More recently, this underlying veg ­ Project Leader: Wolfgang Cramer etation structure has been modelled, rather than pre­ scribed, as a function of the (current) carbon and water Motivation fluxes. These models usually contain (i) a module for In a coupled Earth system model, the land biosphere photosynthesis as the main “engine ” for carbon assim­ represents a significant element of uncertainty. Both ilation, (ii) one for autotrophic respiration as the plants’ theoretical considerations and recent results obtained own use of the carbohydrates it has produced, and (iii) with simplified atmosphere-biosphere models have a module for heterotrophic respiration as the overall shown that the Earth system might be capable of loss of carbon from other organisms ’ biological activity showing either considerable inertia due to slow vege­ in the ecosystem. tation responses, or rapid "pulses" due to fast mobili­ A Dynamic Global Vegetation Model needs to contain zation of carbon from the land to the atmosphere. Both all of these mechanisms, but it needs to be further possibilities even exist at the same time, since the enhanced to not only capture the short-term response response is likely to be different regionally, just as the of plants to the environment (often termed ecophysio- logy), but also other biological processes controlling

8 POEM

longer term behaviour. These are all concerned with DGVM Development for Global Change Applications the plants’ life cycle, such as establishment in a new DGVMs are usually developed against the background location, growth, competitive interaction with its neigh ­ of a world under some kind of changing conditions. bours and responses to disturbances from natural Therefore the assumption of constant environment can events such as fires and storms or human activity. Ear­ only be a stage in the development of the model and lier, these “population processes ” have been simulated will ultimately fail. A changing environment is currently in another class of models, so called “gap models ”. A considered in three ways (which may also occur all at direct linkage of different gap models to cover the glo ­ once): i) changing climate (i.e., changing spatial pat­ bal biosphere, however, is presently impossible. Many tern of temperature, rainfall, radiation and other mete­ are known only for the few plant species orological elements), ii) changing atmospheric carbon investigated for gap models. More importantly, the dioxide content, and iii) changing disturbance due to interaction between very different plants, such as trees human land use. and grasses, requires new methods of simulating proc ­ Some estimates of global vegetation response to esses such as the competition for water taking place in changing climate and carbon dioxide have been made the soil. using equilibrium models, while land-use-based Crucial for the development of DGVMs is the definition assessments are still in their infancy. These studies of an appropriate set of Plant Functional Types (PFTs). have played an important role as a “diagnostic ” of pos ­ These PFTs must be few in number so that they can sible impacts of climate change, and they have also be described and parameterized in the global model, been used successfully for the first studies of biogeo ­ and sufficient to cover at least a part of the variety in physical feedbacks. Reality, however, is likely to see functional behaviour among plants around the globe. more complex responses and feedbacks that may be Once an initial set of PFTs is defined, we need to enhanced or delayed by population processes. Specu­ parameterize the physiological processes for each of lations in this respect have ranged from general them. In fact, some PFTs are defined directly on the insensitivity of the biosphere against change to rapid basis of physiology. For instance C3 and C4 plants with immense carbon pulses which would be produced if a their different photosynthetic pathways respond in a large quantity of existing biomass was turned into inor ­ remarkable different way to climate change. Other PFT ganic carbon by large fires. distinctions go by leaf longevity, such as deciduous An underlying assumption in DGVM development is and evergreen plants. Once the sensitivity of PFTs to that the actual response may be very specific to a par­ climate and soils has been identified and formulated in ticular region. In fire-prone ecosystems such as the the model, we assess the interactions which take place savannas or boreal forests, small changes in the soil when they occupy the same locations. These competi ­ moisture balance may indeed affect the fire frequency tive relationships are simulated with respect to enough to change the composition and therefore struc­ resources such as water or light, and the different abil­ ture of the ecosystem quite rapidly. Since such ities of plants to capture those determine the composi ­ changes mainly depend on the moisture balance, and tion of the plant community. since plant response to changing moisture is affected Even in a constant climate, this composition is never by atmospheric carbon dioxide, there is yet a major stable, however. Natural mortality of plants, or even for uncertainty with large-scale predictions of the outcome larger plant parts such as leaves and branches, con ­ of such a change - it almost certainly requires a stantly adds biomass to the “litter pool ”, upon which sophisticated DGVM being run at a large number of other organisms thrive and thereby influence the locations. The result will also be affected by the pre­ of carbon from organic substances back to the atmo ­ vailing climate- change scenario. sphere. Mortality occurs highly erratically, usually as a In ecosystems such as the wet evergreen rain forests, result of disturbances, and thereby creates new oppor ­ the main disturbance will most likely continue to be tunities for other plants. Later stages of the process, land use rather than climate change. Here, the DGVM such as the decomposition of dead plant matter, take only simulates direct results of external forcing, i.e. the much longer time and may involve large quantities of flux of carbon from destroyed vegetation to the atmo ­ carbon that are stored for long time periods - in the sphere, with no particular attention to plant population case of wetlands for many millennia. For studies of the processes. In yet another type of ecosystem, the Arctic global carbon cycle, it is necessary to make at least tundra, migration (the horizontal displacement of plant rough estimates of these overall fluxes and their sensi­ seeds or other propagules) needs to be simulated tivities to the environment, such as temperature and before we can estimate the change of the land surface. moisture balance.

9 Global Integrated Modelling and Assessment

Fig. 1: The upper figures show the projected total terrestrial carbon storage (soil + vegetation) in the final decade of the transient C02 and climate change simulation (2190-2200) for the Lund-Potsdam- Jena (LPJ) DGVM and VECODE. The lower figures show the time series of global terrestrial carbon storage for LPJ-DGVM and VECODE for three simulations (green: C02 only, red: climate

only, blue: C02 and climate LPJ Global Cartoon Storage Gt-C VECODE Global Cartoon Storage Gt-C change).

.2000

1500

1000 1000

DGVM Developments in POEM total range of possible environmental boundary condi ­ To investigate decade-to-century-scale dynamics of tions. Alternative observations for model validation are the coupled Earth system in POEM, a comprehensive satellite reflectances (soon to be used in a joint project DGVM is mandatory. Now, a prototype DGVM (the with the FU Berlin) and measurements from the inter­ Lund-Potsdam-Jena DGVM, LPJ) is in place, as well national carbon dioxide networks (site-specific, and at as the reduced-form in CLIMBER ocean stations), which will be used more frequently (VECODE) (figure 1). over the coming years. Based on LPJ and VECODE, several lines of further An indirect means of testing models is by comparing development are pursued: them against each other. We assume that, if very dif­ • To improve the representation of realistic distur­ ferent model formulations reach a similar result, some bance in the LPJ model. For this, the current state of confidence might be placed in both formulations. We development in landscape-scale fire models is have carried out the lGBP-sponsored Intercomparison reviewed and results are used to enhance the exist­ of Global Models of Net Primary Productivity, also fre­ ing simple scheme of fire occurrence and effects. quently referred to as ‘The Potsdam Process ”. Alto ­ Land use is investigated as a separate disturbance gether eighteen modelling teams had initially agreed in driver. using a standardized data set for executing their NPP • To create a consistent framework for spatial and models and to submit the data to a common archive temporal scaling among processes, and between the now hosted at PIK. This process, despite being driving data and the overall model. This is being exceedingly difficult due to the large quantity of data carried out as part of the PIK contribution to the and the high number of minor findings, has been European consortium ETEMA (European Terrestrial instrumental in improving many currently available Ecosystem Modelling Activity, see separate section biospheric models (see figure 2 as example). on ETEMA) Another, more recent intercomparison project is the • To integrate the comprehensive DGVM in future ongoing GCTE DGVM Intercomparison, a comparison versions of CLIMBER. of Dynamic Global Vegetation Models. For this activity, altogether seven models were run using output from a Biospheric Model Testing and Validation simulation provided by the Hadley Cen­ An important step in the process of testing the reliabil­ tre (United Kingdom) for the period from 1860 to 2099, ity of existing model formulations is to validate them including effects of both increasing atmospheric car­ against independent data. For global fluxes, such as bon dioxide and sulphate aerosols. This scenario was the overall productivity of vegetation, even of a smaller applied and the simulations were continued 100 years region, such data are very difficult to obtain; however, if after 2099 as a crude "stabilization scenario". The par­ they exist at all, then only for a small sector within the ticipating DGVMs, which included LPJ and VECODE,

10 POEM

Fig. 2: Annual Net Primary Productivity (NPP) along a precipitation gradient, simulated by 11 global biospheric models In Central Africa between Sahel and Equator. In all models, the highest NPP (red) occurs In the tropical evergreen forest due to the optimal amount of solar radiation, precip­ itation and temperature, but the absolute levels vary considerably, as well as the spatial pattern. have widely different levels of complexity and several the climate system cannot be explained without an of them are still in a prototype stage. Despite signifi ­ assessment of its development throughout the Earth’s cant differences with respect to the quantitative values history. On the other hand, details of the biospheric of biomass and other pools, the models showed two processes have to be properly described, which is the important features: significant inertia of land vegeta ­ focus of the DGVM activity. More specifically, tion, which continued to change long after "stabiliza­ CLIMBER will be used to analyse the vegetation-cli ­ tion" had occurred, a significant carbon sink in land mate feedbacks, the interaction between inland-ice vegetation if only carbon dioxide was changed under masses and the role of ocean currents, and the syner­ constant climate conditions, and a much reduced car­ gism between climate subsystems operating during bon sink when the climate changed simultaneously. the last few hundred thousand years with a perspec­ The intercomparisons were of twofold significance: tive of potential future climate changes. Some illustra­ they helped the individual modelling teams to improve tive examples are given below. their model (since several technical and other prob ­ lems were discovered during the comparison proce ­ The New Approach dure) and they produced a.consistent result on the Currently there are two basic classes of climate sys­ likely response of the land biosphere to Global Change tem models - comprehensive ones and simplified that could not have been reached otherwise. ones. Comprehensive models of global atmospheric and oceanic circulations describe many details of the flow pattern, such as weather systems and wind driven Climate and Biosphere Model - CLIMBER gyres in the ocean. Similarly, complex dynamic vege ­ Project Leader: Martin Claussen tation models explicitly determine the growth of plants and competition between different plant types. The Motivation major limitation in the application of comprehensive Marked progress has been achieved during the past models arises from their high computational cost. To decades in modelling the separate elements of the obtain an equilibrium state of the system, it is neces­ geosphere and the biosphere. This stimulated sary to integrate a model for at least a thousand years attempts to put all separate pieces together, first in - the time needed by the deep ocean to transport form of comprehensive coupled models of atmo ­ information around the globe. This time will increase spheric and oceanic circulation, and eventually as cli­ further if “slower ” elements of the climate system, like mate system models which include also biological and glaciers or the upper Earth’s mantle, are included. geochemical processes. Even using the most powerful computers, only a very Within POEM, a new climate system model, called limited number of experiments can be performed with CLIMBER (CLIMate and BiosphERe), has been set up such models. Another problem is the necessity of a so- to address the interaction between geosphere and bio ­ called flux adjustment to obtain a realistic present sphere at time scales of centuries to millennia. Hence climate state. The use of flux adjustments prevents the the CLIMBER activity is sandwiched in the COEM and coupled atmosphere - ocean models from drifting into DGVM research. On the one hand, the current state of unrealistic climate states; however, they impose strong

11 Global Integrated Modelling and Assessment

limitations on the applicability of the models to climate puzzles. By use of CLIMBER a step forward towards states which are substantially different from the solving the problem has been made. present one. For the simulation, only the solar radiation of 21,000 Due to these problems, simplified and computationally years ago was prescribed, the known ice masses were efficient models of the climate system are used for a placed on the continents, and the concentration of car­ variety of applications, in particular palaeostudies and bon dioxide in the air was reduced to its ice age level climate change and climate impact projections. These as known from ancient air bubbles trapped in the ice of models are spatially highly aggregated, e.g. they may Greenland. represent atmosphere and ocean in two boxes, and CLIMBER demonstrates that changes in ocean cur­ they describe only a very limited number of processes rents were a crucial factor in the cooling of the climate and variables. The applicability of this class of models during the ice age, particularly in Europe. These is limited not by computational cost but by the absence changes encompass the southward shift of North of many important processes and feedbacks operating Atlantic Deep Water (NADW) formation from approxi­ in the real world. Moreover, the sensitivity of these mately 65°N today to roughly 45° during the glacial models to external forcing is often prescribed rather maximum, a penetration of Antarctic Bottom Water than computed independently. (AABW) into the Northern Atlantic, and a substantially There is a gap between simple and comprehensive reduced transport into the high latitudes of the models which has been filled by CLIMBER. CLIMBER North Atlantic with a corresponding southward move ­ is a climate system model of intermediate complexity. ment of the sea-ice margin to between 50°and 60°N. CLIMBER computes many processes and feedbacks The overall rate of NADW formation, and its outflow in the climate system, comparable with those of com ­ into the Southern Ocean, is only slightly reduced, but prehensive models. But due to low spatial resolution because the North Atlantic current was less saltier and simplified governing equations, the model has a and, hence, less dense, the NADW flow was shallower fast turnaround time. Currently some 4000 simulated than today. Unlike for today ’s climate, CLIMBER years take roughly one day on one processor of the obtained also a formation of deep water in the North IBM SP2 at PIK. An important component of CLIMBER Pacific. These results seen in CLIMBER agree fairly is the atmospheric module, which is based on a statis­ well with recent reconstructions by geologists from ice- tical-dynamical approach. This implies that the atmos ­ age sediment cores. pheric module does not compute weather systems, but The entire Northern Hemisphere was on average rather describes their influence on the climate. almost nine degrees Celsius colder than it is today, So far, CLIMBER has been verified for present-day cli­ according to the simulation results. Three degrees of mate and the climate of the peak of the last ice age. this cooling were associated with a shift of the North Furthermore, it has been validated against other com ­ Atlantic ocean circulation. Some areas even cooled by prehensive models where data are missing and it has more than 20 degrees as a result of the altered cur­ been shown that it behaves like the complex models rents (see figure 3). when strong perturbations are imposed, as for exam­ ple, a shut-down of the North Atlantic current due to a Synergism in the Climate System of the Mid-Holocene doubling of the atmospheric carbon dioxide concentra ­ Remnants of the last glaciation disappeared about tion, or changes in the energy flux from the sun. In the 7000 years ago and since then, the inland ice masses following, two recent results obtained with CLIMBER have changed little. Also the carbon dioxide concentra ­ are highlighted. tion in the air was roughly as some 100 years ago, before industrialization. Nevertheless, the climate in The Last Glacial Maximum the mid-Holocene, around 6000 years ago, was quite The last ice age reached its peak around 21,000 years different from today ’s climate. Generally, the summer ago. Ice sheets, up to three kilometres thick, covered in many Northern Hemisphere mid-to-high latitudes the northern parts of America and Europe. The ice was warmer, as palaeobotanic data indicate an expan­ cover reached down to Berlin; further south, a dry, sion of boreal forests north of the modern treeline. In polar steppe extended as far as present-day France. North Africa, palaeoclimatological reconstructions The reason for the periodically recurring ice ages were using ancient lake sediments and archaeological evi­ slight changes in the Earth’s orbit which caused dence indicate a climate wetter than today. Moreover, changes in the solar radiation reaching the Earth. But it has been found from fossil pollen that the vegetation exactly how these gradual and subtle changes in the limit between Sahara and Sahel reached at least as far distribution of solar radiation led to such rapid and north as 23°N. drastic glaciation is still one of nature’s unsolved

12 Fig. 3: Difference In air temperature LOW-MODERN oir temperoture (DJF) LGW-WOOERN precipitation. (DJF) (left panels) and precipitation (right panels) between the last glacial max­ imum (21000 years ago) and today, simulated by CUMBER, driven by changes In the Earth’s orbit and lower atmospheric C02. Top panels depict the northern winter months (December, January, February), the bottom panels show the summer -160 -120 -60 0 60 120 180 months (June, July, August). The (PC, global cooling reaches some LGliWvlOOERN oir temperoture (JJA) LOU-MODERN precipitation (JJA) with a cooling of almost 4°C In the tropics. Changes In wind and ocean currents Induced changes In precipi­ tation pattern such as a drying of the tropics and northern high latitudes, a strongly reduced Aslan summer monsoon, and Increased winter pre­ cipitation In some subtropical regions. Global mean precipitation was reduced by some 16%. -160 -120 -60 0 60 120 160 -180 -120 -60 0 60 120 160 LONGITUDE LONGITUDE

-25 -20 -15 -10 -8 -6 -4 -3 -2 °C

It is a common hypothesis that differences between Long-Term Co-Evolutionary Biosphere and modern and mid-Holocene climate were caused by Geosphere Models - COEM changes in the Earth’s orbit. Particularly, the tilt of the Project Leader: Yuri Svirezhev Earth’s axis was stronger than today. This led to an increased solar radiation in the Northern Hemisphere The short-time dynamics of the planetary ecosystem during summer which amplified the African and Indian are addressed by the CLIMBER and DGVM activities, summer monsoon, thereby increasing the moisture but important properties of the biosphere like overall transport into North Africa. However, orbital forcing stability, resilience or boundary conditions today can alone seems to be insufficient to explain the changes only be understood if the long-term evolution of the in climate. Sensitivity studies using climate models Earth system is also taken into account. This may be have suggested that positive feedbacks between cli­ illustrated by investigating the present day occurrence mate and vegetation exist at boreal latitudes as well as of some nutrients, which limits present day biological in the subtropics of North Africa. These feedbacks productivity. These substances are part of the global tend to amplify the climate change such that the boreal biogeochemical cycles, which can be regarded as a climate becomes warmer (than without vegetation- well-balanced geophysiological system. This system is atmosphere feedback) and the North African climate the result of the Earth’s history in the sense that its becomes more humid. However, it is currently debated sources and sinks are the result of long-term develop ­ whether this feedback is strong enough to explain the ments. They contribute to the global energy and mate­ greening of the Sahara reconstructed from palaeobio- rial fluxes not only through separate biological, physi­ logy. cal and chemical cycles, but also by biologically By use of CLIMBER the response of the atmosphere accelerated material transfers. For example, the biota to changes in the Earth’s orbit of 6000 years ago are play an important role in the chemical weathering of compared with the reaction of various combinations of silicate rocks: Unlike abiotic and purely chemical climate subsystems (see figure 4). This analysis weathering, microbial and vascular plants trigger sev­ reveals a strong synergism as the response of the eral mechanisms as there are acids, morphological entire system,turns out to be much stronger than that and mechanical effects. They increase significantly the of various subsystems. Moreover, it becomes evident ability of the soil to bind carbon and, as a conse ­ that changes in the northern hemisphere affect the cli­ quence, the associate weathering rate. This process mate of the Southern Hemisphere by the heat trans­ reduces the amount of carbon in the atmosphere and port in the Atlantic. affects the climate itself. As is well-known from non-linear systems , such an externally driven system as the biosphere may pos-

13 Global Integrated Modelling and Assessment

Fig. 4: Difference in air temperature at M at M+veg between 6000 years ago and today, for the northern summer (June, July, August), simulated by CUMBER, driven by changes in the Earth’s orbit alone. The upper left panel depicts the response of the atmos­ phere only. The lower left panel dem­ onstrates the reaction of the coupled system atmosphere-ocean. The upper right figure shows the temperature increase when atmos­ phere and vegetation respond simul ­ taneously. atM+oce+veg Finally, the lower right figure indi­ cates the change of the entire sys ­ tem. On global and annual average, the response of the atmosphere alone amounts to 0.05°C, of the coupled atmosphere and ocean to -0.05°C, atmosphere-vegetation 0.2°C, and atmosphere - ocean - vegetation to 0.8SPC.

sess a variety of equilibrium states with a complex transition structure. Information about existing neigh ­ bouring stable states, the character of transitions to solar luminosity these regions and, especially, knowledge concerning the elasticity boundaries of dominating equilibrium regions are crucial for modelling the temporal short- and mesoscale dynamics. mean global atmospheric The main goal of COEM is therefore not to make a cer­ temperature carbon dioxide tain forecast for the dynamics of the biosphere, but use the techniques of dynamic system theory, structural PCO,(t) ' analysis and computer modelling to get deeper insights into the limits of ecosphere dynamics as the \ Fwr(t) result of the evolution of the Earth system. According to the general concept of "virtual biospheres" (Svi- rezhev, 1994), the contemporary Earth biosphere is one of many possible virtual biospheres, correspond­ silicate-rock biological ing to the multiple equilibria of some nonlinear coupled weathering productivity dynamical system consisting of “climate and vegeta ­ tion ”. In the course of the planet’s history and its long ­ term evolution, this system may have passed through several bifurcation points, strongly influenced by bio ­ logical feedback mechanisms. spreading rate continental area As a basic formulation, a long-scale evolution model for the Earth system has been used. The model inves­ tigates the response of the linked components atmo ­ sphere, biosphere, and lithosphere to the increase in solar luminosity. We have extended the scheme Fig. 5: Illustration of positive (red) and negative (green) feedback including geodynamical processes such as the mechanisms within the evolution of the Earth system. The elements spreading rate and continental growth, illustrated in in the dashed circle represent the dynamical part of the model whereas the corresponding quasi-static processes (connected by figure 5. dashed lines) are held in equilibrium for a longer time-scale. The Such feedback schemes are useful for investigations „flash of lightning" inside the circle indicates a change of of both the past and the future of the Earth system, insolation S. including questions concerning the life span of the bio-

14 POEM

sphere. Increasing solar luminosity S will enhance the data sets of different resolutions. The main require ­ mean global temperature Ts. At ments of the framework are to support exchange of dif­ approaching 50 °C, biological productivity decreases ferent process formulations without changing the and the weathering rate is enhanced which draws remainder of the coupled model, and to be sufficiently down the atmospheric carbon dioxide concentration flexible to test different approaches in vegetation mod ­ leading to lower Ts and lower silicate-rock weathering elling, e.g., the spatially explicit patch representation, (Fwr), respectively. A similar loop exists for the impact with or without interaction with adjacent grid cells. of surface heat flow: Declining surface heat flow The framework consists of two parts (see figure 6): decreases spreading rate and silicate-rock weathering, • a driving module providing spatial and temporal while increasing continental area (Ac) has a negative interpolation (or averaging) of climate and land use/ influence on the spreading rate and, on the other hand, cover data and a positive influence on the weathering rate. The quasi ­ • a generic vegetation model consisting of three stationary values of these process intensities, which nested loops representing different levels of tempo ­ can be calculated for different epoques of the Earth’s ral resolution. history and its future, are used as steady state values The innermost loop of the vegetation model (time step for the short-term climate-biosphere dynamics. This of hours to one day) encompasses the "fast" physical strategy will give hints concerning the dependence of processes of photosynthesis and canopy/planetary dynamically defined system properties like, e.g., elas­ boundary layer exchange as well as soil water bal­ ticity on the steady-state boundary conditions of the ance. The intermediate loop (days to months) repre­ geosphere. In general, it is intended to reconstruct the sents phenology and carbon allocation and adjacent co-evolutionary path of the biosphere and the geo ­ processes (disturbance, fast dynamics of soil organic sphere on the basis of qualitative “phase-space matter (SOM)). The outer loop (years to decades) portraits ”. The main interest focuses on the dynamic updates vegetation composition as a result of popula ­ behaviour of the Earth system during transitions times tion processes and slow dynamics of soil organic mat­ when quasi-stationary states change. ter. Vegetation is assumed to have a vertical layer struc­ ture. Two types of spatial configuration are proposed European Terrestrial Ecosystem Modelling Activity and are representative of the possible types of vegeta ­ - ETEMA tion dynamic models: Project Leader: Wolfgang Cramer • multiple patches with known position inside the mac­ rocell (spatially-explicit models approach) and Connected to the DGVM development, ETEMA is a • sets of parallel strips of known width with a regular European modelling exercise (coordinated by Martin orientation (to meet requirements of planetary boun­ Sykes, Lund, Sweden), focusing on predicting the eco ­ dary layer model). system-level impacts of anthropogenic forcing. It aims to create a modular framework capable of simulating structure and function in a wide range of European ter­ Numerical Simulation and Analysis of Climate restrial, natural and semi-natural ecosystems at patch Variability on Decadal and Centennial Time Scales to landscape scales. Climate - described as tempera­ - Millennia ture, insolation, precipitation - atmospheric carbon Project Leader: Stefan Rahmstorf dioxide concentration, and potentially, nitrogen deposi ­ tion and land-use class are the main drivers. The Climate varies on different time scales - each summer model seeks to predict carbon, nitrogen, and water is different from the previous one, a decade of mild pools and fluxes, runoff, vegetation composition and winters may be followed by several icy ones, and even vertical structure in terms of major species and func­ on the scale of centuries there were considerable cli­ tional types, net primary production, leaf area index matic changes, even before human activities started to and biomass in various components, in response to have a noticeable influence. In the "Medieval Opti­ changes in the main drivers. Initially predictions will be mum" the Vikings settled now icy Greenland and at the patch or landscape scale; the eventual aim is to grapevines grew in Yorkshire, England. Then, from make predictions at regional or continental scales, about 1550 to 1850, the "Little Ice Age" took hold of over years to centuries. Europe: temperatures were about 1 °C below those of The coupled modular framework for ETEMA (being the present century. Understanding such natural cli­ developed at PIK) allows to test different conceptual mate variations on decade to century time scales is the and formal descriptions of vegetation processes and aim of the Millennia project.

15 Global Integrated Modelling and Assessment

One reason why one wants to understand this climate • Climate variability is analysed from an existing 1250- variability is to be able to predict it. On a shorter time year run of the coupled ECHAM1/LSG climate scale, the three to five year long climate cycles associ ­ model. ated with El Nino events in the Pacific Ocean are now • Sensitivity experiments are performed with models well understood and can be forecast up to a year in designed to isolate certain climatic feedback mecha­ advance, allowing farmers to adjust their crops. In the nisms. North Atlantic Ocean there is a similar irregular • An improved coupled climate model for multi-millen­ climatic cycle of longer duration (-20 years), called the nia simulations is being designed and tested. North Atlantic Oscillation (NAO), which has a profound influence on European climate and would be useful to Contribution and Results of PIK predict. For this we need to understand the physical The task of PIK within the project is twofold: mechanism. • To design the ocean component for the new coupled A second reason why we need to understand climate model, based on the Geophysical Fluid Dynamics variability, especially on the time scale of centuries, is Laboratory's (GFDL) (see to separate it from the human influence on climate. Is figure 7). the warming observed over the past 100 years anthro ­ • To perform a range of experiments to study the role pogenic or just part of a natural fluctuation of the of the ocean in climate variability. climate system? Some results of PIK experiments highlighting the role of the ocean in climate are listed below. Methods • The influence of Mediterranean outflow water on the In Millennia, 10 laboratories from five countries are North Atlantic circulation and climate was investi­ involved. It focuses on computer modelling with global gated. circulation models (GCMs): • The teleconnection between the winds over the Southern Ocean and the flow of North Atlantic Deep

16 POEM

Water was found to be weak (in cooperation with the • A fully coupled model and a simpler hybrid model University of New South Wales, M. England). were compared, using identical ocean models (in • A numerical simulation of oceanic radiocarbon cooperation with GFDL Princeton, R. Stouffer), shed­ uptake and circulation was performed (jointly with ding light on the stability of the ocean currents in dif­ UNSW, M. England), to compare the performance of ferent models and the role of atmospheric feedback. different oceanic mixing parameterisations. • A sensitivity study was performed using • A study of some properties of oceanic convection the ocean module of CLIMBER and the GFDL ocean was made with a simple . model, investigating the stability properties of the thermohaline ocean circulation.

Fig, 7: Near-surface (100m) current velocities in an ocean model employed at PIK in cm/s (resolution 1.8° longitude and latitude, 24 vertical levels). The model has been Implemented to study the stability and variability of the and its effect on the climate.

The New Version of the Moscow Global Biosphere a co-evoiutionary concept. The structure must be topo ­ Model -MGBM logically simple and stable, and possess several equi ­ Project Leader: Yuri Svirezhev libria. It must be slightly sensitive to quantitative data, since the main emphasis is not on the calculation of Among the variety of smooth modifications of the bio ­ concrete trajectories, but on the determination of sta­ sphere caused by Global Change, there might also be bility domains, in which the ecological niche for homo a chance of a transition to a totally different planet sapiens is assured. The idea is that the system of the characterized by a fundamentally different pattern of biosphere consists of an undefined number of com ­ climate, vegetation and land ice cover. The possibility partments representing, for instance, the hydrosphere, that more than one equilibrium of the biosphere could the terrestrial biosphere, the climate etc. exist and the assessment of imaginable transitions is Besides this, there is the problem of bifurcation points, addressed by the New Moscow Biosphere Model. i.e. such states of the biosphere in the vicinity of which the future co-evolution of humans and the biosphere The Compartment Model cannot be predicted in general. At this point we relin­ The main objective was to create a dynamic structure, quish the compartment theory as a spatially discrete treating the biosphere as a single entity in a unitary description, and consider the biosphere as a mul­ model and human society as its natural component in tiphase continuous active medium.

17 Global Integrated Modelling and Assessment

However, all the available information about the main biosphere and climate evolves to a kind of hot desert actors of biosphere performance, e.g. global biogeo ­ with a temperature of ~ 35°C. The vegetation biomass chemical cycles, is presented in the form of different would be reduced by a factor of 8 -10. compartment models. Their comparison has shown that aggregation and separation of the compartments The Anthropogenic Component cause some fictitious dynamic phenomena to appear. In an attempt to develop a demographic model and a So we needed to develop a special theory, which model of industrial metabolism we faced the problem allows the dynamic characteristics of their compart- of quantifying simple criteria for the estimation of the mental structures to be estimated. On the basis of this degree of the environmental degradation and the level theory, many of the existing models of the global car­ of social stress. The idea is to describe the collective bon, nitrogen and phosphorous cycles were analysed dynamics of socio-economic entities by thermo ­ and one rather simple structurally stable model of the dynamic formalism and to add a special degree of the global carbon cycle with two equilibria was suggested. social stress, based on the concept of Kondratiev’ s As a result we obtained estimates of the terrestrial waves. Concerning the degree of the environmental biota and the ocean role in the global carbon cycle. It degradation induced by human activity, we suggest could be said, that the ocean will remain a sink for car­ using the entropy as a physical value. The thermody ­ bon for a rather long time, for about 200 - 300 years. namic model of environmental degradation and its Estimates of the distribution of carbon sources and application to agrosystems has shown that we can sinks show that, for example, the territory of Russia is expect a drastic decrease of crop production, caused a sink, and USA is a source of carbon. for instance by soil , in regions of intensive agri ­ Concerning the main question that climate impact culture. This is an anthropogenic disaster, but never­ researchers put to their models, i.e. what happens if theless it is a normal thermodynamic reaction for a we go on emitting 6-7 Gt of carbon per year, the system trying to minimize the rate of entropy produc ­ answer given by the MGBM shows a loss of stability in tion. Therefore the sustainable crop production in most the system. For this purpose a special climate model industrialized societies must be lower (by 30-40 %) was constructed, which on the one hand produced suf­ than at present. ficiently realistic evaluations, and on the other hand was substantially simpler in its structure than the Glo ­ bal Circulation Models (GCMs). The analysis of the The POEM project, although drawing extensively on time and zero-dimensional "biosphere - climate" model shows other resources of PIK staff members, has been externally sup ­ that the contemporary climatic equilibrium is disposed ported by. the European Union (ETEMA, Millennia and MGBM), sufficiently close to the dangerous boundary of its sta­ NASA/USEPA (NPP Model Comparison) and the German bility domain. The emission to the atmosphere of a Research Foundation: Deutsche Forschungsgemeinschaft total of 600 Gt of carbon, accumulated over 100 years, (COEM). reduces the stability, and subsequently the system of

18 QUESTIONS

QUESTIONS Global Change: Qualitative Dynamics of Syndromes and Transition to Sustainability

Project Leader: Gerhard Petschel-Held

A vast number of environmental, social, economic, and cultural develop­ ments are endangering our common future — not only by their sheer exist­ ence and superposition but by powerful synergisms. This complexity is facing an increasing social demand for clear and simple answers in terms of policy options - not an easy task, considering how heterogeneous the world and its population are. Not only politicians but the global society as a whole, and last but not least, scientists have to find sound answers to questions like the following: Will the growing global economy profit in the long run from further short-term overuse of natural capital, or will resource depletion and environmental degradation lead to economic losses as well? Which regions are probably affected next by large scale deforestation? Where do poverty and policy failure make people overuse their natural resource base? How will the From left to right: Gerhard Petschel-Held, urbanization process affect human health and regional environments? Fritz Reusswig, Matthias Ludeke Science has been successful forhundreds of years by specialization and disciplinary segmentation of research activi­ ties. However, what we need for effective and successful research on Global Change is to integrate current disciplinary knowledge, taking into account all the complexity, interdependencies, non-linearities, transsectoral effects, and uncer­ tainties. It is the task of the QUESTIONS project to find new methods to formulate the basic structures representing the major driving forces for Global Change qualitatively and to help to identify the most effective controls for these drives.

Diagnosis of Syndromes come both one-eyed strategies with sufficient com ­ plexity, thus hoping to give better insight to science. The Syndrome Concept So far, a total of 16 typical patterns of Global Change The core project Questions tries to deal with the has been identified in an iterative interdisciplinary dis­ current core problems of Global Change such as soil cussion process among members of the project as erosion, deforestation, food insecurity, climate change, well as the members and collaborators of the German by establishing a new research tool: the so called syn­ Advisory Council on Global Change (WBGU). The syn­ drome approach. A syndrome is defined as a typical dromes are grouped into three major classes and are pattern of non-sustainable civilization-nature inter­ listed in table 1. actions that can be found in different regions on Earth. The important thing about this approach is that it Measurement of Syndrome Activity explicitly takes into account human driving forces of Syndromes represent an easy-to-grasp methodology Global Environmental Change. Most other Global to get a comprehensive overview on the entire prob ­ Change models concentrate on detailed mappings of lem known as Global Change. Besides the description the behaviour of single systems like the biosphere, of the general structures responsible for global envi­ atmosphere, hydrosphere, etc., and couple human ronmental and regional social degradation, a major society as consumers of natural resources, e.g. for task of the Questions project is to obtain geographi ­ food production, transportation purposes, recreation, cally explicit assessments of the occurrence of syn­ and so on. This “one-eyed view” often leaves aside the dromes. On the one hand, it is the goal to identify intricate driving processes within the anthroposphere, those regions of the world where a specific syndrome e.g. structural changes of the economy, changes in is active in a certain variety. This is important in order lifestyles, or increase of aspirations. Although the to verify the hypothesized cluster of causal interactions social sciences deal with these driving forces per se, assumed to constitute the syndrome, e.g. by detailed they very often are inversely “one eyed", disregarding comparisons with case-studies. Finally, these global the natural preconditions and subtle consequences of damage maps can provide important information for human action. The syndrome approach aimes to over ­ sound strategies of global environmental manage-

19 Global Integrated Modelling and Assessment

Utilization Syndromes ' Sahel Syndrome Overuse of marginal land

Overexploitation Syndrome Overexploitation of natural ecosystems

Rural Exodus Syndrome Degradation through abandonment of traditional agricultural practices

Dust Bowl Syndrome Non-sustainable agro-industrial use of soils and bodies of water

Katanga Syndrome Degradation through depletion of non-renewable resources

Mass Tourism Syndrome Development and destruction of nature for recreational ends

Scorched Earth Syndrome Environmental destruction through war and military action

Development Syndromes

Aral Sea Syndrome Damage of landscapes as a result of large-scale projects

Green Revolution Syndrome Degradation through the transfer and introduction of inappropriate farming methods

Asian Tiger Syndrome Disregard for environmental standards in the course of rapid economic growth

Favela Syndrome Socio-ecological degradation through uncontrolled urban growth

Urban Sprawl Syndrome Destruction of landscapes through planned expansion of urban infrastruc­ tures

Disaster Syndrome Singular anthropogenic environmental disasters with long-term impacts

Sink Syndromes

Smokestack Syndrome Environmental degradation through large-scale diffusion of long-lived sub­ stances

Waste Dumping Syndrome Environmental degradation through controlled and uncontrolled disposal of waste

Contaminated Land Syndrome Local contamination of environmental assets at industrial locations

Table 1: Various syndromes describing the interactions and changes of nature and mankind. merit. On the other hand, one might focus on specific to a detailed review process including a broad litera­ regions and determine the active syndromes within the ture survey and the build-up of a data-bank able to region. This helps to formulate regional specific structure the quantitative and qualitative knowledge of management strategies not only adequate to temper a these symptoms. As the second basic ingredient, syn­ single syndrome, but rather adequate for a specific drome analysis is applying a typology of interactions, conglomerate of these archetypes. Within the task of for example reinforcing, weakening, ambivalent, in performing intensity measurements to be described order to relate the symptoms in a specific manner: here, the focus is laid mainly on the first approach. within this context a syndrome can also be defined as The essential starting point for any syndrome analysis a typical cluster of symptoms and their interactions. is a systematic refinement of the processes indicated There is no definite modus operandi for the assess­ on the right-hand side of table 1. This reformulation ment of a syndrome ’s activity. Ideally, just like in medi­ makes use of a catalogue of about 80 symptoms of cal diagnosis, one would look for the syndrome spe­ Global Change which have been collected by the inter­ cific combination of symptoms and their temporal disciplinary WBGU. Currently, this catalogue is subject behaviour. Quite often, however, the realization of this

20 1 :/,» QUESTIONS

ideal is hampered by a significant lack of data. In these risk of damage due to syndrome specific interference cases, one has to find alternative ways, particularly with the environment. with respect to the dynamic behaviour of the symp­ Within the last two years, the intensities of six syn­ toms, Besides using results from global models, for dromes have been estimated. Three of these analyses instance river flow, FAO crop models, global vegeta ­ have been part of the 1997 annual report of the tion models, it turned out to be especially beneficial to German Advisory Council on Global Change. use the concept of vulnerability as a measure for high

Intensity

Fig. 1: Intensity of the Sahel S yndrome. In the indicated regions a vicious circle between an ever increasing impoverishment and a continuing soil degradation is detected to be active on the basis of data of the late 1980s and early 1990s.

The Sahel Syndrome many other areas throughout the world are involved: From the point of global relevance and the number of major parts of Brazil and Columbia, wide areas in people affected the Sahel Syndrome is one of the South Asia, in particular the semi-arid regions of Iran, most important patterns. This syndrome describes the Afghanistan, Pakistan and India, and parts of China typical causes and effects of an overuse of marginal are identifiable. In all these regions, the vicious circle agricultural land. The natural dimension of marginality of impoverishment and soil degradation that consti ­ might be due to climatic conditions, e.g. high inter­ tutes the syndromes has been detected active in the annual variability of rainfall, semi-aridity, insufficient late 1980s on the basis of data for soil degradation, soil or orographic conditions. If the rural population liv­ poverty and agricultural activity from various sources. ing under such productivity-restricting circumstances is This assessment is the first attempt to obtain a sys­ depending highly on the use of natural resources for tematic, data-based global overview of what is known their livelihood, they will face the degradation of their as rural poverty-driven environmental degradation for environment arising from overuse of their resources. some 20 years. The extension of the analyses to a Besides economic reasons, it might be ethno-cultural, model of the dynamics of the syndrome (see section social or legal aspects which prevent the poor from on qualitative modelling on page 26) will then allow to obtaining alternative ways of income. As long as there give a systematic evaluation of various policy options is no well-balanced support for the peasants involved, presently discussed in politics and science. Further­ massive and irreversible environmental degradations more, the assessment might be used to obtain system­ are a major threat; often, the only way out is emigra ­ atically composed indicators for a sustainable develop ­ tion - possibly leading to vast urbanization effects ment as demanded in Chapter 40 of the Agenda 21 of described by the Favela Syndrome . the World Summit in Rio 1992: the intensity measure Figure 1 depicts the global distribution of the Sahel might be considered as a systemic indicator for a pat­ Syndrome . Obviously it is not only the -giving tern of non-sustainable development. region in West Africa itself which is affected, but also

21 Global Integrated Modelling and Assessment

The Dust Bowl Syndrome the most important socio-economic component is the Whereas the Sahel Syndrome is mainly encountered large scale production for the market. This may hap­ in developing countries and thus concerns in particular pen either for the local and/or regional market like in development policy, the D ust Bowl Syndrome is a an the European Union or for the global market, e.g. the archetype to be found especially in highly developed production of cash crops in developing countries. countries such as Germany. As the name suggests, it Besides arable farming also pasturing is included in describes the environmental effects due to a highly the syndrome. The environmental effects include industrialized and capital-intensive cultivation of land impacts on soils for example by compacting and over ­ and water bodies. So far our investigations have fertilization, on water, e.g. by high nutrient loads due to focused on the effects of agriculture due to the exces­ a limited back flow from or high input of sive use of fertilizers, machinery, like tractors or com ­ nitrates and other pollutants into the , and bine harvesters, pesticides, or herbicides. In contrast on the atmosphere by emissions of nitro-oxygen and to the subsistence farming in the Sahel Syndrome , other greenhouse gases.

Intensity

Fig. 2: Intensity of the Dust Bowl S yndrome. The affected regions are characterized by a capital intensive crop cultivation, e.g. extensive use of either machinery, fertilizers, pesticides or herbicides, or an intensive stock-farming.

As can be seen from the map in figure 2 mainly the ture. This is not only effective on a local scale, but agricultural regions in North America, Western and might equally be important on the global scale due to Central Europe are affected by the syndrome. Addi­ the increasing trade in human and animal food. tional regions detected as affected by the D ust Bowl Actions to weaken the pressure on the environment Syndrome are some pasture lands in South Africa, due to capital intensive agriculture are therefore not Mongolia, Australia and South America. Note that due solely a question of classical agricultural politics, but to the still increasing use of chemicals in agriculture, equally of economic, individual, societal and institu­ almost the entire agriculturally used area is identified. tional changes as well. This reveals that we only have a limited quality of data on global crop distributions; however, we need this Vulnerability Assessment information to distinguish market-oriented from sub­ The syndrome approach is not only designed to iden­ sistence farming, i.e. the D ust Bowl from the Sahel tify regions, where specific human-nature interactions Syndrome . have already lead to symptoms of criticality like over ­ The market-driven agricultural production within the use, depletion, degradation, but also to find those, regions affected by the D ust Bowl Syndrome is on where a specific syndrome might occur in the future. the demand side governed by consumption and life­ The leading question for this type of research is: how style patterns, in particular in the prosperous countries does a region become disposed towards a syndrome, of the Northern Hemisphere. Coffee, cacao and rubber or what makes it vulnerable to the damages that the production are examples for market oriented agricul ­

22 QUESTIONS

interacting trends will usually cause? Answering this vulnerability of the world ’s regions to specific syn­ question is important for three reasons: dromes has to be identified, the mechanism of these 1) From a logical point of view the domain of possi ­ syndromes serve as guidelines for the selection of dis­ bility includes the domain of reality. What is really position indicators. As syndromes focus on the human- happening today must be a selection of what is nature interface, disposition indicators in general take possible in general. Detecting regions, where the into account qualitative and quantitative information typical mechanism of a syndrome is a given real­ about both natural and social characteristics which in ity thus presupposes that these regions are by their specific combination are responsible for a higher some characteristic possible candidates for syn­ or lower disposition for a syndrome; thus for instance drome occurence. Detecting the characteristics climate, soil and water belong to the natural character­ leading to the outbreak of a syndrome is generally istics, long-term food security, educational standards, an important task for the disposition analysis. economic growth conditions to the social characteris­ 2) From a genuine system analytical point of view tics. The concept of disposition addresses factors that the description of a system without regarding its are important on a medium to long-term time scale for future behaviour is incomplete. This holds true phenomena and properties from various sectors, even more when Global Change is considered: As described by the different scientific disciplines. If a changes in the Earth system induced by humanity multitude of natural and social science information are the central focus of our research, we must — about a region have to be integrated, one has to when only for analytical reasons — be interested decide on some logical clauses connecting them (for in the future path of these changes. In the frame­ example “and” or “or ”) and on the weights to be given work of our approach this means, that the domain to the single factors. Syndrome oriented disposition of possibility is the potential domain of reality in analysis makes use of expert evaluations and case some 10, 20 or 50 years. Thus the disposition of studies, leading to evaluation trees of relevant indica­ the syndromes is determined by natural, social, tors, connected by fuzzy logic tools. As an example we economic, and cultural factors only varying slowly present here the decision tree for the Asian Tiger Syn ­ in time. drome disposition. 3) From a political point of view the syndrome approach is a scientific decision supporting tool. It The Asian Tiger Syndrome was designed to support the search for policy This syndrome addresses a specific economic growth measures enabling a sustainable development. pattern, aiming at high growth rates from a relatively Dealing politically with Global Change not only low level of economic performance. This growth is means healing a damage that has already widely directed by a strong and often authoritarian occurred or will inevitably do so in the near future, political system that neglects political participation as but also - and even more so - refers to develop ­ well as environmental issues. This implies severe and ing long-term strategies and prevention meas­ quickly rising consumption of energy and resources, ures. It is especially this latter aspect that accompanied by high pollution of water, air and con ­ underlines the importance of a careful and sound tamination of soils. The construction of the Asian Tiger analysis of factors making a region vulnerable to disposition decision tree was led by the question: the outbreak of a syndrome. Where are regions, that combine the following charac­ This last item No. 3 reveals some parallels between teristics: the disposition analysis and some fields of applied • good natural conditions for export oriented produc ­ research that have emerged in recent years. One tion: economic geography, example is the Famine Early Warning System (FEWS), • good economic conditions for high growth rates: high carried out by the US development agency (USAID), economic stability, low labour costs and NASA, the US Geological Survey (USGS), and the • good cultural conditions for economic growth: atti­ National Oceanographic and Atmospheric Administra­ tudes and beliefs. tion (NOAA). Its purpose is a short-term forecast of the The final evaluation tree (see figure 3) shows the entry vulnerability of a region for famine, using weather and indicators and the logics of their combination in detail. vegetation data, combining them with price data for Indicators for political stability will have to be intro ­ food crops. The United Nations World Food Pro ­ duced in the next step. gramme (WFP) is another example here. In the 1996/97 period five syndromes have been Syndromes might serve as a kind of global early warn­ investigated with regard to their disposition. The final ing system, and therefore the analysis of dispositions results were mapped to show which region in the world is one of the most important tasks to begin with. As the might be prone to what kind of syndrome. As men-

23 Global Integrated Modelling and Assessment

Fig. 3: Tree for the evaluation of the disposition for the Asian Coast Proximity high Tiger Syndrome. Economic Geography Sea Transportation good Infrastructure good Inflation Rate low Economic Stability high External Indebtedness low Economic Conditions Asian Tiger Syndrome good Disposition Illiterate Ratio high low Labour Force good Income per capita low Religious Economic Values

good Cultural Values supporting Religious economic activities Rigidness low

tioned above, this sort of information is important for might be rather high, and that in other parts of the analytical and political reasons. country natural and social conditions make the over ­ use of agriculturally marginal sites probable. Although Comparative Analysis of Two Countries the potential as such is rather high, other To underline this claim, we compare two countries ’ dis­ disposing factors for the Aral Sea Syndrome are position profiles with regard to five syndromes. The more or less missing in this tropical and oil-rich country selected countries, Uruguay and Gabon, are under the (e.g. the marginal utility of irrigation for agriculture). same overall economic domain, the “upper middle Basic economic, geographic and cultural features lead income ” according to the World Bank’s ranking, and to a low to medium disposition for the Asian Tiger may therefore be compared rather easily. These pro ­ Syndrome , especially at coastal zones defined files take into account the degree to which a specific broadly by the Gabon, Ogooue and Ngounie. country is disposed to a syndrome. The dispositions of In contrast to Gabon, the Latin American country of Uruguay and Gabon are listed in figure 4. Uruguay shows high dispositions for Aral Sea and The central African country of Gabon shows very high D ust Bowl. Both dispositions show an intricate dispositions for the overexploitation syndrome. Some coupling, as the agriculturally suited areas of this meat 85 % of the country are covered by dense tropical for ­ exporting country would offer even higher yields if its est. Tropical timber was Gabon ’s main resource before irrigation potentials were used more intensively. oil began to dominate the scene; in recent years it has Regarding the spatial closeness of the disposed areas still accounted for some 10 % of exports. At the same such a combined option gains additional plausibility. time, international indebtedness is high enough - and There is only a low disposition for the Sahel Syn­ still rising because of the falling oil prices - to execute drome , only in the Tacuarembo and Durazno districts a slight pressure upon the primary tropical forests. we detect some moderate values. Due to almost negli ­ Sahel and Dust Bowl disposition values are medium, gible forest cover in Uruguay the country shows no dis­ reflecting the facts that the agricultural potential of the position for the Overexploitation Syndrome . With country is still far from being exhausted, suitable sites respect to the Asian Tiger Syndrome Uruguay shows are broadly available, although environmental costs

24 medium values, making it even more disposed than its Systems Research (USE), Kassel, the Max-Planck neighbouring Mercosur partner country Argentina. Institute for , Hamburg and the German The briefly indicated profiles of the above mentioned Advisory Council on Global Change (WBGU), was to states have to be completed for the other syndromes. obtain an overview of the present and the future global It will then be possible to develop bundles of tuned freshwater situation. This assessment of freshwater policy measures in order to mitigate further syndrome scarcity with respect to human use has been published development or, if possible, to prevent a region from in the 1997 annual report of the WBGU. initialising the syndrome mechanisms. Once more, To obtain a measure for freshwater criticality, the disposition analysis offers a new and promising tool for renewable water supply and the water demand have to politically relevant Global Change research. be compared. This balance has been investigated on an annual scale which allows to identify sub-national and seasonal water shortages on a sub-basin level. Syndrome Uruguay Gabon Due to a lack of detailed and reliable data for present Asian Tiger renewable freshwater resources on the global scale and the need for projections on the basis of climate scenarios, it was necessary to establish a new model. y The WaterGAPI .0 model applied here has been developed at the USF in Kassel. Using simple, highly parameterized approaches, it computes the surface Aral Sea and groundwater runoff within 1,162 small sub-basins worldwide. In a first approximation this runoff repre­ sents the annual renewable freshwater available for human use. Besides computing the water availability for the current climate, the model has been used with Sahel the climate prognosis for 2025 by the MPI for Meteor ­ ology. It turns out that most regions of the world might have an equal or even increased water availability. On the other hand there are some regions, particularly in the developing countries of the South, where water Dust Bowl availability decreases significantly. For assessing water scarcity two further questions have to be addressed: 1) How much water can be made available for human use by implementing appropriate tech­ Over- nologies, that is by water transport, reservoirs, exploitation recycling of used water by sewage plants or even additional water supply by desalination plants? 2) What is the water demand of the domestic, agri ­ Fig. 4: Disposition of five syndromes, magnified for two different cultural and industrial sector? world regions: Uruguay and Gabon. Green=low, Red=high intensity Step (1) is considered in a study of the global water sit­ uation for the first time. We estimated the above men­ Indication of Core Problems of Global Change: tioned fraction as a function of economic capacity of a Water Criticality country. To assess the demand Of water of the different The explanatory power of syndrome analysis has to be sectors (Step 2), simple models for sub-national con ­ evaluated with respect to the core problems of Global sumption patterns were derived within the WaterGAP Change. Though there is a number of indications of model. These modules are based on distributions of these problems, e.g. climate scenarios, data sets on population, agriculture and. aridity. The projection of anthropogenic soil degradation, or censi and projec ­ water demand was calculated using the IPCC projec ­ tions of population growth, there are major crises not tions for population and GDP (Gross Domestic Prod ­ assessed so far. Therefore, a number of adequate uct) resulting in an overall increase in water consump ­ indicators have to be developed. In 1997 we started to tion. This reflects that water saving due to improved assess the global water criticality. technologies is overcompensated by population and The aim of this study which was performed in coopera ­ economic growth. tion with the Scientific Centre for Environmental

25 Global Integrated Modelling and Assessment

Change <-150 0

Fig. 5: Change in the number of people per square kilometre from 1995 to 2025 who are severely affected by water shortage. The changes are due to a mixture of economic development, increases in water use efficiency, changes in water technology, population growth and climate change.

In combination, regional water scarcity was estimated Methods of Qualitative Modelling for the years 1995 and 2025. As one aggregated result The biggest problem in modelling syndromes is the of our geographically explicit study we calculated the uncertainty in our knowledge about them: we do not number of people who are severely affected by water know the details of the states of the variables, i.e. shortage. For 1995 we found that 2.1 billion people, symptoms, involved, and in many cases we cannot which amounts to 37% of the present global popula ­ quantify the interactions among the symptoms without tion, are severely affected. This number increases to reducing the view to, for example, one or the other 3.3 billion in 2025, equivalent to 40% of the respective one-eyed approach mentioned above (see page 19). global population. In figure 5 the change in the number This is not only due to limited efforts in assembling the of people severely affected by water crisis is mapped data, but also due to the nature of the interactions geographically. Here the hot spots with respect to a involved. How could one quantify the relationship future worsening of the situation can be identified in between variables like impoverishment, expansion of China, India, Pakistan, Turkey, Poland, Morocco, agriculture and soil degradation in a reliable and gen ­ Algeria and Brazil. erally valid way? The only statement we have, is The results imply that humanity faces a dangerous strong evidence for the existence of a steadily reinforc ­ shortage of freshwater in the near future. Therefore ing vicious circle within the Sahel Syndrome , that new and innovative water-saving strategies have to be means: we have qualitative knowledge. The challenge developed - including technologies, water trading and for our project is, to derive conclusions from qualitative changes in consumption patterns. Moreover, these knowledge only. Our method is the formalism of quali ­ changes have to be far more effective than some posi ­ tative differential equations (QDEs) which has been tive examples of the last decade. developed by the “Qualitative Reasoning Group ” at the The analysis of water criticality performed so far, has University of Texas at Austin. By using this formalism it still a number of deficiencies to be resolved in the is possible to deal with entire classes of ordinary differ­ nearest future. Besides an improved modelling of the ential equations and to find all solutions compatible supply side, e.g. by taking into account river flows, it is with a certain class. These classes are mainly defined necessary to include aspects of water quality. Yet the by simple monotony assumptions like ‘The higher the latter is a widely open field with a tremendous lack of state of poverty, the higher the rate of increase of agri ­ data and knowledge. culture.” Thereby, we do not have to assume certain functions for the description of our system as Denis and Donella Meadows did in their famous study “Limits

26 QUESTIONS

to Growth ”. We only assume the existence of a set of different government actions on this syndrome, two ordinary differential equations that can describe reality versions of the model were constructed, one including and use very general assumptions about the nature of an inhibiting effect of a degraded nature on the further these equations. intensification of agriculture (version 1) and one with­ In the framework of qualitative differential equations out this effect (version 2). With version 1, it is possible the qualitative value (QV) of a variable will only to obtain a stable system with partial fulfilment of the change, if its quantitative counterpart passes values food demand. In version 2, however, a partially cov ­ that are particularly important, the so-called landmark- ered food demand leads inevitably to the complete values. An example for a landmark value is the point of destruction of the natural basis of agriculture, without agricultural intensity above which soil degradation telling us how long this will take. It is interesting that occurs, called “maximum sustainable level” in the considering the rate of change instead of the state of Green-Revolution Model (see below). The QDE de­ nature, no such stable system shows up in the possi ­ fines that there is a soil degradation, if the QV of the ble model behaviours. In this case the destruction may variable “intensity of agriculture ” is above the maxi­ last longer, but does not behave qualitatively different mum sustainable level. Due to this functionally ori ­ from version 2. It is obvious that these results are only ented definition of distinctive points, the actual realiza­ a first step to an adequate modelling process, eventu­ tion, i.e. what does this sustainable agricultural activity ally allowing a robust evaluation of the effects of vari­ actually look like in terms of techniques used, crops ous policy actions. Yet the approach is promising, as cultivated or fallow intervals, etc., might be different in the level of information needed is rather low and the different regions of the world. The possible solutions focus is on the analysis of structures instead of single are described in terms of qualitative behaviours, which variables. describe sequences of qualitative states. Time is in this context only ordinal, i.e., one cannot tell how much time has passed between two qualitatively different intensity of agriculture states. ( state rate ) Using only qualitative information, it is mostly impossi ­ ble to derive unique qualitative behaviours, but several alternative behaviours can be compatible with a single QDE. This especially occurs if two different effects are working against each other, as in the Green Revolution Model, where rising intensity of agriculture increases, l natural capacity whereas degrading natural capacity decreases food ( state )o( ri production. In this case the system of QDEs is compat ­ ible with rising and with falling food production, and we food production have to include both possible outcomes in our analy­ stale }o{ rate ) sis. As a next step, it is planned to improve the analy­ sis of this branching point and to find other, rather gen ­ eral conditions of the interactions determining one or Fig. 6: Basic structure of the conceptual qualitative model for the Green Revolution S yndrome. The arrows Indicate reinforcing inter­ the other of these two outcomes. actions, the bulleted lines weakening ones. The model is realized by use of qualitative differential equations, where no further specifica­ Example-A Qualitative Model of the Green tion of actions is necessary. To gain insight into the effects of different governmental actions in Revolution Syndrome this syndrome, two versions of the model were constructed, one As a first modelling attempt, a simple model for the including an inhibiting effect of a degraded nature on the further intensification of agriculture (version 1, represented by the dashed central mechanism of the Green Revolution Syn ­ line) and one without this effect (version 2, black lines only). drome has been developed. The model consists of three variables: intensity of agriculture, natural capac­ ity and food production as shown in figure 6. It is The Questions core project was partially funded by the German important to note that we have structured the inter­ Federal Ministry of Education, Science, Research and Technol­ actions by introducing states and rates of changes as ogy (BMBF). partaking variables. To gain insight into the effects of

27 Global Integrated Modelling and Assessment

ICLIPS Integrated Assessment of Climate Protection Strategies

Project Leader: Ferenc Toth

The ICLIPS project is an international and interdisciplinary research activity to provide an Integrated Assessment of Climate Protection Strategies in order to support the decision making community in the realization of the United Nations Framework Convention on Climate Change (UNFCCC). To this purpose, the innovative tolerable windows approach (TWA) is applied: on the basis of a set of pre-defined guard­ rails that excludeintolerable climate change on the one hand, and unac­ ceptable mitigation measures on the other, the admissible scope for action is sought by investigating the dynamic cause - effect relation­ ships between society and climate. These relationships are described in an integrated manner by a model that takes into account climate impacts, the climate system itself, relevant biogeochemical cycles, emissions of different greenhouse gases, the allocation of emission rights to different nations, possible instruments for emission mitigation, and dynamics of socio-economic development. The different model parts are developed jointly with experts from leading institutes in the respective fields of global climate change. The modelling efforts are coordinated by the Potsdam Institute for Climate Research (PIK), which Ferenc Toth has initiated the project and integrates the various model components within the framework of the Tolerable Windows Approach.

The Tolerable Windows Approach to achieved remain unclear: Below which greenhouse Environmental Policy Support gas concentrations is the prevention of dangerous interference ensured? How much time do we have to The Political Framework spend, until the emissions need to be reduced? To At the end of the second millennium, mankind is facing what extent do we have to reduce them? a new challenge of unprecedented complexity: we Taking these issues into consideration, the German need an analysis of the causes, mechanisms and Federal Government is giving support to the ICLIPS potential impacts of global climate change and have to project. The main objective of the project is to bring find ways towards a sustainable balance between together an international and interdisciplinary research nature and civilization. Being aware of the importance group in order to carry out an Integrated Assessment of these problems and of the urgency for precautions, of Climate Protection Strategies and especially over 150 countries signed and subsequently ratified • to strengthen the empirical and theoretical basis of the Framework Convention on Climate Change the ‘Tolerable Windows Approach ”, (FCCC) in Rio de Janeiro in 1992. Article 2 of this Con ­ • to provide an interactive computer-based integrated- vention calls for the stabilizing of greenhouse gas con ­ assessment model which can be used by policy centrations in the atmosphere at levels that “prevent makers, dangerous anthropogenic interference with the climate • to give scientific advice to decision makers, espe­ system” and requires that these levels have to be cially to those who are involved in the international achieved within a “time frame sufficient to allow eco ­ negotiations of the Conference of the Parties to the systems to adapt naturally, to ensure that food produc ­ FCCC, and tion is not threatened, and to enable economic devel­ • to introduce the project results in the international opment to proceed in a sustainable manner”. Although discussion platform of the Intergovernmental Panel Article 2 fixes an overall goal for world-wide climate on Climate Change (IPCC). policy, the details of this goal and how it might be

28 The Tolerable Windows Approach sions of 1990 as the base year. In the long term (by By defining guardrails for tolerable climate change, on 2050), a reduction of about 80% should be aspired. the one hand, and acceptable mitigation measures on Future project work will focus on uncertainty aspects the other, and by investigating the chain of cause and inherent to the climate change issue. From the model ­ effect that relates society and environment, it is possi ­ ling point of view, we will concentrate on developing ble to determine the remaining scope of action over regionalized versions of the climate and the socio-eco ­ the next decades. Altogether, the guardrails define nomic model. To be effective, the project ’s results need sets of rather tolerable environmental and socio-eco ­ to be made available to international and national pol ­ nomic conditions which are called “tolerable windows ” icy making bodies, and to other scientists. Thus, in (figure 1). addition to the normal activity of scientific and popular The tolerable windows approach therefore seeks to publication, the ICLIPS project is bringing together determine the set of all climate protection strategies members of these groups in several workshops and that are consistent with the tolerable windows. Know ­ policy exercises. For that purpose, the project will pro ­ ing the remaining manoeuvring space may be very vide an interactive computer-based integrated assess­ helpful for all policy makers who are involved in the ment model. international negotiation process. The question which conditions are judged to be intolerable should be answered by society as a whole in the course of a Methods and Models - (democratic) process in which policy can play an important mediating role by participating in the public Methodological Aspects of the TWA education and persuasion process as well as by The Tolerable Windows Approach starts off with an reflecting the judgements in defining adequate tolera ­ explicit normative setting of unacceptable climate ble windows. Science may add, as far as possible impacts, policies, instruments, and generalized utili­ today, the necessary insight into the relationships that ties. By the analysis of the relevant elements of the exist between the different parts of the involved natural Earth system, the corresponding “tolerable windows ” and socio-economic systems. The implementation of are intersected in order to obtain that set of climate the tolerable windows approach in the course of the protection strategies, which keeps the entire system ICLIPS project requires the coupling of regionalized within the demarcated domains. From the methodolog ­ models for the impact of climate on natural and man­ ical point of view, the main objective of the tolerable aged ecosystems as well as on human societies and windows approach is twofold: firstly, the determination those for natural biogeochemical cycles, climate, of the set of all admissible emission paths which are greenhouse gas and aerosol emissions and of instru­ compatible with the normative inputs and, secondly, ments representing climate policy measures and influ­ the selection of optimal emission paths in a “second encing socio-economic development. best” manner. While the second task can be embed­ In the initial phase of the project in 1996/1997, a global ded into a cost-effectiveness framework, generally integrated model was developed in order to study the known among scientists, the first one requires an principle issues related to the conceptual basis of the appropriate mathematical foundation. Based on the tolerable windows approach, to develop appropriate theory of differential inclusions, several solution meth­ mathematical techniques, and to provide valuable ods were developed. These solution methods provide results timely with respect to the Third Conference of necessary and sufficient descriptions for the complete the Parties to the FCCC in Kyoto. The ICLIPS project set of admissible emission paths, i.e. for all emission was able to introduce first results in the international paths which are compatible with the tolerable win­ platform of the Intergovernmental Panel on Climate dows. Change (IPCC) at an IPCC Workshop in March 1997. The.boundaries of the tube of all admissible paths, Invited by the German Advisory Council on Global which is called a “funnel” in mathematical terms, may Change (WBGU), the project conducted an integrated be calculated for different climate windows and socio ­ analysis of climate protection strategies as part of a economic restrictions. However, the funnels are by no study prepared for the Kyoto Conference. From this means “safe” corridors because they represent only analysis the Council derived specific reduction targets necessary conditions: although each admissible path for the industrialized countries and recommended that lies within the corridor, not every arbitrary function these countries should reduce their greenhouse gas lying within the limits of the corridor is admissible. It is emissions by 11%, 23% and 43% by the years 2005, possible to gain the required insight into the internal 2010 and 2020, respectively, in relation to the emis­ structure of the funnels by implementing an approp ­ riate parameterisation of the emission profiles. Finally,

29 Global Integrated Modelling and Assessment

Geobio- Impact physical Climate Composit. Emission Quota Instrument Utility Space s1 Space s2 Space s3 Space s4 Space s5 Space s6 Space s7 Space s8

Toleratie Negotiatie Feasible Comfortable Impacts Allowances Measures Domain

Fig. 1: The Tolerable Windows Approach is based on the normative specification of tolerable sets of climate impacts, allowances and instruments for implementation (green arrows below Spaces 1, Space 6 and 7). The related “tolerable windows ” are derived successively in an inverse mode by scientific analysis (red arrows): first by analysing the additional stress levels caused by altered biogeophysical conditions that one can assume to be ecologically and socio-economicaiiy bearable (red striped areas in Space 2), a tolerable window for future climate development is deduced (Cli­ mate Space 3). In a further step, the corresponding set of admissible greenhouse gas concentrations (Composition Space 4) as well as the tolera­ ble emission profiles (Emission Space S) are calculated, i.e. those global greenhouse gas emission scenarios which keep the climate system within the demarcated window. Space 6 and 7 show the further filtering process in several steps. The red-striped window in the Quota Space stands for measures to avoid an intolerable Global Change. However, only a subset of these measures can be considered to be compatible with negotiable allowances, e.g. due to equity considerations (green circle in Space 6). In the Instrument Space, measures lying within the yellow rectangle, would yield to an intolerable climate change. More ambitious climate protection instruments (red-striped rectangle in Space 7) may not be tolerated by societies. So a set of feasible policies is filtered out, which is compatible with the norma­ tive settings (green rectangle in Space 7). In Space 8 another aspect is added: the demands of civilization and welfare called Comfortable Domain and indicated by the blue external rectangle. The still admissible measures are now shown by the red-striped circle. They effect our comfortable domain only in the small area of the agreement zone (light blue). As before, the yellow field in the middle stands for an uncomfortable climate, in which we do not want to live. the selection of a specific policy path may be carried The ICLIPS Climate Model out either by taking into account additional policy The objective of the ICLIPS Climate Model (ICM) is to goals, which are considered as hardly quantifiable, or describe the relationship between emissions of differ­ by minimizing the greenhouse gas abatement costs in ent direct and indirect greenhouse gases and climate a “second best” or “cost-effectiveness ” framework. change. For that purpose, a whole family of coupled The developed methodological tools appropriately take sub-modules is employed. Although the sub-modules into account the dynamic aspects of the entire prob ­ are conceptually simple, they nevertheless simulate lem, e.g. restrictions on the rate of change of climate reliably the results of more complex and therefore or socio-economic conditions. From this point of view, computationally more demanding (general circulation) the TWA may be considered as a dynamic generaliza ­ models. tion of the critical loads concept, which has been used ICM includes all the major greenhouse gases (carbon to determine the reductions of sulphur dioxide emis­ dioxide, methane, nitrous oxide, halocarbons, tropo ­ sions agreed in the Second Sulphur Protocol. spheric and stratospheric ozone, and stratospheric The main conceptual problems of the global version of water vapour). In addition, it takes into account the the TWA have been solved. Future conceptual work radiative effects of aerosols originating from sulphur will focus on integrating uncertainty, on regionalization, dioxide emissions and from biomass burning. ICM and on revealing the relationship between TWA and consists of the following sub-modules: competing approaches to integrated assessment of cli­ • biogeochemical sub-modules for turning emissions mate protection strategies. into concentrations, whereby carbon dioxide, well- mixed gases with well-defined lifetimes, i.e. meth­ ane, nitrous oxide, and halocarbons, aerosols, and not directly emitted gases are treated differently,

30 • radiative transfer sub-modules for calculating radia­ oped at the Kiel Institute of World Economics. In order tive forcing from concentrations, to be realistic, the final version of this model should • climate sub-module in the strict sense for translating allow to take into account elements of market imper­ radiative forcing into global mean temperature fections in various world regions, for example Europe, change and North America or the area of the former Soviet Union. • sea-level rise sub-modules for calculating sea-level Preparing these economic models for global TWA change from thermal expansion of oceans and ice analysis has involved two directions: starting own melting. modelling efforts on the one hand, and applying exist­ The carbon cycle is described according to a model by ing models on the other hand, especially in order to Svirezhev and Brovkin. In this model the annually provide first results of the overall approach timely for averaged carbon cycle is composed of four large car­ the Kyoto Conference. Therefore, the MERGE model bon pools: atmosphere, ocean, terrestrial vegetation of Manne and Richel was enhanced by including differ­ and pedosphere, connected with each other by carbon ent climate restrictions and applied to determine cost- fluxes. effective strategies as part of the WBGU study. The MERGE model will be replaced as soon as the The Concept for the Socio- ICLIPS models are available. According to figure 1, the objective of the ICLIPS Socio-Economic Model is to determine the socio-eco ­ Policy Analysis nomic consequences (expressed in the utility space) Analyses of political aspects of climate change have that are related to tolerable emission paths by taking focused on three issues: fairness concerns of climate into account pre-defined negotiable emission allow ­ change, analysis of the international negotiation proc ­ ance schemes as well as the set of feasible climate ess, and the role of scientific uncertainty in interna­ protection instruments. In order to achieve this goal, it tional negotiations. is necessary to provide a sectoral and regional dis­ 1) Fairness: The tolerable windows approach as aggregated macro-economic model, which especially developed in the ICLIPS project requires a includes detailed submodels for the energy sector, number of normative inputs. Although these will resource availability and for the technology sector. be left mainly to political decision makers, e.g. With respect to the instrument space (figure 1), politi ­ defining which climate impacts can be regarded cal, economic, administrative, technological and edu­ as tolerable, equity concerns have to be taken cational instruments will have to be distinguished. into account in the design of model scenarios and Regarding the selection of utility variables, we cur­ burden sharing schemes. With respect to this, two rently restrict ourselves to the category of private issues were identified to be the most important income, which is the basis of most economic utility and ones: First, the aggregation of national utilities to welfare concepts. Yet we plan to relate such variables an international level. This relates, among others, as mobility and recreation to the Orientor Concept of to the question to what extent the definition of a Bossel, where a set of generalized orientors is charac­ tolerable window should focus on regional or glo ­ terized, each of which has to be satisfied in at least a bally aggregated impacts. Second, how to allo ­ minimum quantity. cate the burdens and benefits of climate change Due to the very different time scales that are important protection strategies. A critical issue in interna­ in the global climate issue, two different economic tional negotiations is the international allocation of models are being developed. Firstly, we extended a emission reductions and related cost, possibly in Ramsey type optimal growth model based on Cobb- the form of tradable permits. The equity axioms Douglas production functions by including components most widely used in the economic theory of fair of endogenous technological change, aggregated division have been applied to this question and energy input, as well as the opportunity for emission thereby a relatively small set of allocations, which rights trade. This model is suited for long-term analysis can be regarded as fair according to these axi­ and will be coupled with the climate model as part of oms, could be identified, especially for the initial the ICLIPS Integrated Assessment Model. The latter phase of the climate change regime when emis­ model will allow the determination of long-term climate sions in the South are relatively small. protection strategies that are consistent with the nor ­ 2) Negotiation process: To assure that the model is mative formulated guardrails. developed in a way that it is able to address the In order to assess the short-term economic implica­ most prominent issues in the formulation of an tions of such strategies, a general equilibrium model international climate change protection strategy, (GEM) will be applied, which is currently being devel­ we closely monitor the international negotiation

31 Global Integrated Modelling and Assessment

process. As one result of this activity, a summary Data Base Design and Data Base Management of the propositions currently discussed in negotia ­ The project team at PIK began preparations for the tions for a legal instrument on climate change large scale socio-economic modelling activities by cre­ gases was presented to the workshop on fairness ating a data base of global socio-economic and natural concerns in climate change. Furthermore, occa ­ data. This activity involves collecting the relevant data sionally we inform other PIK projects about the sets of various international sources, performing qual ­ current state of negotiations on climate change, ity and consistency checks across the various data so as to further the policy relevance of ongoing sets, and making the data available in a unique format. research activities. 3) Scientific uncertainty: The complexities of interna­ Corridors of First Results tional environmental problems are only poorly In the first one and a half years of the project signifi ­ understood. Hence, decision makers have to cant scientific progress has been made. The main negotiate about abatement measures even problems of a global version of the TWA were solved, though they do not know the “true” model of the a respective model was programmed, and first results ecological system and have only a rough idea were published and presented at different workshops. about the costs and benefits of their action. ' Exercises with the MERGE model resulted in profound Research has focused on the effects of this kind experience in the determination of cost-effective emis­ of “model uncertainty” on the prospects of interna­ sion paths under different climate restrictions. How ­ tional cooperation. In particular, it has been ana­ ever, the MERGE model is used only as a substitute lysed to what extent countries can use the veil of for the ICLIPS socio-economic model which is under uncertainty to hide their distributional interests. As construction. part of this activity, a relatively simple game-theo ­ retic model for transboundary environmental prob ­ lems has been developed.

14

1995 2050 2100 2150 2200 1995 2050 2100 2150 2200

IWBGU IWBGU SLR

U L I I I 1995 2050 2100 2150 2200

Fig. 2: Restriction effects on temperature and (SLR) according to the WGBU Model from 1995 to 2200: The graphics show upper and lower bounds of corridors, i.e. guardrails, for emissions, cumulative emissions, C02 concentration, global mean temperature, and sea-level rise valid for the chosen tolerable windows. The WBGU Climate Model only allows a maximum temperature change of 2 °C since the preindustrial level and a maximum temperature change of 0.2 °C per decade and a maximum emission reduction rate of 10% per year. The sea level should not rise more than 30 cm since 1990 and no more than 3 cm per decade.

32 Results Achieved with the WBGU Climate Model sequent period when reduction takes place, all green ­ The main results gained by our first tolerable windows house gases (except halocarbons) and the sulphur exercise using the climate model of the WBGU study dioxide emissions are reduced in phase with carbon may be summarized as follows: in order to avoid violat ­ dioxide emissions. All corridors were calculated for the ing the restrictions imposed by a maximum tempera­ above mentioned WBGU climate window combined ture change of 2 °C relative to the preindustrial level with a socio-economic restriction given by a maximum and a maximum rate of temperature change of 0.2 °C global and regional emission reduction rate of 4% per per decade (“WBGU” climate window, see figure 2) year. In figure 3 a) the corridor of global emissions is and in order to allow a smooth transition to a fossil fuel given. Figure 3 b) shows the respective corridor if the free economy, we have to reduce greenhouse gas IS92a scenario is followed for another 15 years. emissions effectively in about 25 years’ time at the lat­ Figure 3 c) provides insight into the behaviour of the est, if an emission reduction rate of 10% per year corridors of industrialized countries ’ emission rights, if should not be exceeded. However, in this case the the developing nations have no reduction commit ­ reduction in 2020 has to be rather sharp. ments till equity according to the “equal per capita” In the cost-effective case, a level of nearly zero emis­ principle on the basis of the population of 1992 is sions is reached already in the middle of the next cen­ achieved. Finally, figure 3 d) states the respective cor ­ tury. The welfare loss of this optimal path - calculated ridor with another 15 years according to business-as- by using the MERGE model - is smaller than 1% of the usual. respective reference value. In the short run, i.e. up to about 2030, effective emis­ The main results may be summarized as follows. The sion reduction is only determined by restrictions on the time span, during which we can follow business-as- rate of temperature change. Limitations on the abso ­ usual, is restricted to about 20 years, if the chosen tol ­ lute values of temperature are important only in the erable window is not violated. Waiting 15 years without long term. As part of a sensitivity analysis we also cal­ implementing emission reduction measures at all will culated the corridors for an additional restriction result in a large loss of flexibility for action. Taking “WBGU SLR” case), limiting sea-level rise to 30 cm equity considerations into account results in an over ­ relative to the 1990 value and the rate of sea-level rise proportional restriction of the corridor of the industrial­ to 3 cm/decade. Due to the large time lags in the sea ized nations compared to the global corridor. It should level behaviour, the corridors differ only in the long be emphasized that the underlying equity considera ­ term from those derived from the WBGU climate win­ tion is specified with respect to emissions rights so that dow. joint implementation activities are not affected by these equity issues. Results Achieved with the ICLIPS Climate Model A general consensus in the integrated assessment The ICLIPS project has participated in the preparation community holds that, viewing the complexity of issues of a WBGU (Scientific Council on Global Change of in climate change and our ignorance about its many the Federal Government of Germany) statement for aspects, the best integrated models can only offer the Third Conference of the Parties to the Framework insight about nature, basic relationships, and key Convention on Climate Change (FCCC) in Kyoto. For dynamic features of the problem to policy makers. The that purpose, the WBGU climate model was results achieved by the ICLIPS project so far have enhanced. As a first step to regionalization, corridors shown that, even in its early phase of development, were calculated for two different groups of nations: the TWA approach can make a useful contribution to industrialized and developing countries according to the debate and provide valuable insights for the policy the so-called Annex I of the FCCC. This procedure process in its search for appropriate management allows to discuss equity aspects of climate protection strategies. strategies in the framework of the TWA. The results of this exercise, which are shown in The ICLIPS core project is funded by the Federal Ministry for figure 3, are valid under the following assumptions: in Education, Science, Research and Technology (BMBF) and the the initial phase, global and regionalized emissions are Federal Ministry of Environment, Nature Protection and Reactor following the IS92a scenario, which is some kind of Safety (BMU). business-as-usual scenario defined by the Intergov ­ ernmental Panel on Climate Change (IPCC). In a sub­

33 Global Integrated Modelling and Assessment

Fig. 3: Results of the new ICLIPS Climate Model: Emission com- -5 10" dors for global energy and cement o I related emissions (figures a and b) CD 5 and for the industrialized coun-

2 2-I

iO 100 150 200 Years after 1995 Years after 1995 RAGTIME

Transdisciplinary Regional Studies

RAGTIME Regional Assessment of Global Change Impacts Through Integrated Modelling in the Elbe River Basin

Project Leader: Alfred Becker

RAGTIME represents the regional, river basin oriented component of Global Change research at PIK. Its main objective is to investigate the impacts of climate change, of land-use and land-cover change, and of other human activities on hydrological and ecological characteristics. A modelling framework links evapotranspiration, runoff, and storage, river discharge, water quality, crop yield etc. Spe­ cifically vulnerable subregions are identified and the scientific basis for response strategies that ensure a sustainable development are provided. The project is carried out in the Elbe river basin, but the developed methodology may be applied to any other river basin.

The Elbe River Basin as a Study Area especially from agricultural land use, relatively Regional and local scale studies on Global Change high pollution loads from different sources, etc., processes and impacts are particularly needed at the and the need to protect the environment. land surface where the most important sources and 2) It is the driest of the five largest German river driving forces of Global Change are located These are basins. Droughts, water stress and water deficien­ for instance areas with changing land use and land cies occur earlier and more frequently than in the cover, industrial complexes, cities, traffic with emis­ other German river basins. sions of trace gases, different types of waste, etc. 3) It is subject to considerable socio-economic Accordingly, it is primarily at these scales that political changes resulting from the German unification and technical measures and regulations can be taken and the transformation from the former socialist to in order to avoid critical developments and to reduce free-market conditions. negative or undesired effects and consequences. The regional scale is crucial for an improved understanding The RAGTIME Approach not only of the different mechanisms of Global The methodological scheme of the RAGTIME Change, but also of its impacts on the environment approach is outlined in figure 1. Two aspects deter­ and society. mine the results of the impact study: climate and land River basins are the preferred land surface units for use, representing the two most essential control varia­ regional-scale studies because their basin bles. They are at the same time drivers of and subject areas represent natural spatial integrators or accumu­ to Global Change, and need to be given as system lators of water and associated material transports. inputs for any assessment of Global Change impacts, Changes in streamflow and river water quality indicate also in regional studies. impacts of human activities and environmental In this project the climate is considered as a more glo ­ changes. The German part of the Elbe river basin, cov ­ bal phenomenon influenced by the accumulated ering an area of nearly 100,000 km2, was chosen to effects of human activities. Changes in climate at carry out this case study for the following reasons: regional scales are not easy to predict. A catalogue of 1) It is large enough and provides a reasonable vari­ several climate change scenarios has been developed ety of environmental and socio-economic condi ­ from diagnostic studies of the past and present cli­ tions as well as conflict situations resulting mate, combined with simulation results of global and

35 Transdisciplinary Regional Studies

The essential hydrological and ecological characteris­ Scenario Catalogue Oatpntof tics such as evapotranspiration, runoff, groundwater Climate Climate Land Use Political and recharge, crop growth and yield, water quality etc. are Models the outputs of these models (lower block in figure 1). Diagnosis They need to be aggregated over space, e.g. a land­ scape or state, and time, e.g. a month, season or year, in order to be used for socio-economic evaluation and for the derivation of response strategies to avoid unde­ Hydrological and Ecosystem Models sired consequences (lower right in figure 1). This for ­ Level 1: Patches, Hydrotopes, ... ward evaluation of Global Change scenarios repre­ Level 2: Heterogeneous Landscapes, River Basins, Regions, ... sents a direct step towards the integration of (final tntoff-cUion) environmental and socio-economic aspects. A large number of land-use scenarios must be investigated (upward loop on the right-hand in figure 1) to find Scenario-related Regional Characteristics: socio-economically and ecologically acceptable, i.e. Hydrological: Runoff, Evapotranspiration, beneficial and sound response strategies, for different Water Quality, ... Ecological: Plant Growth, Crop Yield, ... land use types and area patterns in order to ensure a Aggregated Indicators------9 sustainable development.

Fig. 1: Schematic representation of the RAGTIME Approach. Meso and Macroscale Hydrological and Ecological Modelling in the Elbe River Basin regional atmospheric circulation models. Land-use- Land-use change and many other anthropogenic influ­ change scenarios are based on local political and ences normally occur on small land units. The models socio-economic driving forces. These imply guiding used in RAGTIME therefore operate with small pieces principles for environmental protection and natural in a first step. In a second step the patches are aggre ­ resource preservation, group interests as those of gated into classes and sub-basins. Two modelling sys­ farmers as well as regional development planning tems with polygon and raster-based spatial discretiza­ (upper block in figure 1). tion schemes have been developed for this project. Land owners and governments on a national, state, They subdivide the basins into elementary unit areas district, or local level clearly have a chance to ensure (patches), hydrotopes (Hydrological Response Units), the sustainable development and human welfare of or hydrotope classes. their region. The results of the scenario calculation The hydrological modelling system ARC/EGMO (Ein- may change with different political and social input var­ zugsgebietsmodell. Engl.: catchment model) is cou ­ iables. Therefore, as a separate research initiative pled with the Geographic Information System ARC/ within RAGTIME, a so-called metamodel will integrate INFO to apply the finest and most detailed disaggrega­ environmental and socio-economic aspects at a rela­ tion scheme into elementary unit areas. The modelling tively high spatial and temporal aggregation level using system SWIM (Soil and Water Integrated Model) states or other administrative geographical units and applies disaggregation into hydrotopes and sub­ years to consider annual budgeting. basins. However, SWIM is capable of simulating nutri­ The next step in the RAGTIME approach (central block ent dynamics (nitrogen and phosphorus), erosion and in figure 1) is to model the behaviour and performance vegetation/crop growth in addition to hydrological proc ­ capabilities of the environment and the natural esses. SWIM is coupled with the Geographic resource systems, such as water, vegetation, soil, etc. Resource Analysis Support System (GRASS). In some under past and present conditions. Reconstructions of cases, particularly for streamflow simulation in larger the past are used for model validation. After validation basins, a modification of the Swedish model HBV is these models are able to analyse any impact of Global used. This model requires less input data and works Change from the scenario catalogue for the respective with a coarser area discretization scheme than the area. A special requirement is that the models should other two models. Results of some applications of the be able to model land-surface units of any form and three models are presented below. size and also as integrated elements of heterogeneous From the first applications of ARC/EGMO and SWIM landscapes and river basins. A bottom-up approach is we come to the following general conclusions: to be applied because land use is often changing on • It is appropriate to distinguish two domains of hydro- relatively small areas. logical processes in modelling, that of vertical and that of lateral fluxes. Different disaggregation, aggre-

36 RAGTIME

gallon, and scaling techniques have to be applied for the two domains to simplify modelling, if required. • Mixed landscapes, e.g. composed of forests, crops, meadows and settlements, should be subdivided into units of unique hydrological regime (hydro ­ topes), which significantly vary in their hydrological process characteristics. This ensures that sound physical models can be applied for each land cover type, using appropriate data. • Polygons of different form and size are best suited to represent the mosaic structure of real landscapes. Spatially distributed patches with similar climate can be combined into larger modelling units (e.g. hydrotope classes) to simplify large scale modelling and to reduce computing time. • In lateral flow modelling, simple models, like single storage reservoirs or simplified diffusion type models are most efficient. They can be applied to large river basins and sub-basins.

Modelling of Water Balance and Runoff 0 100 200 300 Kilometers Components in the Elbe River Basin The first task was the basin-wide simulation of water Fig. 2: Spatial distribution pattern of mean annual amounts of simu ­ balance components such as evapotranspiration, sur­ lated percolation (in mm) in the Elbe river basin for the period 1983- face runoff and percolation in elementary areas, 1987 of 64.550 elementary units. The negative values show the hydrotopes or hydrotope classes. The ARC/EGMO annual capillary rise of water. Percolation generates either ground- water recharge and thus feeds a stable freshwater resource (ground- model was used for this purpose. First the basin was water) or lateral subsurface flows (interflow) contributing directly to divided into 64,500 elementary units by using all avail­ the flow. able digital information on land use, soil characteris­ tics, topography, groundwater level, the river network, analyses and investigations on land-use-change sub-basins, etc., as provided by the Geographic Infor ­ impacts on and water resources. mation System ARC/INFO. In a second step, the ele­ In addition to the water balance calculations, three run mentary units were aggregated to hydrotopes and off components: land surface run off, quick return lat­ hydrotope classes in order to simplify and accelerate eral subsurface flow, also called interflow, and ground- the simulations. water flow were simulated and analysed. The three Spatial interpolation of the required meteorological runoff components are important to describe properly input data was based upon daily values of precipita­ the transport of nutrients and pollutants in a river tion, mean temperature, relative humidity and sun­ basin. This investigation was performed for 35 meso- shine duration from 33 climate and 107 precipitation scale sub-basins of the Elbe belonging to drainage stations. The results generally show high spatial varia­ areas of different Elbe tributaries, among them the riv­ bility which is correlated to the climate and to the ers Saale, WeiiBe and Schwarze Elster, Unstrut, underlying land-surface features, in particular land Muide, Spree and Havel. For this purpose the HBV-D, use, soil and groundwater level. As an example, the the PIK version of HBV, and ARC/EGMO models were area distribution pattern of percolation available for used. groundwater recharge and lateral subsurface flow is The selected sub-basins have drainage areas of 190 shown in figure 2. to 6171 km2 and are located in all three geographical Relatively dry regions, which are especially vulnerable subregions of the Elbe: the Pleistocene lowland, the in case of droughts, are clearly visible in the central loess region, and the mountainous region. An example and eastern part of the Elbe basin. The mountain of such a simulation in the mountainous Fldha river ranges of Harz, Thuringer Wald and Erzgebirge indi­ basin is shown in figure 3. In order to facilitate the cate a greater water availability, mainly due to larger regionalization of the obtained results, all investigated precipitation values in these mountain regions. These sub-basins were classified into four classes based on results, together with others already available for 1980 five generally available run off characteristics, like the to 1997, serve as a reference point for future climate specific runoff and the high flow specific runoff for the

37 Transdisciplinary Regional Studies

gauges. The simulated three runoff components, taken N.N03,layai5 as long-term average values, were essentially different N.N03,byei4 between classes and similar within them. This con ­ firms the obtained results, and allows them to be too extrapolated for other areas and to use for water qual ­ ity assessment.

ground water 3 Interflow surface flow 0

■3

•e

5

Fig. 3: of river discharge simulated on a daily basis for 4

the period of 1981 to 1984 for the Floha river basin (gauge Borsten- 3 dorf), indicating the contributions of land (in blue), interflow (in green) and base flow from groundwater (in red). 2

1 Integrated Modelling of Hydrology, Nitrogen O Dynamics and Crop Growth 1 91 181 271 361 86 176 266 356 80 170 200 day# Five mesoscale sub-basins of the Elbe, the Buckener Fig. 4: Temporal variation of nitrogen fluxes and stocks over the Au, the Dahme, the Nuthe, the WeiBe Elster, and the period 1983 -1985 (daily data) for the hydrotope "cropland on loamy Stepenitz, were investigated using the SWIM model. In sandy soil ” in the Stepenitz basin: the Buckener Au basin the model was validated both (a) the dynamics of N-N03 in five soil layers (1: 0-1 cm, 2:1-24 cm, 3: 24-40 cm, 4: 40-80 cm, 5: 80-90 cm); (b) runoff with subsurface flow for spatial patterns and temporal dynamics. Seasonal (blue), leaching into ground water (pink., as negative values); (c) crop dynamics of soil moisture were compared for three dif­ consumption (uptake). ferent hydrotopes: forest on loamy-sandy soil, crop ­ land on the same soil, and wetland in the river . In addition to dynamic integrated hydrological and The simulated runoff components, surface runoff, water quality modelling, a special technique has been interflow and percolation to groundwater, showed rea­ developed to estimate the contribution of municipal, sonable patterns, and the simulated river discharge industrial and agricultural sources of pollution to the was in good agreement with the measured discharge. total measured river load on an annual basis, consider ­ After the hydrological validation of SWIM in five ing land use, soils, data on point sources, and other basins, the nitrogen module, which considers different relevant information in the studied river basin. This processes of nutrient cycling in soil, was tested in the technique has been applied first in the basins of the Stepenitz basin (575 km2). The robust approach as Mulde, WeiBe Elster, and Unstrut, and has demon ­ applied in SWIM for nutrient modelling in mesoscale strated its applicability at larger scales. river basins gave satisfactory simulation results for all A first regional climate-change-impact analysis was components and flows. This is illustrated in figure 4 for performed for the State of Brandenburg to simulate the hydrotope ‘cropland on loamy-sandy soil ’, the dom ­ hydrological processes and crop growth. Further, the inant soil type in the basin. The figure clearly illustrates crop growth model EPIC was implemented in SWIM. the characteristic seasonal dynamics of Nitrogen-N0 3 The simulation results were validated for the present flows and stocks, namely (a) Nltrogen-N0 3 in the five climate against the river basin discharge time series uppermost soil layers, (b) the generated lateral nitro ­ for three sub-basins in the region and available crop gen flow (with direct runoff and interflow) and leaching yield data for the districts (figure 5). Subsequently, an to groundwater, and (c) the crop uptake of nitrogen. analysis of the impacts of possible climate change on The simulated seasonal dynamics and the annual hydrology and crop growth was performed, using a flows for this and other soil types were quite satisfac­ transient 1.5 K warming (that is 1.5 °C) scenario of cli­ tory, and the differences between soil types were rea­ mate change. With this warming, the model predicts an sonably represented. increase of evapotranspiration and runoff, while ground water recharge stays practically the same. The

38 RAGTIME

impacts on agriculture are different for different crops, Analogous analyses will be performed for other sce­ and depend on whether the carbon dioxide fertilization narios of climate change, and also for larger regions, effect is taken into account or not. For example, wheat such as the entire Elbe basin, or Northern Germany. yield was slightly reduced if carbon dioxide fertilization The following results can already be provided for gen­ was not included, while carbon dioxide fertilization eral use: resulted in an increased yield of approximately 10 %. • Water balance components for the entire German part of the Elbe basin and runoff components for mesoscale subbasins (about 35). Socio-economic Evaluation • Integrated modelling of hydrology, vegetation and The results, which depend highly on the selected cli­ nitrogen dynamics in the Stepenitz river basin. mate change scenario and on the differences in nutri­ • Climate-change-scenario analyses for hydrological ent cycling in various soils, can be interpreted consid ­ processes and crop growth in the state of Branden­ ering possible management options and policies in burg for the period 2022-2050 using SWIM. order to improve surface and groundwater quality.

Fig. 5: Spatial patterns of winter barley yield (long term averages 1981 - 1991) for the state of Brandenburg: (a) simulated; (b) registered for the districts of Brandenburg.

The "Elbe ecology” part of the project was funded by the German Federal Ministry of Education, Science, Ftesearch and Technol­ ogy (BMBF 1995). The study "Regionalization in Hydrology” in the Upper Stor basin was funded by the DFG (German Research Foundation).

39 ThANSDISCIPLINARY REGIONAL STUDIES

WAVES Water Availability, Vulnerability of Ecosystems and Society in the Northeast of Brazil

Project Leader: Friedrich-Wilhelm Gerstengarbe

Semi-arid regions belong to the more vulnerable areas of the globe; more­ over, the limitations imposed by water scarcity and the high variability of precipitation contribute significantly to the vulnerability ofthese regions. These areas cover one third of the earth, and they contain about 20% of its population. Socio-economic indicators show living conditions much below the world average. Together with the strict climatic constraints, this deter­ mines the vulnerability of the regions. It has been observed that irregularly recurring severe droughts trigger massive migration from rural areas into urban centres or more favourable regions. The central goal of the WAVES project is to understand the interactions between water availability and migration from rural areas, and to contribute to the assessment of possible pathways towards a sustainable development.

Motivation and General Goals Piaui Ceara

Area 250.934 km2 148.016 km2 ■ • major settelments Inhabitants 2.616.900 (10/km2) 6.626.235 (45/km2) Atlantic Ocean $3 reference region Capital Teresina Fortaleza □ lakes Industry weakly developed moderately developed — slate border Agriculture maize, beans, rice, cashew, cowpea, sugarcane, — river cotton — transects with climatic gradient Climate - changing trade-wind belt climate

Fortaleza - little rain during winter p.a. 1500 mm (north) 500 mm (southeast) Maranhao ' T*mean ~ 26°C Cearii Fig. 2: Characteristics of the selected federal Brazilian states.

approaches to investigate the interactions between natural, social, and economic systems are necessary. The challenge is to combine the results of all disci­ Pernambuco plines in an overlying level “integration ”. The main goals of the disciplines and the interrelations are Alagoas shown in figure 3. The integrative approach can be understood as a

Bahia basic idea of the WAVES project. Integration is pur­ sued through the representation of dynamic processes in integrated modelling, the analysis of spatial data in landscape ecology, and the construction of integrated Fig. 1: Investigation area, Piauiand Ceara in Brazil. scenarios of regional development. The integrated scenarios will serve to assess options for the sustaina­ As an example the semi-arid regions of the Brazilian ble management of natural resources and develop ­ states Piaui and Ceara (figure 1, figure 2) are ment potentials of societal systems. selected, which are characterized by strongly limited WAVES is a joint contribution of Brazil and Germany to resources, pronounced climatic variations and social the Global Change Programme. It is sponsored by the stress situations. German Ministry of Education and Research (BMBF) In order to estimate the possible consequences of and the Conselho Nacional de Desenvolvimento climate change in semi-arid regions, interdisciplinary Cientffico e Tecnologico (CNPq). A pre-project phase

40 WAVES

Climate Soil Climate analysis x Soil survey and water balance § Climate modelling x Inventory and characterization # Development of climate of existing soil resources WAVES scenarios

Hydrology x Data collection and processing (water /^Agroecosys terns quality; streamflow data; water g.1 x Development of land use strategies consumption) 1 x Investigation of the ecological stability x Description of water rights, distribution, of agroecosystems and use x Modelling of pasture management, # Large scale plant and animal production x Large scale water management model

09H @3

/^Socio-economic and socio-cultural analysis /'''"integrated Modelling and Data handling x Description of the socio-economic and socio­ • # Merging multi-disciplinary information into an integrated model cultural conditions # Focusing on internal dynamics, linkages and feedbacks x Investigation of interactions between quality # Considering consistency and scaling issues of life and migration # Building consistent integrated scenarios of global change and x Formulation of a sociocultural partial model regional development x Data handling and CIS

Fig. 3: Relations and goals of the disciplines. Disciplines included: climatology, hydrology,agricultural and social sciences, landscape ecology. was carried out between 1994 and 1996. The main GERMANY BRAZIL phase of the project started in 1997 and will last until

2000. The organizational structure of the project is steering steering committee described in figure 4. committee

Main Collaborating Institutions BMBF & PT Germany • Technical University Munich-Weihenstephan

• University Stuttgart-Hohenheim management management • University Kassel group group co-ordination co-ordination • Potsdam Institute for Climate Impact Research office office • Hydroisotop GmbH Schweitenkirchen

Brazil • Universidade Federal do Ceara - Fortaleza responsible scientists scientist • Universidade Federal do Piauf - Teresina of the disciplines • Universidade Federal da Bahia - Salvador • Fundagao Cearense de Meteorologia e Fig. 4: Organizational structure (BMBF=German Ministry of Educa­ Recursos Hfdricos - Fortaleza (FUNCEME) tion and Research; PT=Executing Institutions; CNPq=Conselho Nacional de Desenvoivimento Cientiiico e Tecnologico) Climate Analysis and Modelling The spatial and temporal climate conditions in Piauf vides important basic information both for the work of and Ceara are analysed and modelled at PIK. The the participating partners and for the scenario develop ­ results will be presented in the form of scenarios of a ment; and at the same time it is an instrument to verify future climate development as partial components of the climate model results. the integrated entire scenarios. Climate analysis pro ­

41 Transdisciplinary Regional Studies

Monthly totol precipitation [mm/month] Dec.' 1982

REMO Exp. 017 (total : 76.3 I and: 128.3 seo: 53.8 )

.-100

Fig. 5: Beginning (red), end (blue) and duration (black) of the dry period, Tamborii 1921 - 1980. The figure shows a strong trend to a later beginning of the dry period and a smaller trend to a later end. This shows that the dry period became shorter in recent years. REljO Exp. 014 (total: 55.5 land: 93.0 seo: 39.3 ) Mann-Kendall Test and Cluster Analysis Beyond the current standard climate evaluation, our climate analysis is extended to find out, whether there are remarkable changes in the beginning, in the end, and concerning the duration and intensity of the rainy respectively dry season. The answer is an important indicator for the investigation of the migration in this area. Therefore two new statistical methods have been developed during the pre-project phase. The extended sequential version of the Mann-Kendall-Test makes it possible to describe the dry and wet periods in a statis­ tically significant way and to represent these events in Fig. 6: The use of driving forces from an improved version of a global their temporal sequences. A typical result of these circulation model provides a more realistic representation of precipi­ tation. The lower panel with Exp.14, out of 22, shows the reference investigations is shown in figure 5. version, whereas Exp. 17 In the upper paneI shows an increase of The next step is the temporal-spatial description of 37% on average for the entire model area. these events using an extended version of cluster analysis. These investigations will be continued. More ­ Summary over, it is planned to develop on this basis a statistical Within the main .phase of the projects, information will model for the creation of future climate scenarios (e.g. be gained on the spatial and temporal structure of dif­ C02 doubling) that can also be used within the frame­ ferent parameters relevant to meteorology and hydrol ­ work of integrated modelling. ogy on the basis of observed and modelled values of Additionally, the adaptation of a regional climate model precipitation, temperature and humidity, and on the will be carried out. The climate model REMO basis of natural variability and special climate events, (REgional MOdel), made available by the Max Planck which will create a basis to formulate climate scenarios Institute for Meteorology, is used as a basis. At present as components of integrated scenarios. this model is undergoing a further development in such a way that, apart from climate scenario calculation, it Large Scale Hydrological Modelling can be used within the integrated model at the end of The central question of the WAVES project is the anal­ the main project phase. Therefore, parameterization ysis of the relationships between water availability, approaches are being improved, sensitivity investiga ­ quality of life and migration in the semi-arid northeast tions are being carried out, and alternative possibilities of Brazil. This has been studied extensively by three for the provision with boundary values are being intro ­ working groups: assessment of water management duced. Figure 5 shows an example for the simulation strategies (Hydroisotop GmbH), water management of precipitation within the investigation area. modelling (University of Kassel), and large scale hydrological modelling (PIK).

42 WAVES

Reflecting the need for a quantitative description of the vegetation root water uptake, also evapotranspiration hydrological cycle covering the whole project area, the ET from the soil, vegetation and open water, that is riv­ development of a large-scale hydrological model was ers and reservoirs, as well as river flow Qr, groundwa ­ started during the project ’s main phase in August ter recharge q gw , the lateral fluxes in the subsurface q,, 1997. This model has to be adjusted to the specific and the fluxes to and storage in the reservoirs. conditions of northeast Brazil, which can be character­ Three main landscape types have to be distinguished, ized from the hydro-meteorological point of view as a i.e. the highlands, the lowlands in the vicinity of river pronounced semi-arid climate with almost all of the valleys, and the intermediate sloping country. Each of yearly rainfall during the rainy season of about four these landscape types exhibits a specific hydrological months duration, and from the operational-hydrological regime and therefore has to be treated individually. point of view as a large area of approx. 400 000 km2 This level of disaggregation by topography will be with many large, medium-size and small private reser­ complemented by using spatial information about land voirs and generally scarce data. cover, soil types, river networks, and possibly ground- The objective of this model, which will serve as a core water conditions. Intersecting these information levels component for constructing the water module of the will lead to a distinction of hydrologically similar units, integrated model is to give quantitative estimates of which is the basic concept for the hydrological discreti­ the relevant parts of the hydrological cycle, such as zation of the area. surface runoff, groundwater recharge, soil water stor ­ The activity so far included a feasibility study on using age, and storage in reservoirs, in a spatially distributed globally available geo-data for the purpose of large- manner. The outcome of this model will supply the scale hydrological modelling in northeast Brazil and an necessary information for the physical water availabil­ application of a simple hydrological model in combina ­ ity.- This information is required by a variety of disci­ tion with the GIS (Geographic Information System) plines, in particular water management, agriculture processing of the mentioned data. Obviously the main and socio-economics. scientific challenge is to develop a new, adequate The concept of the model was set up during the year hydrological model under the given constraints of 1997; the scheme is shown in figure 7: the main hydro- scarce data information, large discretization units, and logical fluxes and storage considered are surface run­ specific semi-arid climatic conditions. off q 0, the water storage in the upper soil usable for

Fig. 7: Design of the large scale Highlands Lowlands hydrological water balance model for highlands, slopes and low­ lands. P: precipitation, ET: eva ­ potranspiration, q0: surface run off, qgw: groundwater recharge, q,: lateral fluxes In the subsurface. watuse_h

watuse_s

J watusej

Ag roecosystems yields given climate variability, and the impacts of alter­ This component of the project is being studied at the ations in climate on production. Nutrient constraints to University of Stuttgart-Hohenheim. The objective is to crop growth and yield will be identified, and existing evaluate the potential of crop production under the simulation models for soil water dynamics, crop and present soil and climatic conditions, the security of animal production will be tested. Within agroecosys- Transdisciplinary Regional Studies

terns, activities are subdivided into four subgroups: soil information System (GIS), matching the key processes science, plant nutrition, crop production, and animal of the natural and anthropogenic components of the production. During the pre-project phase, the actual landscape system. The hierarchy of spatial levels cor ­ situation of agricultural production was analysed for responds to the data and process descriptions used by small spatial units in Piaui (figure 8). For this purpose the scientific disciplines in the project. The technical an inventory of the natural resources was made and tasks of digitalization of data and geographic data the existing soils were characterized. Also a database processing will support the project partners. for rational land use and animal production was built In the pre-project phase, physical, ecosystematic and up. political administrative data on Piauf were processed, and assessment methods were tested.

Legend: Effective area 1992 Integrated Modelling I | field <50 ha The common central question of the WAVES project is

I | field 50-500 ha the analysis of the relationships between water availa­ H field >500 ha bility, quality of life and migration in Ceara and Piaui, two federal states in the semi-arid northeast of Brazil. non agricultural areas A basic boundary condition is formed by the influence Effective area 1973 of climate variability and possible climate change. The agricultural area question connects the most limiting physical factor in northeastern Brazil, water availability, to the social issues of migratory movements, as driven by the often miserable living conditions. The purpose of integrated (Source: GAF&L0K) modelling in WAVES is to represent existing and newly Fig. 8: Changes of the agricultural use within the Picos-area (Piaui) generated knowledge on the problem in a formal simu­ between 1973 and 1992. lation model, and to design integrated scenarios for regional development. PIK is responsible for this inte­ Socio-economic and Socio cultural Analyses grative task. These components of the project are being studied by Generally, two of the most important problems in mak­ the University of Kassel, the University of Hohenheim- ing integrated assessments are the mutual intelligibility Stuttgart and the Fachhochschule Koln. Socio-cultural of information between different scientific disciplines, analyses focus on how social and environmental con ­ and the manifold of scientific interconnections between ditions affect human behaviour. The main aspects of the disciplines, including feedbacks. The construction human behaviour studied are the adaptation strategies of an integrated model calls for an explicit treatment of adopted, e.g. migration, in dealing with deteriorating the problem of communication, including issues of conditions. Living conditions will be expressed by an transfer between different typical scales in space and indicator for the quality of life, to be composed from the time, whereas the representation of linkages between whole range of influences studied in the project. The disciplines is internal, allowing for the representation of analysis will distinguish various actor groups such as feedbacks. individuals, families, political and administrative units. Economic studies focus on agro-economic production Systematic Model-Based Integrated Approach models, analysing agricultural enterprises and their The systematic approach of integrated modelling fol ­ future development potential under current and lows similar approaches in global studies, and has changed conditions e.g. climate, water infrastructure, been recommended in existing integrated studies of market. Data from optimization models for individual the semi-arid northeast of Brazil. Existing regional inte­ enterprises will flow into an integrating agro-economic grated assessments of climate change were generally model at the regional level, containing ecological, eco ­ restricted to studying agro-economic impacts, or did nomic and sociological elements. not pursue rigorous integrated modelling. The WAVES project has a pilot character in its use of a systematic Landscape Ecology model-based integrative approach in the assessment The working group landscape ecology, at the Technical of sustainable development in semi-arid regions, and University of Munich, Weihenstephan, studies strate­ in the extent of scientific disciplines explicitly covered gies for sustainable land use. The approach can be in a regional integrated model, from physics-based dis­ characterized as spatial analysis and planning meth­ ciplines like climatology and hydrology to disciplines odology. The integration tool used is a Geographic

44 WAVES

describing human behaviour, like agricultural econo ­ much depend on the variable climatological and hydro- mics and sociology/psychology of migration. logical conditions. The main feedbacks are formed by The approach of constructing the integrated model in societal responses to the situation in the region WAVES can best be described as a combination and regarding the management of agricultural and water iteration of a top-down approach to derive the relevant resources, and the effect of population dynamics on endogenous processes and to identify the important water and land use. external forces driving the system, and a bottom-up After the derivation of the conceptual model, it was approach to refine process knowledge and the param­ implemented in 1997 in a prototype version of the inte­ eterization of the processes. grated model for internal use within the project. Prelim­ inary parameterizations of the processes to be repre­ Concept of an Integrated Model sented in the model are merged into a model which In the pre-project phase (1996-1997), the conceptual still lacks spatial dimensions. The prototype model design of the integrated model has been constructed exhibits a modular structure where the modules by analysing the central problem from a systems-the- roughly match scientific disciplines: climate, water ory perspective. Hypotheses on what is relevant in availability and management, agriculture (including irri­ describing the internal dynamics of the system steered gation, crop and animal production), economics and the selection of variables and processes to be repre­ socio-cultural science. These modules are to be sented internally in the conceptual model and of replaced by full-scale geographically explicit modules boundary conditions to be captured in integrated sce­ from the individual disciplines. The disciplinary models narios. The conceptual model (figure 8) illustrates the will largely exist of, or build on existing models. Uncer­ main causal chains, the main linkages between scien­ tainty issues will be studied intensively in the project by tific disciplines and the main external driving forces to UFBa (University of Bahia, Salvador, Brazil); both sto ­ be captured in integrated scenarios. In this concept, chastic and fuzzy logic methods will be considered for migration from the rural areas is represented as adap­ the explicit representation of uncertainty in the model. tive behaviour of inhabitants reacting to worsened liv­ A preliminary full model version is due in the summer ing conditions, represented by the construct “quality of of 1998. A fixed model version and a concise cata­ life”. Employment and income from subsistence farm­ logue of integrated scenarios for possible regional ing, play a dominant role for life quality and they very development will be available in the summer of 2000.

Fig. 9: Conceptual version of the Integrated model: main causal chains and main linkages among the different aspects of the Inte­ grated model concept.

/7%-q // x\7. x •— / CuihiiCulture, / / Migration J V Dynamics Tradition

^Anticipated Living ^Conditions^

z x X X / \ X / s Climate, Technological Agricultural Demography Variability Development World Trade External Forces

Scaling the federal states, and the time scales used range A specific challenge concerns the issue of scaling. The from a few hours to months or seasons. Moreover, the basic data and basic process descriptions used in the geographic units or discretization principles applied, project range from the point/field scale to statistics for common for spatial simulations, can be very different

45 Transdiscipunary Regional Studies

among disciplines (figure 9). The municipality is cho ­ Climate Hydrology sen as the basic computational unit in the integrated model. An aggregation of descriptions of processes at the point/field scale to these larger spatial scales is thus required for most of the disciplines, while disag ­ gregation methods are also necessary in describing the economic and socio-cultural background. The study of scaling issues is an important theme not only for the scientific disciplines in the project, but also for integrated modelling, in co-operation with FUN- CEME. The relevance of the issue of scaling and the strategies to approach it go beyond the disciplinary level; moreover, the scaling issues are specifically <£ Administrative boundaries □ Land Suitable for Agriculture important at the interfaces between the individual dis­ + Climate model grid ■ Vicinity of river valleys ciplines. Agroecosystems Socio-economic and sociocultural analyses

The WAVES project is funded by the Federal Ministry of Educa­ tion, Science, Research and Technology (BMBF) and by the Conselho Nacional de Desenvoivimento Cientifico e Tecnologico (CNPq) of Brazil.

□ Land Suitable for Agriculture 0#* Cities, Villages 0 Crop Land, Pastures also included □ Scattered Individual Settlements

Fig. 10: Sketch of the spatial scales, typical for the various disci­ plines and their intersections.

46 EUROPA

EUROPA European Network Activities on Global Change

Project Leader: Manfred Stock

Scientific cooperation and exchange with other European research institu­ tions working on Global Change has been important for PIK from the beginning. This is reflected by a number of new project activities at PIK on a European level and with funding from the European Union. What do these EUROPA activities have in common? First of all they address vital or critical problems of climate, environment and society. Secondly, the project objectives are of general European interest embedded in a network of research institutions; and last but not least, the activities are transdiscipli- nary and oriented towards specific regional patterns of Global Change.

Manfred Stock

Acronym European Network Activity Funding Type

ACACIA A Concerted Action Towards a Comprehensive Climate Impacts and EU CA Adaptation Assessment for the EU

COMPACT Regional Climate Modelling and Integrated Global Change Impact EU CA Studies in the European Arctic

ECLAT-2 European Climate Projects Support Environment: Network for Co ­ EU CA ordinated Provision of Scientific & Technical Advice for Applying Cli­ mate Data in European Climate Change Research Projects

EFIEA European Forum on Integrated Environmental Assessment EU CA

KLINO Climatological Change of Hydrographic Parameters in the North Sea DE RD and the Baltic Sea

MOUNTAIN Environmental and Societal Changes in Mountain Regions EU CA

RICC Regional Integrated Climate Change Assessment DE RD

ULYSSES Urban Lifestyle, Sustainability and Integrated Environmental Assess­ EU RD ment

WISE Weather Impacts on Natural, Social and Economic Systems EU RD

Table 1: List of project activities under EUROPA.

Types: EU = European Funding, DE = German Funding, CA = Concerted Action, RD = Research and Development

47 Transdisciplinary Regional Studies

Scientific cooperation and exchange with other Euro ­ ties, like cooperation, coordinations and scientific pean research institutions working on Global Change exchange, they should also be linked to the other is reflected by a number of new project activities at EUROPA projects. The EUROPA projects of table 1 PIK. In nearly all cases both, the overall European are either concerted actions or research projects. Both importance of the projects and relevance have been types are important for an exchange of ideas, con ­ testified through a positive funding decision in the eval­ cepts, methods, models and data bases on the Euro ­ uation procedure of the Environment and Climate Pro ­ pean level. Although some of the projects assembled gramme of the EU. European projects are organized in in table 1 have German funding, their subject of two different ways at PIK: either as they are in this research is of general European interest. In particular chapter, EUROPA, which it is planned, will become a the Regional Integrated Climate Change Assessment core project, or in relation to other core projects (see in Brandenburg is a pilot study that may be adapted to tables 1 and 2). However, as regards network activi­ many other regions in Europe.

Acronym European Network Activity in core announced project /in progress

MAG EC Modelling Agroecosystems Under Global Environmental Change AGREC in progress

DART Dynamic Response of the Forest-Tundra Ecotone to Environmental CHIEF announced Change

LTEEF-II Long-Term Regional Effects of Climate Change on European Forests: CHIEF announced Impact Assessment and Consequences of the Carbon Budget

ETEMA European Terrestrial Ecosystem Modelling Activity POEM in progress

Millennia Numerical Simulation and Analysis of Climate Variability on Decadal POEM in progress and Centennial Time Scales

EUROTAS European River Occurrence and Total Risk Assessment Sys­ RAGTIME in progress tem

CLD Modelling the Effect of Land Degradation on Climate RESOURCE announced

Table 2: List of research and development projects with European funding in other PIK core projects.

A Concerted Action Towards a Comprehensive • An analysis of the “demand side” for climate impacts Impacts and Adaptations Assessment for the research, i.e. characterization of those actors in European Union - ACACIA: Europe potentially interested in the results of appro ­ PIK Contribution Leader: Hans-Joachim Schellnhuber priately conducted impact studies, like climate policy makers, planning agencies, business people from It is intended that this network activity will play a key vulnerable economic sectors or nature conservation role in the current process of evaluating and redesign ­ groups. ing European research on climate change impacts. • A pilot version of design specifications for an in- The action is co-ordinated by M. Parry, University Col ­ depth assessment of the probable effects of climate lege, London, and “includes virtually all key people in change in the EU and of the array of adaptive the field in Europe ”, as the reviewers put it in their con ­ responses. The construction will be based on current sensus report. wisdom as represented by the members of the ACACIA is a three-year project, started in autumn ’97, ACACIA consortium; it is meant to serve as a crucial only with minor funding for original research, but with input for the specification of the Global Change seg ­ resources for the commissioning of expert papers and ments of the Fifth Framework Programme of the the organization of workshops. European Commission. First results are expected by The main objectives are defined as follows: summer 1998.

48 EUROPA

• A synthesis report on the state of current knowledge The CLIMPACT network does not provide research on the likely impacts and potential adaptations with funds in itself, but bundles research activities from a respect to climate change in the EU. This report will range of participating institutes. amalgamate, assimilate and perhaps complement the parts and pieces available from various national, European Climate Projects Support Environment: sub-national, sectoral or case studies; this will prob ­ Network for Co-ordinated Provision of Scientific ably become a major contribution to the Third and Technical Advice for Applying Climate Data in Assessment Report of the IPCC. European Climate Change Research Projects - • A consolidated version of design specification for a Eclat-2 comprehensive European impacts and adaptations PIK Contribution Leader: Wolfgang Cramer research programme for the new decade. This full design paper shall provide a common topical and Continued enhancement and exploitation of European methodological platform for scientists, users and research successes will require continual attention to funding agencies interested in the overall topic. improving the co-ordination and efficiency of flows of information between the climate modelling, observed climate data and impacts research communities, and Regional Climate Modelling and Integrated Global to the methods whereby such climate data are used Change Impact Studies in the European Arctic - effectively in impacts research. The overall objectives CLIMPACT of this Concerted Action Initiative are therefore: PIK Contribution Leader: Wolfgang Cramer • To establish a framework for informing the research community within the EU Climate and Environment Although there is now almost universal agreement that Programme about the sources and availability of cli­ human activities will cause at least some significant matological information - both observed and model- global warming, particularly at high latitudes, there is based - with particular regard to the needs of climate much greater uncertainty over the likely economic scenario construction. impact of such changes at the regional level. PIK is • To develop a Support Environment that will provide involved in this project on impact research about the scientific and technical advice to accompany the cli­ European Arctic in cooperation with other institutes, matological information. supported as a European Science Foundation Science • To encourage the co-ordinated, consistent and effi­ Network under the coordination of Manfred Lange at cient use of climatological information within the EU the University of Munster. Climate and Environment Programme. The European Arctic has been chosen as a research • To identify aspects of the provision, application and field for several reasons. First, although not itself a interpretation of climatological information relating to heavily populated region, changes in the Arctic may climate change scenarios which may require future have impacts on the climate of Europe as a whole. research by the EU. Secondly, global climate models have already indi­ cated that future warming will be particularly pro ­ nounced in the Arctic, more so than in temperate and European Forum on Integrated Environmental tropical regions, and more so also than in the Antarc­ Assessment - EFIEA tic. and snow cover in the Arctic will likely be Project Leader for the PIK component: Ferenc Toth reduced to a much greater extent than in the Antarctic, causing a feedback effect through increased absorp ­ Integrated environmental assessment (IEA) is an tion of solar short-wave radiation by the ocean. The active and rapidly developing field. It involves scien­ challenge for the network is firstly to determine the tists and decision makers from a diversity of back­ extent of the climate changes, and then to asses their grounds and communities. Many approaches to this impact. complicated but promising field coexist, but what is To resolve what this impact is likely to be, progress is needed, is their mutual interaction. The European needed at two levels. First, it is necessary to model cli­ Forum on Integrated Environmental Assessment mate change more accurately at the regional level. serves such a goal. This will be done both by developing new regional cli­ In addition, the EFIEA fosters cooperation between mate models or extending existing ones, and also by scientists and decision makers inside the European interpolating or from global models. Sec­ Union, communication and cooperation outside the ondly, the socio-economic and environmental impact EU, and training of IEA techniques. of these anticipated changes needs to be determined.

49 Transdisciplinary Regional Studies

One of the two main work programmes aims at improv ­ wave climatology will be determined. Then sensitivity ing the scientific quality of integrated environmental studies will be performed to estimate the effect on the assessment. This programme consists of a series of regional climatology induced by the global climate workshops on methodological issues. The other work change. programme aims at strengthening the interaction between science and policy. It discusses particular techniques, and reviews a limited number of policy issues to which integrated assessment can contribute. The work programmes will each result in an edited vol ­ ume, discussing integrated assessment as a scientific activity and as a policy advisory activity, respectively. The project leader of the PIK component of EFIEA has also been invited to serve on the Project Steering Committee.

Climatological Change of Hydrographic Parameters in the North Sea and the Baltic Sea - KLINO O'------'------'------1------«------1------'------1------'------'------Project Leader: Eva Bauer 0 10 20 30 40 50 60 70 80 90 100 time steps

Changes of the regional-mean climate may develop Fig. 1: Time series of significant wave height [m] and wind speed [m/ s] in the storm track of the North Atlantic (52N, 20W) are obtained quite differently from the global-mean climate change. with the ocean wave model WAM simulating the response of the Estimates of climate changes on regional scales have ocean waves induced by perturbing the speed of the weather stream. to consider the regional peculiarities and the specific The reference wave height is shown (dotted) for the period October 25 to November 10, 1992 in which the time T is in steps of processes in sufficient detail. dT=6hours. On average, the increased storm frequency (dT=4hours) The project KLINO is focusing on the regional climate results in lower waves and the decreased storm frequency and climate changes of the hydrographic state varia­ (dT=8hours) results in taller waves. During periods of storm growth the increased storm frequency leads to significantly lower waves bles of the North Sea and the Baltic Sea. A reliable (blue area), but in periods of storm decay waves remain taller (red prediction of ocean surface waves and currents is area). The wind speed (dashed) is shown as friction velocity scaled needed to sustain the future protection of the coastal with factors. regions, the safety of off-shore operations and the advice on favourable shipping routes. In the past, geo ­ The spectral wave climatology is determined using the physical models have been developed which can now third-generation wave model WAM. The forcing fields be applied for such investigations. are taken from the European Centre for Medium- The project KLINO started on November 1, 1996 and Range Forecasts (ECMWF) Re-Analysis project. The runs until October 31, 1999, and is financed by the wind and wave data from the atmospheric and the Federal Ministry for Education, Science, Research and wave model are validated against in situ observations Technology. KLINO is working in cooperation with and satellite measurements. three institutes which use three classes of models for One hypothesis is tested according to which an the Atlantic scale, the basin scale, and the coastal increased storm frequency results in higher waves. scale with consistent forcing fields. The typical storm frequency of the North Atlantic in At PIK an ocean wave model for Atlantic scales and winter is perturbed by changing the speed of the basin scales is employed. The observed time series of weather stream to study the sensitivity of the wave wave height in the North Atlantic show an increase of height and the wave period. The mean effects of the wave height of 1 -2 % per year during the past dec­ increasing the storm frequency are slightly reduced ades. There has been an ongoing debate about wave heights and reduced wave periods. The mean whether this increase is real or caused by modified effect is small because of opposing contributions dur­ measuring practices. It is also not clear whether the ing the stages of storm growth and storm decay increase in North Atlantic wave height will have an (figure 1). Thus, an increase in storm frequency in the impact on the coasts of the North Sea. North Atlantic storm track cannot account for the These questions will be addressed in a two-step wave observed upward trend in wave height. modelling approach. First a high-resolution spectral

50 EUROPA

Environmental and Societal Changes in Mountain It was necessary, in particular,- to limit the study to a Regions - Mountain few important parameters, interactions and sectors. PIK Contribution Leaders: Alfred Becker (for IGBP/ The Brandenburg project has been further developed BAHC) and Harald Bugmann (for IGBP/GCTE) climate scenario Mountain Regions are of global importance all over the world. They provide resources, including water, energy, food, forest products, and places for tourism, for at least half of humankind. About one tenth of the regional climate global population lives in these regions. Mountain regions are global centres of biodiversity. Due to their steep slopes and related sharp altitudinal gradients, 'crops & forests grasslands hydrological and ecological characteristics vary clearly, sometimes drastically, with elevation over relatively short distances. Typical examples for such enormous water resources changes are the treeline, snowline, glacier and other ecosystem boundaries. These, and related hydro-eco­ logical characteristics, are particularly sensitive to the water threat & availability forces of Global Change. Changes in these bounda ­ yield ries can therefore be considered as an indication of Global Change, which can be analysed over long peri­ (water management^) (^health system^)} ods. Remote sensing data, in particular high resolution sat­ forestry~~^() trends (^agriculture~^) ellite images of mountain regions which became tourism energy increasingly available after the end of the Cold War will play an important role. Coupled with ground-based data from ongoing and planned studies, they will pro ­ vide an excellent platform for Global Change studies structural scenario and related model development. Another aspect concerns the sustainability of mountain Fig. 2: Aspects considered in the framework of an integrated regional environments and societies, which are increasingly study as applied in the Brandenburg case study. influenced and often threatened by inappropriate land use and also by globalization. in the mean time. It has become an integrated regional PIK scientists have been involved in the IGBP climate impact study to develop and test methods research programme on Global Change in Mountain which could be applied to other European regions as Regions since 1996, when a proposal for a “Mountain well. A variety of statistically derived climate change Workplan ” was prepared and published. Another Euro ­ scenarios are used as inputs to various types of eco ­ pean conference focused on the human dimensions, system and forest growth models, plant development and in particular on the land use change (LUCC) com ­ simulations, and hydrological analyses. Socio-eco ­ ponent of Global Change in mountain regions. nomic impacts are primarily directed towards human health and energy use. Integration across sectors and climate impacts has been improved (figure 2). Regional Integrated Climate Change Assessment- RICC Climate Scenarios Project Leaders: Manfred Stock and Ferenc Toth The task considered here is the development of differ­ ent transient climate scenarios for the state of “Isn’t it possible to conduct climate impact research not Brandenburg up to the year 2050 and equilibrium sce­ only in, but also for Brandenburg? ” This question was narios after an assumed temperature increase. asked by Brandenburg ’s Minister for the Environment, An observed time series of meteorological parameters Conservation and Regional Planning, Matthias on the one hand and the information about the future Platzeck, during a visit to the Potsdam Institute for Cli­ development of climate on the other hand form the mate Impact Research in July 1994, and it led to eight basis for the construction of a scenario, tested in the months of work on a pilot study. The focal point of it is Brandenburg area. Information about the future cli­ related to a long-term regional project, i.e. RAGTIME. mate may be expressed by a selected climate parame­

51 Transdiscipunary Regional Studies

ter as calculated by the General Circulation Model the relative humidity and the cloudiness decrease, GCM. The parameter used here is the expected trend whereas the sunshine duration and the global radiation of an increase in temperature. The advantage of this increase. The behaviour of the extremes is different method is that the defects of the GCM are reduced to a depending on the parameters. minimum. At the same time, the consistency among all In addition, transient scenarios were calculated meteorological parameters can be ensured. describing the climate development up to a fixed date According to these conditions the expected changes or or a new equilibrium state of the climate. These sce­ trends are imposed on the observed values of the cli­ narios provide more information on the dynamic of the mate parameter. By means of a special algorithm, the climate and the ecosystems. other observed meteorological parameters are Altogether it can be stated that in the future in the case adapted consistently to these changes, taking into of all calculated scenarios Brandenburg will have more consideration that the statistical characteristics have to dry and warm summer periods and more moderate be maintained. and wet winters. The following preconditions are assumed: Most investigations for the description of the future cli­ Impact on Water Resources mate are carried out using global climate models. In Brandenburg is one of the driest regions in Germany. the case of a further unlimited increase of the concen ­ This condition is aggravated by the predominance of tration of carbon dioxide in the atmosphere, these sandy soils with low water-holding capacities and by models calculate a global warming between 1.5 and the lack of a substantial amount of water inflows to the 4.5 K, that is 1.5 to 4.5 C, up to the year 2100, as region. Two regional water models were used to ana­ stated by the Intergovernmental Panel on Climate lyse the hydrological implications of climate change. Change in 1995. For Central Europe we assume a Under all scenarios considered, critical low-flow values warming of 2 - 4 K, that is 2 - 4 °C, within the next 100 fall significantly. This result would create problems for years. Therefore it makes sense to define the air tem­ water availability, water quality, and aquatic eco ­ perature as the reference quantity. For the Branden­ systems. burg study it is necessary to use daily values because this time scale is used in many models in climate Impacts on Agriculture impact research. The given trend is applied for daily About 50% of Brandenburg’ s area is in agricultural mean, maximum and minimum temperatures because use, 77 % of which comprises cultivated areas. The of their close relationship. Also, there are no indica­ most important crops are cereals with an area propor ­ tions that the assumed trend for these three parame­ tion of 52 %, followed by different forage and oil crops. ters could be different in the Brandenburg area. These figures illustrate the importance of agriculture As the calculated expected warming varies over the for food production and employment on the one hand relatively wide range of 2 - 4 °C, it is necessary to cal­ and the responsibility for the maintenance of the tradi­ culate several scenarios in order to obtain a rough tional landscapes on the other hand. However, this overview of the possible developments. The following responsibility is not fully acknowledged at the present scenarios were calculated: time. The basic scenario (BASC) reflects the present climate A quantitative study on climate impact on agriculture over the period from 1951 to 1990. It serves as a refer­ requires long-term regional simulations about the com ­ ence point for the evaluation of the changes within the plex interactions of plant-growth, soil, climate and simulations and is also used to calibrate the climate social-economic processes. Such a complex analysis impact models. has not been performed yet, so that the following dis­ Some of the impact models in the Brandenburg study cussion is restricted to a qualitative assessment of require an equilibrium climate state for their own calcu­ crop growth. lations. The climate scenarios were calculated over a Except for some minor species, the crops grown in time period of 55 years with different increases in tem­ Brandenburg share some basic properties: they perature. And a model that fulfils the given require ­ mature within an annual cycle, they are adapted to rel­ ments was found. As an example the most important atively cool temperatures, like most of the plants they results of the equilibrium scenario SE15 that discusses assimilate carbohydrates according to the C3-pathway, an increase of about 1.5 °C were chosen. Because of and suffer frequently under low water supply by the this temperature change the extremes of the tempera­ soil. For those crops and conditions it is well under­ ture are changed in the same magnitude. In general, a stood that a change of optimal temperature for daily decrease of precipitation of between 6 and 18 % can growth to warmer temperatures together with higher be observed, depending on the region. Simultaneously growth rates and a more efficient water use can be

52 EUROPA

expected. These positive effects are due to increased such as ebola, cholera and leprosy. The conditions for atmospheric carbon dioxide concentration. But they the spread of yellow fever do not occur in Europe at only lead to higher biomasses and yields, the the , but even a slight warming would theoreti ­ enhanced phenological development and the corre ­ cally create the living conditions required for the Asian sponding earlier maturity are compensated. Moreover, carrier mosquito. the final outcome depends on more factors, such as summer precipitation, achievements in crop improve ­ Urban Lifestyle, Sustainability and Integrated ment, and long-term effects of applied crop rotations. Environmental Assessment - ULYSSES As a result of a reduced vulnerability of crops to water Project Leader: Ferenc Toth shortage, yields will show a lower sensitivity to the annual variations of climate, so that under a long-term The Idea of the Ulysses Project perspective a more continuous food production could Policy makers dealing with complex environmental be possible. problems need knowledge of environmental science as well as of the social sciences to back up their deci­ Impacts on Forests sions. The European research project ULYSSES aims Two different modelling approaches have been used to at filling the gap between environmental science and study possible impacts on the composition, productiv ­ democratic policy making in the climate domain. ity, and stability of forests and natural ecosystems. Therefore we study judgements of informed citizens on Two forest succession models were applied to analyse climate policy and make them available to policy mak­ the regional impacts of climate scenarios on the poten ­ ers. To support this process, the citizens will be given tial natural species composition of forests within the access to state-of-the-art computer models on environ ­ state. The species composition appears to be quite mental change. sensitive to the amount of precipitation in the projected ULYSSES chose the method of Integrated Assess­ scenarios. The simulation results under the climate ment (IA) research to provide a useful overview of rele­ scenarios with temperature increases of 0.4 K, 1.5 K, vant problems and elements of possible solutions. In 3 K, that is 0.4 °C, 1.5 °C and 3 °C, indicate that with this context, the project is developing a procedure to decreasing precipitation, especially in the case of the include public participation in the integrated assess­ 3 K scenario, the share of beech forests decreases. ment. According to both models, most forests are composed In the framework of this Europe-wide project, PIK has of drought-tolerant mixed deciduous forests on fertile been working on the following three tasks about inte­ sites and mixed pine stands on poor sites. On the grated modelling of global climate change (IMAGE). other hand, a pine stand model was applied to analyse growth and yield of pine under different climate scenar­ IMAGE Scenarios ios, The simulation results show that reduced water This task involves development, testing and making availability would result in substantially reduced yields available scenarios of the IMAGE model, developed by of pine stands. Currently forestry in Brandenburg relies the Rijksinstitut voor Volksgezondheid en Milieu, mainly on pure pine stands which are very sensitive to Bilthoven, The Netherlands. These IMAGE scenarios fire and pest and insect calamities. The risk of damage serve as an important input to the focus group ses­ could increase under warmer conditions and these sions. A broad variety of input parameters have been impacts are likely to generate significant economic defined and corresponding scenarios were computed losses. at PIK. A special procedure to download graphic result files from the workstation and display images on per­ Impacts on Human Health sonal computers has been developed and imple­ Climate Changes may impair human health in various mented successfully. ways and to a varying extent. An evaluation of mortal ­ At the request of the ULYSSES cooperation partners, ity statistics indicates that the increase in extreme a documentation of the IMAGE model has been pre­ summers and heat periods related to climate scenarios pared, including a summary of the model structure and may cause a rise in the mortality rate due to heat the data flows as well as the descriptions of input files stress. Observations made in Berlin in the summer of (scenario specification) and output (results) files. 1994 and in Chicago in the summer of 1995 show PIK has also provided a scientific backup service, such tendencies. Even if a Mediterranean climate were assistance in interpreting internal model relationships to develop in Brandenburg, as the climate scenarios and in explaining results from various scenarios to the predict, one would not expect a rise in the incidence of rest of the ULYSSES project team. dangerous diseases like malaria, or in exotic diseases

53 Transdisciplinary Regional Studies

Regional Policy Panels (RPPs) Weather Impacts on Natural, Social and Economic In addition to running focus group sessions with lay Systems - WISE participants, the ULYSSES project is also organizing PIK Contribution Leader: Hans-Joachim Schellnhuber Regional Policy Panels. Participants at these work ­ shops include representatives of business, industry, The objective of the project, co-ordinated by the Cli­ environmental organizations, and relevant government matic Research Unit of the University of East Anglia agencies from the city or region in question. In addition (U.K.) with partners from the Vrije Universiteit Amster­ to the objectives set for the lay focus groups, regional dam (The Netherlands), the Fondazione Enrico Mattel policy panels explicitly look at the possible policy Milano (Italy), and PIK, is to perform empirical studies response options to the climate change problem at of the impacts of climatic extremes - in particular hot developing a regional scale. summers, warm winters and wind storms - on natural, The first policy panel session took place in Darmstadt social and economic systems in Europe. in June 1997. The procedure also included elements Most studies of potential socio-economic impacts of of the policy exercise technique. The workshop has climate change draw upon scenarios of future climate shown that regional policy panels may provide impor ­ and of future economic development. Another tant data points to compare perception and interpreta­ approach, which has been pursued only recently, is to tion of the climate change problem between lay people analyse observed impacts of recent climate extremes and policy makers at the regional scale as well as on economies and societies. Empirical studies can between groups of policy makers across various Euro ­ provide useful information about the nature and scale pean regions. of impacts on different sectors and upon the way in which different regions or cultures respond to them. European Venture Capital in Climate The impacts of recent hot summers, warm winters and Policy Implementation wind storms on the economies, societies and natural One of the most important issues in controlling green ­ environments of the countries of the contributing insti­ house gas emissions is the cost of various control tutes are studied primarily through quantitative analy­ options. Huge investments will be required in develop ­ sis of published economic data. A sector-wise ing, testing, commercialising, and marketing non-car ­ approach is taken, and a core group of the sectors bon and low-carbon technologies, before they will be agriculture, tourism, energy, water, and fire was able to compete with current fossil-based technolo ­ selected in order to allow regional comparisons on an gies. Therefore one of our objectives is to explore the international level. As far as possible, a monetary interest of European venture capital in this issue. The value is placed on the impacts which are found to ultimate question is whether at all, and if so, under result from the extreme weather conditions. In order to what conditions, European venture capital would assess possible time-dependent changes in the sensi­ invest in research and development of non-carbon tivities of systems to climate extremes, a comparison technologies. What are the most important decision with the impact of an earlier event from the 1970s is criteria? What type of information is required to make carried out. In addition, transnational impacts are an informed decision? What is the required institutional examined through case studies of perturbation in inter­ framework, and what policy initiatives should the Euro ­ national tourism and the flows of agricultural produce pean Union undertake in order to foster this process? in response to climate extremes. In this context, the aim of our policy exercise was to On the societal level, perceptions of the impacts of cli­ explore possible synergies between the venture capi­ mate variability among the general public will be exam­ tal sector and EU climate policy making. The workshop ined by questionnaire. Identification of the extent to explored, the conditions under which European ven­ which adaptations have already occurred or are in ture capital would invest in innovation on energy effi­ progress in response to a perceived increase in certain ciency and non-carbon energy technologies. The types of extreme weather phenomena are an impor ­ emphasis was on helping venture capital representa­ tant component of this research. Here, the findings of tives to define their own decision criteria, and to deline­ the PIK project on the northern hemisphere summer of ate policies and measures, which EU or national gov ­ 1992 are a valuable base. ernments should put in place to enhance such venture National differences and similarities in impacts, adap­ capital investment. tations and sensitivities to climate extremes and shocks, and their possible causes, will form the main findings of the project.

54 AGREC

Sectoral Modelling and Assessment

AGREC Assessment of Agro-Economic Impacts of Climate Change on Central and Western Europe

Project Leader: Frank Wechsung

In AGREC, we are analysing the sensitivity of the agricultural sector of Central and Western Europe to modifications in yield and yield risk of crops caused by regional and global climate change. The regional impact of these changes will be demonstrated for Germany. Our investigations are based on simulations of the impact of possible cli­ mate change on the production potential of useable farmland. The AGREC core project uses the crop-related technological expenditure and yields as major variables. Special attention is given to the effect of elevated carbon dioxideon plant growth. Partial equilibrium models at the European scale and farm allocation models at the German scale are used to calculate both the possible structural changes of the agriculture sector caused by climate change and the costs of maintaining conventional structures. The variability

of possible climate, socio-economic and political change will be con­ Frank Wechsung sidered in scenarios. In 1996 and 1997, the main topics covered by AGREC were crop modelling, regional validation of crop models and the supply of yield scenarios. The implementation of the carbon dioxidefertilization effect in the PIK crop model demeter played a particular role. Thanks to the participation in the Free-Air Carbon Dioxide Enrichment (FACE) experiment at Maricopa, USA, it was possible to include experimental findings about the effect of carbon dioxide enrichment on wheat in the modelling effort.

Major Research Goals be modified or regionally reallocated to minimize the Within the AGREC core project, we examine the con ­ possible impacts (food scarcity, additional soil and sequences of possible climatic changes for agricultural water demand). It focuses on the effects of climatic production and the agricultural commodities market in change on German agriculture in a European market. Central and Western Europe. The project serves to extend the methodological basis Important questions in this project are: for political decision-making processes concerned with • To what extent can the regional demand for vegeta ­ climate change mitigation measures in the agricultural ble and animal agricultural raw materials be satis­ sector. fied, assuming the present structure of agricultural In a first phase, AGREC mainly delivers yield scenar­ production and climate change? ios, which describe simulated effects of climate • What structural adjustment reactions can the agricul ­ change on agricultural crop yields. Simulations are tural sector be expected to make to climate change, made first at the mesoscale level for river basins and considering the different liberalization pathways that for the individual federal states of Germany, and later may be expected to affect the European agricultural at the macroscale level for globally relevant agricul ­ commodities market? tural production areas. The construction of yield sce­ • What costs might result from prevailing agricultural narios is mainly based on process-oriented crop mod ­ policy, which might prevent or delay the structural els. A realistic estimation of ■ the carbon dioxide adjustment of agriculture to climate change? fertilization effect on plant growth, water consumption The project aims at a scientifically profound evaluation and yield is of special importance. of the effects of climate change, and will support the In a subsequent second phase, the economic conse ­ identification of those agricultural activities which can quences of yield modifications for the countries of

55 Sectoral Modelling and Assessment

Central and Western Europe will be determined, and are realized regionally in Germany; the consequences are hereby traced down to the district level. Partial equilibrium models for the world commodities market and farm allocation models for Germany will be used for the transformation of yield changes into agro-eco- nomic impacts of climate change. The former serve to determine changes in European agriculture at an aggregated level, the latter allow a further regionaliza ­ tion of these aggregated results for Germany. The pos ­ sible socio-economic and political change which may occur parallel to climate change will influence the impact of future climate on the agricultural sector. The variety of these changes will also be considered in dif­ Fig. 1: Wheat crop on 3 April 1997 showing phenologlcal differentia­ tion. The different nitrogen treatments are separated by a small, ferent scenarios. The Institute for Agricultural Policy at partly hidden, walkway (leading from the tower left towards the Sierra the University of Bonn is a collaborator for these stud­ Istrella mountains in the background). The LOW half plot is located In ies. the right-hand part of the photo. The half plot visible on the left-hand had full nitrogen supply [HIGH]. The accelerating effects on phenol­ Selected results of this work will be presented in more ogy and senescence due to the nitrogen shortage and the C02 detail in the following paragraphs. enrichment (AMBIENT COz outside the ring, enriched C02 =FACE inside the ring) including their combined effects are clearly visible. Free-Air Carbon Dioxide Enrichment Experiment - FACE Effects of Elevated Carbon Dioxide under Different Project Leader: Thomas Kartschall Water and Nitrogen Supplies As a result of the carbon dioxide enrichment, the pri­ The concentration of Carbon Dioxide in the Earth’s mary photosynthesis performance rose under C02t by atmosphere has increased continuously since the up to 75%. For all C02t variants an approximately beginning of the industrial period, and will probably 30% higher growth of biomass was recorded up to the have doubled by the end of the 21st Century. Within the middle of the vegetation period for WET and DRY. The framework of a free-air carbon dioxide enrichment processes of ripening and senescence were slightly experiment conducted by the U.S. Water Conservation accelerated under C02t. In association with other car­ Laboratory (USWCL), Phoenix, Arizona, in the Sono ­ bon dioxide effects, this led to a shortening of the grain ran Desert, concentrations of carbon dioxide as they filling period, and reduced the growth advantage for may be expected within the coming 50 to 75 years, the FACE variants to 8% (WET) and 20% (DRY) in the were established under open-air conditions, and their final yield. Root growth under C02t was also stimu­ impact on the agricultural cultivated plants cotton, lated appreciably. The partial closure of the stomata wheat and barley was investigated. For this purpose, under C02t led to a recordable warming in the FACE the concentration of carbon dioxide within the air is plots through a decrease in transpiration per unit leaf increased in circular plots of 22 metres diameter in the area (figure 2). experimental field to 550 ppm (called FACE) as against 370 ppm (called AMBIENT), under otherwise undisturbed atmospheric conditions (figure 1). In the experiment, the effects for ambient and enriched atmospheric carbon dioxide and for two steps of water supply were investigated. Similar studies were realized with sufficient and limited supplies of nitrogen. • Sufficient water supply = WET • 50% water supply = DRY • Sufficient nitrogen = HIGH • 30% nitrogen = LOW Fig. 2: Thermal scan of the (left) AMBIENT C02 plots (-370ppm) and The main PIK activity in 1996/97 within FACE was the (right) FACE plots (-550 ppm). evaluation of possible short and long-term effects of elevated atmospheric carbon dioxide (C02t) for all The advantage of a greater water-use efficiency on the four treatment combinations FACE-HIGH and -LOW, leaf level did not enhance the water-use efficiency on a AMBIENT-HIGH and -LOW and their main interactions whole-crop level, because a compensation due to

56 AGREC

higher biomasses and a faster growth in leaf area Crop and Yield Modelling appeared. The main research topic in 1997 was the evaluation of Previous observed and simulated results on photosyn ­ the PIK wheat model demeter, focused on possible thesis and water vapour exchange for the C02-water short- and long-term effects of Global Change (includ­ experiments indicated possible acclimation and “down- ing C02t) and how these interact on different spatial regulation ” effects of C02t on photosynthesis, espe­ and temporal scales. This task was broken down to the cially during late crop development (senescence). following three topics: Therefore diurnal and seasonal trends in photosyn ­ • Improvement of existing mechanistic model formula ­ thetic efficiency represented by the maximum satu­ tions for gas and energy exchange on the leaf and rated .carboxylation rate (VCmax) were observed in plant canopy scale. order to estimate stimulating and acclimation effects • Evaluation of the general validity and scalability of on photosynthesis under ambient and C02t in the the improved model, obtained in FACE, to enable C02-N experiments. their use under European conditions. Our experimental study was made to evaluate the fol ­ • Step-by-step application of the improved model com ­ lowing three ad hoc hypotheses about a possible ponents for regional studies, as performed for the decline in VCmax on seasonal and daily time scales, Brandenburg state-wide yield simulation study. and especially whether it appears or is amplified under The development and application of the demeter C02t. model since 1993 has mainly been based on experi­ • Long-term (longer than a day) dilution/senescence of mental data sets obtained from the FACE experiments. proteins should result in an apparent decrease in the In 1997 a comparison was carried out under ambient activities of the carboxylation enzyme Rubisco. carbon dioxide in Bernburg, Germany, in which the • Rubisco can be deactivated due to metabolite accu­ behaviour of the same variety of wheat as used in the mulation. FACE-Experiment, was studied under European envi­ • Accumulation of metabolites within the chloroplasts ronmental conditions. The results obtained enabled a can increase resistance against electron transfer validation of demeter for a typical German wheat grow ­ and C02/HC03" diffusion and could lead to a short ­ ing region. term decline in observed photosynthetic activity. The advanced model is now able to reflect the energy For all three inhibition mechanisms an amplifying and gas exchange on a time basis of minutes to days effect of C02t was assumed. more accurately (figure 3). The experiments carried out resulted in the following findings: • A seasonal effect of declining VCmax for all treatment combinations was clearly visible. • No clear evidence of a diurnal deactivation of Rubisco was found. • A slight diurnal tendency for carboxylation efficiency to decline was observed.

The Main Results of FACE and their Contribution to PIK Model Development During all FACE experiments C02T was found to have a stimulating effect on photosynthesis, water use effi­ 08:00 10:00 12:00 14:00 18:00 18:00 1 ” [hh:mm] ciency, biomass growth and grain yield. The experi­ mental findings and simulation results clearly indicate a stronger stimulation under limited water supply but Fig. 3: Simulated and observed diurnal courses of photosynthesis only slightly diminished effects under nitrogen short ­ rate during the Bernburg comparison study on 10 July 1997 (tempo­ age. No evidence, was found of “down-regulation ” ral resolution: 1 minute to 1 day). Red: simulation, green and blue: effects of C02t on photosynthesis. This confirms the experimental data from two measurements. applicability of model solutions obtained from FACE, for simulation studies on a wide range of temporal and In the demeter model all dynamic descriptions of short ­ regional scales, as performed with demeter for the term processes are interlinked leading to a day term State of Brandenburg. behaviour of macroscopic and observable variables in a generic way. Therefore the short-term improvements and the more detailed knowledge about the long-term

57 Sectoral Modelling and Assessment

Fig. 4: Diurnal course of flag leaf photo­ synthesis on 18 March 1993 during the a.FACEWET FACE 1993 experiment in wheat. The pho­ aiCOHTROLWET tosynthesis shows a typical "midday depression ” in the DRY plots (middle); temporal resolution: 1 hour to 1 day.

Time [h, 16 Mar 93] 18 Time Ih, 16 Mar 93]

Fig. 5: Cumulative evaporation during the FACE wheat experiment in the FACE 1993 En-Es experiment in wheat (temporal resolution: 1 day to 1 year).

FACE WET (cm) 3 CONTROL WET (rim) FACE WET (ota) CONTROL WET (ota) FACE DRY (rim) ; CONTROL DRY (rio) FACE DRY (ob») CONTROL DRY (ota)

60 80 100 120 140 160 20 40 60 80 100 120 140 160 Time [DoY, 1993] Time [DoY, 1993] behaviour of VCmax (during senescence) resulted in a nomic factors of high significance. Dynamic models more stable behaviour of the macroscopic (figure 4) are appropriate tools for yield simulation on the and long-term response. Finally an increase in accu­ regional scale. In this regional study, we validated the racy for the phenology and the annual cumulative eva- two wheat models demeter and EPIC for further cli­ potranspiration (figure 5) and for the estimates for mate impact calculation using regional wheat yields cumulative carbon fixation and final grain yield were from the German federal state of Brandenburg. This is achieved. All presented results for the C02-water different to many previous studies, where yields of experiments were calculated with the hourly mode of experimental stations were used only for validation. the latest version of the demeter wheat model using The region was structured into 10 climatic subregions. identical soil and plant parameters. The short-term The spatial distribution of soil properties was repre­ simulation of photosynthesis for the Bernburg study sented by projecting soil types from a 1 :1,000,000 was done using an embedded special feature of the scale soil map on typical soil specific parameter val­ hourly mode (a high resolution modification of the ues. 15 different soil types were taken into account. An hourly photosynthesis module using minute driving assignment of wheat farming areas was performed by forces). district statistics for 1991. Each soil type was given a The spatial scalability was the subject of the yield sim­ specific portion of the total wheat area, taking into ulation study presented in the next paragraph. These account soil quality and crop rotation preferences. results taken together show that the model is capable At first, demeter performed better than EPIC in of being scaled at different temporal and spatial resolu ­ describing the total spatial and temporal yield vari­ tions as is necessary for Global Change impact stud­ ance. Further analysis has shown that yearly aggre ­ ies. gated demeter simulations correlate very strongly with the time series of Brandenburg mean wheat yield.

The Free-Air Carbon Dioxide Enrichment study was supported by However, the correlation between simulated and sur­ the German Federal Ministry for Education, Science, Research veyed mean district yields was very low, mainly and Technology (BMBF). because of different model behaviour for the northern and southern parts of Brandenburg. In contrast to demeter, the temporal and spatial behaviour of EPIC is Regional Modelling of Agroecosystems more consistent. The low overall performance was mainly caused by strong underestimation of the 1983 Regional Validation of Dynamic Crop Models and 1990 yields. Besides uncertainties as to whether Climate impact studies within Europe have to consider the soil, weather and land-use conditions for Branden- the yield of winter wheat and other cereals as eco ­

58 AGREC

burg are described representatively by the data used, both models need to be partially recalibrated to improve their regional performance for regional yield estimates in the future. The study lead us to the con ­ clusion that overall estimates of the impact of climate change scenarios on mean wheat yields based on demeter and EPIC simulations are more reliable than simulations of the regional distribution of such an impact at this point.

Simulation of Winter Wheat Yields for the State of Brandenburg Fig. 6: Frequency distributions for simulated timing of flowering and Quantitative studies of climate impact on growth and maturity for three selected time periods. yield of agricultural crops require the application of simulation models which should be sensitive to carbon same range of the reference period, and the shortened dioxide. A simulation study was conducted on wheat season was compensated by higher atmospheric car­ growth in Brandenburg under present and future cli­ bon dioxide (figure 7). mate underlying current cultivation practice and land use structure, using data from 10 weather stations and .... 1983-90 [Biomass] a regional soil database. — 2023-30 A transient climate scenario with an 1.5 K temperature »— 2043-50 increase by the year 2050 was used. The following periods were investigated: 1) 1983-1990 (observed weather) 2) 2023-2030 (Scenario) 3) 2043-2050 (Scenario) The atmospheric carbon dioxide for each period was extrapolated from the linear trend of the last two dec­ ades.

Day ofYear Plant Growth As expected, the timing and duration of phenological Fig. 7: Mean biomass and grain growth for three selected periods. phases is shifted under warmer climate (figure 6). With increasing temperature, the events of flowering and Regional Differentiation of Long-Term Yield maturity are reached earlier, with overall shortening of The percentage of wheat yield change is mapped for grain filling period by 2.6 days. For the two future peri­ both scenario periods compared to the reference ods, the growth rates at the beginning of the season period, as affected by regional differences in soil qual ­ are much higher due to the combined effect of higher ity and weather (figure 8). temperatures and carbon dioxide. The different yield change sensitivity of Brandenburg ’s Accelerated phenology and increased water stress subregions is clearly visible. A yield decrease for the due to reduced precipitation resulted in the lowest entire State of Brandenburg was estimated with yields for period 2. Precipitation for Period 3 was in the 10.6 % and 1 % for periods 2 or 3 respectively.

Fig. 8: Regional change of long­ term wheat yield in the State of Brandenburg for periods 2 and 3. Simulated long-term mean rela­

tive change for 2023-30 (a) 25 and larger respectively 2043-50 (b) as com­ pared to 1983-90. 17.5

7S Change in % ■ns

-17S

-25 and lees

59 Sectoral Modelling and Assessment

Climate Sensitivity - Risk of Low Yields Conclusions of the Crop Yield Studies The variance in long-term mean yield for a specific The climatic impact on wheat yield depends strongly soil-climate combination affects the risks that a defined on amount and distribution of precipitation in the sce­ yield reduction will occur in one particular year. narios used. In some cases, yield losses caused by Assuming a yield reduction of 20 % compared to the higher temperatures and increased atmospheric long-term average, it can be seen, that the climate demand in evaporation can be compensated by higher sensitivity of yields successively decreases with carbon dioxide concentration. It has been possible to increasing levels of atmospheric carbon dioxide show that the of wheat yields would (figure 9). Average risks for the State of Brandenburg decline in the State of Brandenburg under increased are 18 %, 14 % and 11 % for periods 1,2 and 3. carbon dioxide.

1983 -1990 2023 - 2030

more than 33

28.5

22.5 i6.5 Probability in

10.5

4.5

* ------1 0 and less Database: Model DEMETER. SoO Data by BCR. WtaUur Pat* by DWD.

Fig. 9: Simulated regional distribution of risk to get a 20% reduction of long-term wheat yield in one year for three periods in Brandenburg.

60 AGREC

Modelling Agroecosystems under Global 5) to test the performance of the coupled soil / plant Environmental Change - MAGEC agroecosystem modules in patch /regional scale Project Leader: Wolfgang Cramer modelling frameworks 6) to contribute an agroecosystem module to a mod ­ MAGEC will provide modules of soil / plant interactions elling tool (ETEMA) that will allow policy makers in in agroecosystems to contribute to patch (<0,1 km) the EU and individual governments to study the and regional scale (10-100 km) modelling frame­ environmental impacts of land-use and climate works already under development within the EU-TERI change and examine scenarios for mitigation programme ETEMA. Specifically, the objectives of PIK will be particularly responsible for 4) and 6), evalu­ MAGEC are: ating agroecosystem models developed in 1)-3) 1) to evaluate the process description used by lead­ under the full range of environmental conditions that ing agroecosystem soil and plant models; are found in the EU. The project is coordinated by Dr. 2) to use the best process descriptions to formulate Pete Smith, Institute of Arable Crops Research, Roth- new agroecosystem modules appropriate for use amsted in the United Kingdom. in patch and regional scale modelling frameworks

developed elsewhere with EU-TERI The MAGEC project is a European joint research project due to 3) to test the accuracy and precision of the new soil be funded from 1998 on, but initiated in the course of 1996/97. and plant modules 4) to incorporate the agroecosystem modules into existing patch / regional scale modelling frame­ works

61 Sectoral Modelling and Assessment

CHIEF Global Change Impacts on European Forests

Project Leader: Petra Lasch

Forests are one of the world’s major renewable resources. Beyond their timber value, they also have a large value as providing recreational areas, wildlife reservoirs and, in some regions, protection against mass move­ ments of mountain slopes or . Globally, forests hold a large fraction of the terrestrial carbon stock and they participate in rapid exchange proc­ esses between biosphere and atmosphere through photosynthesis, respira­ tion and mineralization. Most of these processes are sensitive to climate change. Forests are not only an object of human activities but also play an active role in the global carbon cycle that in itself influences the develop­ ment of the Earth system. Therefore the main goal of the CHIEF project is to assess the nature and extent of possible impacts of Global Change, con­ centrating on growth and species composition of forests, the economy of the forest industry and secondary values of forests. These issues shall be addressed at three different scales and at different levels of detail: the Euro­ pean, the German and the regional scale.

Petra Lasch

Modelling of Forest Growth and Socio-economic In the densely populated regions of Central Europe, Consequences the secondary value of forests goes beyond their direct Forests, whether managed or not, are known to toler ­ economic value for the timber industry. This must be ate some climatic variability, but they may respond with accounted for by an assessment of the impacts of Glo ­ sudden breakdowns if certain climatic thresholds in, for bal Change on forests, either as monetary interests of example, moisture availability or windstorm intensity industries or public bodies depending on such values are exceeded. Because of the long turnover times of as tourism and catchment management or as non ­ these ecosystems, it is important to be able to estimate monetary interests of other users like recreation and the likely range of possible fates of forests over the wildlife. The main goal of this project is to assess the next few decades or even centuries. It is widely nature and extent of possible impacts of global envi­ accepted that the conventional tool for silvicultural ronmental change on forests in Europe. The main planning, the yield tables, no longer provide adequate impacts considered are (i) on growth and species com ­ estimates of future forest conditions. This is because position of forests, (ii) on the economy of the forest the environment, most notably the emission of nutri­ industry, and (iii) on secondary values of forests. To ents and other pollutants, the ambient concentration of reach this goal, it is necessary to determine possible C02, and climate, are all changing rapidly, and changes in the variables driving the forest ecosystem, towards new conditions that are unprecedented. critical limits where changes may lead to points of no Within the climatic boundaries, forest management return, and the potential of human management that options are wide-ranging, and they cover all types of may influence the sensitivity of the forest ecosystem. management goals as described above. Land use Within the scope of this project it is not feasible to changes of considerable extent have occurred in the approach all these issues on a European scale with recent past and are still happening at the present time. the same amount of detail. These changes range from the transformation of for ­ The project implementation includes the following ests into industrial, urban or traffic land use types, tasks: through changes in species composition to planting • Development of an improved forest model for and regrowth of forests on land that has been set assessing the ecological impacts of Global Change, aside from agriculture due to overproduction. All these including a submodel for forest management; changes are fundamentally constrained by the climatic • Development of models of timber production and boundaries of each silvicultural species of interest, but socio-economic consequences; their nature may vary widely within these boundaries.

62 CHIEF

• Establishment of databases on climate, climatic These “gap models ” prove to be capable of simulating change scenarios, and current forest conditions; the long-term dynamics of a wide range of forest eco ­ • Model validation for each of the three scales; systems on several continents under current climate. • Integrated impact assessment for the forest sector at However, many of these models contain a number of each scale. simplistic assumptions. On the other hand, ecological research has made considerable progress over the Development of a New Forest Gap Model past few years, particularly in the fields of global-scale Various models of forest dynamics have been in use biogeochemical and patch-scale eco-physiological for the last 20 years. Their basic underlying assump­ modelling, often invoking ecological and evolutionary tion is that tree growth is determined by site conditions theory about the functioning of plant communities. We as climate and soils and by competition for the most believe that it is now possible to synthesize this current important resources: light, water and nutrients. Within knowledge in a way that will allow a new generation of this framework, the fundamental processes of tree forest gap models to be formulated which are mecha­ population dynamics, i.e., establishment, growth, mor ­ nistic and able to respond to the changing environ ­ tality and dispersal, are formulated as functions of site mental conditions without being too complex. conditions and competition. Only some of the most The new forest gap model 4C (Forest Ecosystems in a important processes can be incorporated deterministi­ changing Environment) will be structured as shown in cally. Other factors, which may be driven by the heter­ figure 1. ogeneity of the landscape or the variability of the weather, are simulated as stochastic processes.

Fig. 1: The figure shows the structure of Temporal the new forest gap model 4C, which Is resolution - based on the gap dynamics hypothe­ sis, Temp, Free, Rad Stand climate - describes growth of natural and man­ aged forests, and Soil heat flux - Includes the carbon, water and nitro­ gen cycle. Soil C&N dyn. The model Is mechanistic and respond ­ Phenology ing to changing environmental condi­ tions, but It Is not as complex as recent Soil water dyn. physiological gap models. It contains Improved formulations of - water and nutrient availability In the soil, 1-2 wk Net primary prod - the annual course of net photosynthe­ sis, - carbon allocation patterns as Influ­ enced by the environment, - establishment and mortality rates, and 1 mo Free, Rad - management and natural disturbance processes. In the figure rounded boxes denote external Influences on forest dynamics. Rectangular boxes represent submpd- Mortality Struct. & comp. els, 4C distinguishes three time steps: A Tree growth dally time step for soil dynamics and phenology, a time step of one to two Establishment Leaf area index weeks net primary production and an annual time step for tree growth popula­ tion dynamics (tree establishment and Management mortality), management and natural dis­ turbances. The monthly level was Intro­ Disturbance duced to emphasize that for many model applications only monthly climatic Input Environment Tree level Patch level data will be available, hence requiring the Incorporation of a weather generator algorithm to derive the daily Input data ______"f______'f required by the model. Scenarios of environmental change

63 Sectoral Modelling and Assessment

Soil Submodel well known that in reality the allocation patterns are The soil model consists of three parts, the water, tem­ strongly influenced by the environmental conditions, perature and carbon/nitrogen submodels. The soil is most notably by the availability of light, water, and divided into layers with varying thickness following the nutrients. Makela (1986, 1990) described a simple, horizontal structure of the soil profile. Water content, consistent, but only theoretical framework to model soil temperature, carbon, and nitrogen content of each carbon allocation patterns. We found that this frame­ soil layer are estimated as functions of the basic soil work can be elaborated to include explicitly the influ­ parameters, air temperature, net precipitation beneath ence of changing environmental conditions, and that it the canopy and net (nitrogen). is possible to couple this approach to the NPP scheme The essential interfaces between soil and vegetation outlined above. are on the one hand the addition of organic material to This submodel distinguishes the following state varia­ the soil through accumulating litter, and on the other bles: foliage, sapwood and fine root biomass; heart- the withdrawal of water and nitrogen by the vegetation wood biomass; average sapwood height; bole height. from the soil. Note that tree diameter at breast height is not a state The soil wafer submodel estimates evapotranspiration, variable as in many other gap models; here, it is only interception, snow water content and soil water con ­ an output variable of the model. In addition, the model tent. After percolation the water loss by soil evapora ­ does not assume allometric relationships between the tion and the water uptake by roots are calculated. various plant parts. Rather, it produces these allomet ­ The carbon/nitrogen budget submodel distinguishes ric relationships as an output. From this, it is possible between the carbon and nitrogen content of the pri­ to predict maximum tree height as a function of the mary organic matter (leaf biomass) and between com ­ environmental conditions, which was not possible in partments (leaves, needles, wood, fine roots). Mineral­ previous gap models. ization of primary organic matter and humus is influenced by water content, soil temperature and pH Mortality Submodel value. The mineralized ammonium is subsequently Tree death may occur for different reasons like ageing, transformed to nitrate. All processes are controlled by growth suppression, disturbances, such as fire, dis­ substrate-specific parameters. Leaching of mineral eases, storms, and harvesting. The mortality model nitrogen and uptake by plants are calculated on the currently considers two kinds of mortality. The so- basis of the available soil nitrogen. called 'intrinsic' mortality is defined by a constant prob ­ The dynamics of soil temperature are described by a ability with a negative exponential survival curve using one-dimensional heat conduction equation with the the species-specific life span. This approach will be appropriate initial and boundary conditions. The upper replaced in the next version by an explicit modelling of boundary condition (soil surface temperature) is esti­ ageing effects and disturbances like fire or diseases. mated from the air temperature of the last three days. The second mortality function, which simulates effects of growth suppression, depends on species character­ Net Primary Production (NPP) Submodel istics; that is successional types either with a short or a In a first step, our NPP model was implemented at the long life span or shade tolerance. The mortality model level of the individual tree to predict maximum net pho ­ has to take into account that tree species differ greatly tosynthesis as constrained by temperature and carbon in their ability to grow slowly. Because the model is dioxide, but with optimum water and nitrogen supply. A based on tree cohorts it was possible to implement a simple submodel for maintenance and growth respira­ deterministic approach for calculating the annual mor ­ tion has been introduced, which allows NPP to be pre­ tality rate. dicted. We use the model to simulate weekly or bi­ weekly photosynthesis. Management Submodel This approach allows an explicit, mechanistic upscal­ There are several reasons to include a forest manage ­ ing from the photosynthesis of a single leaf to the NPP ment module into the new forest model: of a whole tree. We are currently developing algo ­ European forests have been managed for timber pro ­ rithms for coupling it to the soil water and nitrogen duction over several centuries and therefore forests modules described above. with a natural species composition are very rare. Thus, realistic forest development in Europe can only be sim­ Tree Growth (Allocation) Submodel ulated under consideration of typical forest manage ­ The more advanced gap models use species-specific, ment strategies. but static partitioning schemes to determine the alloca­ While long-term observations of natural forest dynam­ tion of NPP to the various plant compartments. It is ics are not available, we do have data-sets on the

64 CHIEF

development of managed forest stands of the econom ­ its regional application in the Dubener Heide case ically important species. These data sets can become study, was successfully finished in 1996. Using rough quite valuable for model testing and validation. initial stand and soil properties, management informa ­ Finally, mitigation and adaptation strategies may be tion (thinning, fertilization), pollution data and daily analysed with the extended model, making the simula­ weather records the model FORSANA simulates the tion experiments more meaningful for both practical water cycle, nitrogen and carbon balance as well as forestry and decision making. stem number, diameter and height of even-aged conif ­ erous stands over several years. The model is able to Impacts of Pollutants on Pine Forests in the represent the measurements executed at selected Diibener Heide sites, and produced regional predictions of pine forest The SANA project, which included the development of growth over 35 years for more than 5000 forest stands the physiological growth model FORSANA as well as within the Dubener Heide.

Fig. 2: FORSANA has been used to assess the potential growth Diibener Heide response of pine forests to the Results of the Regional Model changes ofS02 concentration and Stem Volume nitrogen deposition that occurred Climate Scenario "Current” In the course of the German reuni­ fication. The development of Emission Scenario "TA-Luft” in relation to approximately 5000 stands within Emission Scenario "GDR” an area of 400 square kilometres Gains of stem volume has been simulated for a period of by scenario "TA-Luft” 30 years of current climate, and I I 0 » 5 cbm/ha (13% area) the resulting growth (emission I -I 5 — 10 cbm/ha (18% area) scenario TA) has been compared I J 10 — 20 cbmfha (31% area) with the growth estimate under I I > 20 e 35 cbmfha (30% area) unchanged deposition conditions (emission scenario GDR). The fig­ Losses 0 ” ( 8% area) I Pine stands under 25 yrs, ure shows the gains and losses of mixed pine forest stands, stem volume by a simulation of other tree species the emission scenario “TA" In Simulation period: 1990 - 2024 relation to the emission scenario "GDR".

Potsdam Institute for fUtmato Tmp»i4 Research Germany, 1996 5 10 km A

Results showed that the effect of air pollution ios in which the probability of arid and humid years decreased foliage mass, which led to an increased was changed showed growth reductions particularly at importance of ground vegetation in the water, nitrogen sites with low soil water-holding capacity, although dif­ and carbon cycles. In general the forests acted as ferences were generally less marked than in the pollu ­ sinks for carbon and nitrogen, even in drought years. tion scenarios. Growth responses were relatively small compared to the sometimes large differences in driving variables, This project was partly funded by the German Federal Ministry because of various feedback reactions between envi­ for Education, Science, Research and Technology (BMBF). ronmental conditions and tree growth. At a regional level, wood production and development of other stand variables were investigated with differ­ Climate Impacts on Forests in Brandenburg ent scenarios of air pollution and climate. The results The “Brandenburg Study” (see Regional Integrated Cli­ indicated a growth increase with a decrease in air pol ­ mate Change Assessment, page 49) was continued in lution in areas close to industrial centres. However, the 1996/97 using new climate change scenarios and effect decreased with distance from the sources of the improved data on site quality. A new focus of the forest pollution and growth reductions even occurred with impact part is to investigate the effects of variable cleaner air because of smaller nutrient deposition (see depths of the groundwater table on the potential natu­ figure 2). The comparison of different climate scenar­ ral species composition of forests in the state of

65 Sectoral Modelling and Assessment

Model FORSKA Model ForClim

Current climate

I I Spruce - Broadleaf I I Pure Pine I I Mixed Pine - Broadleaf I I Mixed Pine - Oak M Mixed Beech - Conifer ^B Pure Beech Bi Mixed Beech - Broadleaf I I Mixed Beech- Oak I I Mixed Oak - Beech I I Mixed Oak - Broadleaf Scenario +3K I I Mixed Oak - Pine 1 I Mixed Lime H Lime BB Softwood HH Elm - Ash I I Bare

Fig. 3: Simulation of natural potential vegetation in Brandenburg for two models and two scenarios. In both forest gap models FORSKA and FOR­ CLIM, growth functions to groundwater table were included with a species-specific parameterization. The two models show model-specific differ­ ences in species composition, however the projected changes are qualitatively similar. The models were calculated both for the current climate (upper two panels) and for a climate scenario with a temperature increase of 3 K, that is 3 °C, (lower two panels).

Brandenburg. Growth response functions to ground- cession models gives valuable insights into the model were included with a species-specific performance under a wide variety of environmental parameterization in both forest gap models FORSKA conditions. Furthermore, regional impact analyses and FORCLIM. The groundwater table is now a further could help to develop management strategies to cope site-specific input to both models, in addition to soil fer­ with the risks of changing environmental conditions. tility and bucket size. The two models show model- The work will be continued with simulations of the new specific differences in species composition, however 4C model under different climate scenarios and con ­ the projected changes to climate change are qualita ­ nected via the Geographic Information System with tively similar (see figure 3). simulated groundwater tables. By the end of 1998 the Both gap models seem to capture major spatial pat­ results of potential natural vegetation simulations will terns of the current potential natural vegetation. Cli­ be integrated with agricultural model applications and mate warming leads to a decline of pure and mixed the hydrological conclusions to form a regional impact beech stands, an increase of pure and mixed pine for ­ assessment. ests on poor sites, and an increase of mixed decidu­ ous forests with oak, lime and hornbeam on fertile German Forest Sector under Global Change sites. Our investigations suggest that climate change The aim of this national case study is to assess the may have considerable consequences for the future nature and extent of possible impacts of global climate competitive relationships among tree species in change on forests and the forest industry in Germany. Brandenburg. The regional application of forest suc­ Several simulation models will be applied to national

66 CHIEF

forest inventory data to simulate and assess possible The focus of the study lies on the application of exist­ consequences of different climate scenarios on forest ing models of forest development and stand growth development and wood production in German forests. using available data sources from the first national for ­ The new 4C gap model which is under development est inventory. For the socio-economic assessment new within the CHIEF core project and the forest growth models need to be developed, since no suitable meth­ simulator SILVA, among other methods, will be used. odology exists for German conditions. Additionally, the genetical adaptation and adaptability In a separate line of model simulations, the conse ­ of major forest tree species will be analysed, forest quences of the projected forest growth changes for for ­ management strategies to respond to or mitigate the est management and the economics of forest enter­ projected changes will be investigated, and socioeco ­ prises will be analysed (figure 4). nomic consequences of these scenarios for the forest industry will be estimated. Pending a larger, more This project is funded by the Federal Ministry of Education, comprehensive assessment at a later stage, it is Science, Research and Technology (BMBF). expected that the study will yield insights into regional risks for German forests.

Fig, 4: In this study the consequences of the projected forest growth changes for forest management and the economics of Socio-economic Impact Assessment forest enterprises will be analysed. For Decision making this purpose we will apply the forest sim ­ Non-market^ of forest owners ulation model SILVA, developed at the Timber values of for­ University of Munich, to economically market model Important forest types on representa ­ ests tives sites. If stand regeneration occurs In the 110 years simulation period (1990 - 2100), Information about suitable species will be taken from the 4C model output. The SILVA model then produces projec­ Management strategies tions of growth and yield which will be used to analyse the Impact of changing growth and yield on - economics and decision making In choice of tree species generic forest enterprises, forest stand 4C - demand and supply on the timber mar­ simulator gap model kets, and -Indicators characterizing Important social functions of forests (l.e. water and 4- air purification, groundwater recharge, ..I.....,..... recreational potential). Representative Forest Types An Important link between the socio-eco­ nomic assessment and the stand growth projections is the management strate­ gies module which will be developed in order to find appropriate adaptation or response strategies in forest manage­ ment. Such strategies need to take Into account both, the projected environmen­ tal changes and their economic conse­ quences.

67 Sectoral Modelling and Assessment

RESOURCE Social Dimensions of Resource Use: Water Related Problems in the Mediterranean

Acting Project Leader: Manfred Stock

The impacts of climate change are expectedto increase the gravity of water-related critical problems in many parts of the globe. Fresh water is a precious resource, the value and price of which largely depend on the social and cultural dimen­ sions of its use. The RESOURCE project focuses on the interactions between natural and social aspects of the water use and scarcity problem. It not only investigates the possible conflicts emerging from restricted water availability and rising water demand and their solutions, but also takes into account anthropogenic effects on the soil and the climate, such as of irrigated farming. The Mediterranean has been identified as a region where water scarcity problems are of increasing rel­ evance and where an appropriate environment of available data, development projects and cooperative partners provide suitable conditions for a successful assessment.

Research Fields and Tasks Climatology and Climate Impact Parameters of the Water plays a crucial role in the livelihood and sustain­ Mediterranean able development of a region. It is not only essential We analysed and modelled spatial and temporal cli­ for human survival and well-being, it is also important mate conditions in the Mediterranean and provided the for industry and, especially, for agriculture. An inte­ results as input for scenarios of future climate develop ­ grated analysis of Global Change effects on water ment for the selected regions. In a first step, a stand­ resources and socio-economic impacts in the eastern evaluation of the present-day climate was carried Mediterranean is needed in order to develop mitigation out for the whole Mediterranean. This climate analysis and adaptation options. includes the statistical description of the temporal and At present, the RESOURCE project contributes to the spatial behaviour of temperature and precipitation and solution of water scarcity problems through research in will be carried on in order to obtain more data as a three fields: basis for the models. One example of the results • Development of climate change scenarios based on shows strongly differing trends in precipitation within the past and present climatology of the Mediterra­ the investigation area (figure 1). nean The next step is the temporal-spatial description of • Regional integrated modelling and socio-economic extreme events using multivariate statistical methods. studies of water prices and loss in the Mediterranean Moreover, the development of a is • Regional vulnerability and risk assessment of water planned on this basis to create future climate scenar­ scarcity for the Mediterranean ios, e.g. the doubling of carbon dioxide that can also The activities of the former PIK core project be used by the other partners. CLIMAGHS (Climate and Global Change Impact on Besides the statistical approach, the adaptation of a the Environment and Society of the Mediterranean and regional climate model will be carried out. The climate the Maghreb States) have been integrated into the model MM5, made available by the Tel Aviv University, RESOURCE project. In CLIMAGHS the main aspect is the basis for regional modelling. At present this was the investigation of catastrophic events triggered model is being developed not only for climate scenario by either lack of or heavy rainfall, namely droughts or calculation, but also for the investigation of weather floods. The Maghreb states were identified as a semi- characteristics such as precipitation, evaporation, tem­ arid subregion of interest, as well as the semi-arid perature and humidity, which determine the conditions regions of Israel and Jordan. The latter subregion has leading to desertification. Therefore, parameterizations the advantage of better access to pertinent data and are being improved, sensitivity investigations are being relevant scientific expertise. We plan to expand the carried out and alternative options for the provision of methods and knowledge gained here to the Maghreb boundary values are being introduced. This study is States later. To the best of our knowledge, this study the first to apply a high resolution climate model for the represents one of the first attempts at a cross-discipli ­ simulation of the climate in the eastern Mediterranean nary, integrated approach to analyse regional impacts in relation to the role of observed and determined of Global Change on water resources and prices in potential future land use variations. semi-arid areas.

68 RESOURCE

Summary other hand has a strong effect on per capita water use Within the project, information will be deduced con ­ and pollution of surface waters. cerning the spatial and temporal structure of different The intensification of irrigated agriculture, associated parameters relevant to meteorology and hydrology on with increasing groundwater pumping rates, depletes the basis of observed and modelled values of precipi­ the underlying groundwater aquifers and degrades tation, temperature, humidity and on the basis of natu­ water and soil quality. A drop in the groundwater table ral variability and special climate events, forming a leads to saltwater intrusions from the sea and subse­ basis for formulating climate scenarios as components quent salination of groundwater resources. The salina­ of land use changes. . tion of the plant-soil-groundwater system leaves agri ­ cultural areas unsuitable for further farming.

Regional Study on Socio-economic Dimensions of Impact Assessments of Changes in Water Availability Water Resources and Prices In collaboration with our partner institutes in Israel, the chain of effects associated with a degradation of water Water Availability resources is being monitored and modelled. Data Information on temperature and precipitation trends gained from this work will be used in assessing from climate scenarios for the eastern Mediterranean impacts upon society, e.g. on agricultural production is translated into water balances. Water storage and and other water intensive activities. A quantification of water fluxes determine the amounts of water available socio-economic costs of water related changes is for a given period of time. In the semi-arid to arid tran­ based on the societal value of water. It will pay special sitional region small changes in precipitation, tempera­ attention to impacts of extreme events, such as ture and potential evapotranspiration can cause dras­ extended periods of drought. Impacts on natural vege ­ tic changes in availability, groundwater tation like desertification, and “non-market ” impacts recharge and ultimately, plant water use. Measure­ like changes in recreational and other non-consump ­ ments in the region and hydrological models at differ­ tive uses of water will also be included in a regional ent scales, developed at PIK, help to understand and integrated impact assessment. Economic analysis will predict quantitative changes in the hydrological cycle employ partial equilibrium models, which convert dam­ as a basis for subsequent studies of the effects upon age losses into monetary values. vegetation and economic and social well-being. Not only the effects of climate change, but also other Regional Vulnerability Assessment of Water effects of Global Change alter regional water availabil­ . Scarcity Risks for the Mediterranean ity. Water supply as well as water demand are affected The term vulnerability refers to natural and socio-eco ­ by land use changes, population growth, economic nomic characteristics of a region that dispose it to exo- development and other trends such as urbanization. geneous or endogenous crises. Originally used in eco ­ Modern irrigated farming in southern Israel for exam­ system research and human geography, we apply the ple shows a high degree of correlation with increased concept of vulnerability to the Mediterranean region, convection and subsequent cloud formation and rain i.e. its .people and their livelihood and focus on the over the same area. Regional urbanization on the water problem.

69 Sectoral Modelling and Assessment

As a first step for an integrated assessment of the vul­ The criticality index thus operates with three complex nerability of the Mediterranean Basin to water-related terms, each of them combining different information stress and conflicts a geographically explicit criticality about the Mediterranean. The first term informs about index, developed by the QUESTIONS core project in the water demand on a national level, defined as the cooperation with a research group at the University of withdrawal by agriculture, industry, and the domestic Kassel with J. Alcamo and the WBGU in 1997, has sector. The second term refers to water availability, been used. This index might be regarded as a proxy computed on a watershed level (resolution: 0.5- x 0.5-, compound measure for what is intended in a more including 1.162 watersheds worldwide), using precipi­ detailed way by the RESOURCE project. tation, temperature, relative sunshine, soil and vegeta ­ Although its detailed implementation is rather compli ­ tion information. As shallow surface groundwater cated, the basic idea of that index is quite simple: The recharge widely depends upon rainfall and evapotran- vulnerability of a region to water-related problems is spiration, the availability term includes these ground- high if societal water demand reaches or exceeds nat­ water sources as well. Most assessments of the global ural water availability and, at the same time, there are water crisis only relate demand to availability and no measures at hand to by-pass this shortcoming. examine the change of this relation over time under Conversely the regional vulnerability is low if water is different scenarios for population, food or industrial surplus in terms of natural availability, or if socio-tech- production levels. But these two factors alone do not nical devices, such as long-distance main pipes, deep provide enough information for estimating the entire wells, or sea-water desalinization plants can help to vulnerability of a region to water-induced stress. overcome potential water scarcity.

Fig. 2: Change of number of peo­ ple affected by severe water crisis in the Mediterranean between 1995 and 2025 under two different scenarios: (a upper panel) if water withdrawal reaches or exceeds availability and technical compen­ sation is only moderate, (b tower panel) if this compensation is sub ­ stantial. The colours indicate situ ­ ations: tight to dark green meaning “better than today", yel­ low to red meaning “worse than today", white meaning “no change of situation" (being good or bad in 1995!). Note that even under more optimistic assumptions (b) Morocco, Egypt and Jordan will face a water crisis.

S1 r‘~Jl

Some societies, due to their economic, political or cul­ among economists about the exact degree of substi­ tural situation, have a better potential for coping with tutability of natural capital. Some think that society will water stress than others. As a first proxy measure for always find a way - mainly by technical devices - to this curation potential we used the GNP of a country, overcome natural resources scarcities. Others claim well aware of the fact that this measure has to be com ­ that the substitutional capacities of humans are very pleted by others. But how effective is “money ” in limited. As there is no expert consensus on that point, reducing water crisis? There is a broad discussion two different cases were calculated:

70 RESOURCE

• Scenario I assumes a relatively high degree of sub­ higher potential for resource conflicts. If low substituta­ stitutability, leading to a rather “optimistic ” estimation bility is assumed (a), the situation - measured as peo ­ of water-induced regional vulnerability. ple affected by severe water criticalities - will be • Scenario II assumes a more moderate substitutabil­ aggravated especially in Morocco, Algeria, Tunisia, ity and consequently estimates higher vulnerability. Egypt, Syria, and Turkey. If economic development Both scenarios were computed for 1995 and for 2025. allows for more compensation of water scarcity (b), Additionally, the effects of climate change on water Algeria, Syria, and to a lower degree Turkey will better resources have been estimated using a scenario be able to cope with the situation, whereas Morocco, (IS92a) of the Intergovernmental Panel on Climate Egypt and Jordan will face severe water crisis. It has to Change (IPCC), assuming an increase of carbon diox ­ be kept in mind, nevertheless, that the curation poten ­ ide equivalent concentration in the atmosphere of tial as derived from future GNP development is subject 50 % relative to the preindustrial level. to various uncertainties concerning the effectiveness But still the vulnerability of people within the Mediterra­ and opportunity costs of measures. nean Basin is not taken into account. To complete the One can estimate that, for example, a country like vulnerability assessment the regional distribution of Algeria, entangled in civil strife, high unemployment population is included. Thus it was possible to esti­ rates and high population growth will find it much mate the number of people in the Mediterranean harder to turn economic capital and technical potential affected by severe water crisis. A situation is called into factors and facilities effectively compensating critical if people have to face water withdrawal with no water crisis than a country like Tunisia. In any case, or only limited curation potential. The two maps show a further aspects like those mentioned have to be inte­ comparison between the regional criticalities in 1995 grated in order to give a more reliable picture of social, and in 2025 for both scenarios (figure 2). economic, political, and cultural coping potential. One can see that regional disparities concerning water criticality will increase in either case, leading to a

t

71 Sectoral Modelling and Assessment

72 Integrated Systems Analysis

Scientific Departments

Integrated Systems Analysis

Head: Hans-Joachim Schellnhuber in co-operation with Yuri Svirezhev Deputy Head: Gerhard Petschel-Held

Staff and Guests

From left to right, back row: Gerhard Petschel-Held, Martin Cassel-Gintz, Arthur Block, Martin Fussel, Maarten Krol.

Front row standing: Volker Wenzel, Biraj Kumar Biswas, Annekathrin Jaeger, Yuri Svirezhev, Manfred Stock, Thomas Bruckner, Christine Bounama.

Front row sitting: Oliver Moldenhauer, Jurgen Kropp, Matthias Ludeke.

Name Discipline Project Contributions

Biraj Kumar Biswas Agricultural Engineering Guest

Dr. Arthur Block Physics QUESTIONS, POEM: COEM

Christine Bounama Geophysics POEM: COEM

Dr. Thomas Bruckner Physics ICLIPS

Martin Cassel-Gintz Geography QUESTIONS

Professor Dr. Siegfried Franck Geophysics POEM: COEM

Martin Fussel Applied Systems Science ICLIPS

Annekathrin Jaeger Biophysics WAVES

Dr. Maarten Krol Mathematics WAVES

Jurgen Kropp Chemistry QUESTIONS

Dr. Matthias Ludeke Physics QUESTIONS

73 Scientific D epartments

Oliver Moldenhauer Physics QUESTIONS

Dr. Gerhard Petschel-Held Physics QUESTIONS, ICLIPS

Professor Dr. Hans-Joachim Physics QUESTIONS, POEM, EUROPA: Schellnhuber WISE, ACACIA

Dr. Horst Sterr Geography EUROPA:WISE

Dr. Manfred Stock Physics RESOURCE

Professor Dr. Yuri Svirezhev Physics, Mathematics, Genetics POEM: COEM

Dr. Volker Wenzel Mathematics RAGTIME, EUROPA: ULYSSES, WISE

The success of modern science rests to a large extent ledge ’ to be integrated into the scientific assessment of on an ever-increasing refinement and break-down of Global Change. This simple and fundamental state­ problems and methods. In order to analyse Global ment can be illustrated by considering, say, the difficult Change, its human causes and consequences in an issue of inter- or transdisciplinary research: quantita ­ adequate and sufficient manner, results of this “differ­ tive modelling with clearly defined interfaces between entiation ” process have to be re-integrated. As well as the different components to be modelled by the tackling this re-integration problem, the Department of respective disciplines, is just one possible approach. Integrated Systems Analysis tries to develop methods Scenario-building techniques using expert interviews to identify relevant properties of the Earth system as or the development of new transactors ’ approaches such. Further questions are asked on the determina­ represent certain alternatives. Yet experience at PIK tion of management strategies for a sustainable devel­ as well as at other institutes, e.g. the MIT, has shown opment. Some of the pertinent issues can be stated as that one central and concerted focal point like a model follows: or a common language of analysis is essential for the • Is it adequate to use the natural science perspective success of any interdisciplinary project. This is true not of determinism in the description of human systems? only for this type of integration. Other integration prob ­ Conversely, can we formulate laws and rules of inan­ lems, such as the aggregation of processes taking imate nature in the language of say, sociology, with­ place on different scales, the inclusion of knowledge out losing relevant details? Can we use these kinds with various degrees of uncertainty, or the need for of transcriptions to incorporate results from the other comprehensible transparent interfaces to decision main scientific fields? Do we need to develop a new makers have equally to be tackled by such conceptual transdisciplinary language able to integrate discipli­ focal points. Again, however, there is no single best nary knowledge? concept; rather, each type of problem, together with • How can we integrate normative settings often made the basic questions to be answered, requires its own by policy makers without violating the “scientific suitably and carefully developed integration concept. encoding of true and false” (Luhmann)? What type of Concepts developed at PIK in recent years in co-oper ­ “management strategies ” can be developed for the ation between members of the department and differ­ Earth system and how can we formally assess ent core projects are listed in the following: these? 1) The method of cyclic integration rests on the idea • Is it possible to describe the complexity of the Earth of developing a prototype model which is subse­ system, e.g. by methods of modern physics or math­ quently tested by exponents of the partaking disci- ematics? Can we derive a typology of Global Envi­ . plines. After this testing phase the problems of ronmental Change either inductively or deductively? deficiency that have emerged are assimilated to In the following some of the recent results on ques ­ generate a second model generation, again to be tions like these are briefly presented. evaluated by each sub-group. The cycle starts all over again. Integration Methods and Strategies 2) Similar but somewhat more application-oriented is There is no ideal toolbox able to provide ‘best’ tech­ the meta-modelling approach. Here, an entire niques and methods for each of the ‘atoms of know ­ framework of various models is developed, which

74 Integrated Systems Analysis

is adequate for hierarchic integration on various system. To take one example, work in the department levels. The different model elements of the frame­ has shown that cellular automata can be an important work are nested and can therefore be run inde­ tool in understanding complex systems which consist pendently. of a large number of interacting entities, such as geo ­ 3) Another important concept is the development of graphical units or individuals. We have extended the minimal models which are given by conceptual, famous Daisy-World Model in order to analyse the cli­ low-dimensional sets of differential equations, matic elasticity of a virtual planet with respect to con ­ with the aim of being able to explain and conjec ­ trol parameters such as landscape fragmentation or ture structural properties of the Earth system. Typ­ insolation. That means that this model has great epis- ical properties investigated herewith concern the temic relevance as it helps to explore fundamental number of simultaneous equilibria of the bio ­ effects and phenomena. sphere, non-linear phenomena like hysteresis Neural networks provide various techniques appropri ­ effects or causes of asymmetric glaciation. ate for non-linear data analysis and highly generalized 4) Particularly appropriate for including qualitative ‘black box ’ modelling. One particular method applied at knowledge, e.g. socio-cultural expertise, on the PIK is the Kohonen algorithm which can be employed one hand and uncertainties on the other hand is for non-linear topological invariant categorization. The the idea of qualitative modelling. Instead of pre­ result is not based on strict rules or crisp decision crite­ cise mathematical functions to express the varia­ ria but is detected by adaptive learning; figure 1 shows bles to be taken into account, this approach uses an exemplary result obtained for a highly resolved cli­ qualities characterized by well-ordered sets of so- mate dataset consisting of monthly mean temperature, called landmark values (i.e. symbols representing precipitation sum, and cloudiness (CLIMATE 2.1 data­ distinct points at which the system changes its base). In combination with measures for topological behaviour) or by linguistic variables expressed invariance, the Kohonen algorithm allows classifica­ through modern methods of fuzzy logic. tions to be found which ensure that similar are It is the task of the department to provide a platform for classified as similar. For other reasons, the results discussing and comparing the various approaches. Yet obtained by such a fuzzy classification can be used for it has to be underlined again that there is not and will the formulation of qualitative concepts and further ana­ not be a single best concept for integrated systems lytical efforts, especially in the cases in which no or analysis. only a few bits of knowledge of the underlying system Further, original research is undertaken advancing var­ are at hand. ious mathematical and computational methods profita ­ Moreover, a neural network has been employed to ble for integrated systems analysis. This includes obtain a reduced-form model for the net primary pro ­ methods of complex systems analysis put forward in duction of natural vegetation. This reduced-form model theoretical physics (neural networks, cellular autom ­ is based on the results of five global vegetation mod ­ ata, etc.) to describe and understand structural proper ­ els. This ’best-guess ’ model allows the computation of ties of these systems. Control theory is helpful for the equilibrium NPP (see page 91) in a much more understanding fundamental methodological problems efficient manner than with the original models (5 sec of global environmental management. Common to all on a workstation compared to 25 minutes on the SP2- analyses of Global Change is uncertainty. Modern 70 parallel machine of PIK). Therefore, this model pro ­ methods of risk assessment provide useful tools for vides an optimal component for integrated assess­ assessing these stochasticities - not only in the context ments of climate sensitivity analyses. of science but also in the context of decision making. Control Theory Complex Systems Analysis Global Change research is often scenario-based, i.e., The analysis of Global Change is facilitated by various a set of ‘possible futures ’ is developed on the basis of methods of complex system theory which originated in a number of general assumptions . The most promi ­ mathematics and physics: artificial neural networks, nent examples of this are the scenarios of prospective rule-based approaches like cellular automata and emissions of greenhouse gases in the atmosphere fuzzy, logic calculus’, fractal analysis, exergy or other , developed by the Intergovernmental Panel on Climate thermodynamic concepts, etc. However, most of the Change (IPCC). These scenarios are then used in an above-mentioned methods are only of limited use in an ‘IF-THEN’ mode to model the response of various overall integrated approach because they are often subsystems, e.g. climate evolution or vegetation developed in order to analyse or to model just a few responses to anthropogenic perturbation. distinct, yet highly relevant properties of a complex

75 Scientific D epartments

Fig. 1: inset (a) depicts a classification result of a self-organizing fea­ ture map of Asia. The map learns the topologically optimal discretiza­ tion of climate space by identifying a total of 20 reference vectors. One grid cell belongs to a certain class, if its ‘climatic distance ’ is smallest to the respective reference vector. Inset (b) shows the distance to the reference vector of the "tibetian climate” on a transect along 32°N for each 0.5 x 0.5 grid cell. The borderlines which are identified by the algo­ rithm are given by the vertical lines, the moduli of the gradient by the dotted line, (c) Surface plot of the distances to the ‘tibetian class ’ for Tibet (detail of the map of inset a): grid cells not belonging to this class are characterized by a larger distance. The superelevated bars repre­ sent those regions which change the category, if the ECHAM3 C02 dou­ bling scenario is assumed. It can be seen that the most vulnerable regions are in the NE and NW. After climate change, the climate in these regions belongs to a desert climate. Overall, more than 19% of the Tibe­ tian highlands are affected by this .

A different approach is to work in a ‘goal-oriented ’ way tee the avoidance of this cooling effect have to be directly identifying the policy options necessary to sought (a task currently pursued in the Iclips project). achieve a predefined target. Possible goals include, for In the last two years some aspects of control theory example, the optimization of a general welfare function have been developed further, to improve the methodo ­ which in economics is often defined in terms of macro- logical basis of global environmental management, economically determined consumption as a dis­ i.e., what to do to achieve the predefined goal of sus­ counted function of time. Another goal, currently tainable development. adopted in the Iclips project at PIK (see page 23) can 1) The concept of differential inclusion has been be characterized as pessimization: here domains of employed for the tolerable-windows approach possible states or developments of the Earth system used in the Iclips project. As one element of the have to be evaluated with respect to their tolerability. work at PIK, a first step has been taken to con ­ Then the set of strategies ensures the avoidance of struct a novel numerical method to compute a these intolerabilities has to be computed. representation of all future developments and As an example, consider the so-called conveyor belt, a management strategies (called a funnel) which is large-scale ocean circulation pattern acting as a heat compatible with a number of predefined con­ pump for Northern and Central Europe: according to straints (see page 24). Further steps are planned recent results (see MILLENIA project), there is a signif ­ to improve the method and the evidential power of icant chance of the conveyor belt shutting down due to the representation. anthropogenic climate change. Results from various 2) In contrast to conventional optimization theory or GCM-experiments suggest a concomitant decrease of to the mentioned computation of the funnel, fuzzy annual mean temperature in Northern and Central control does not directly make use of projective Europe of 10-20 °C. Without stating this positively, this models. Instead, local information is used state is probably intolerable and strategies to guaran ­ together with some ‘landmarks’ indicating the dis­ tant targets to be met or to be avoided. A concep-

76 Integrated Systems Analysis

tual model has been employed to demonstrate the basic functionality of the approach taken. Within this model a simple complex function f(z) with three roots has been used. The dynamics of the system is given by a mathematical algorithm capable of finding these roots in an extremely short amount of time. The basins of attraction of each root, i.e. the set of starting points finally lead­ ing to the respective root if the system is left alone, are fractals. This implies that for a signifi ­ cant portion of possible constellations it is practi­ cally impossible to know which root the system is heading for. Within the simple model put up here, these roots serve as metaphors for possible out ­ comes of Global Change. Now, one root is assumed to be the ‘good ’ target, the other two to be ‘bad’ targets which have to be avoided; thus a fuzzy control strategy is sought, which ensures that a good root is finally reached. It turns out that a hybrid strategy, using local information on the

values of the function and its derivative, and some Fig. 2: Typical trajectories of root-finding walks across the fractal rough meso-scale information about direction and Cayley structure for a modified Newton method which uses some distance of the roots, is sufficient for this task. In global information concerning the position of the roots. The different shadings correspond to the three basins of attraction of the roots figure 2 some typical paths towards the good tar­ indicated by the blue and yellow dots. The goal Is to find the ‘good’ get are shown: wherever we start (red dots), this blue root and to avoid the yellow ‘bad’ ones. hybrid strategy finally brings the system to the good target (blue) by completely avoiding the bad This method has been worked out in some detail for ones (yellow). Though this is only a conceptual the problem of regional crop production in the Kursk approach it illustrates the type of management region (Western Russia) and the risks caused to it by strategies needed for global environmental man­ global climate change. In order to get local climatic agement: How can we reach the save harbour if characteristics (weather), a so-called ’statistical knowledge is limited, uncertain and vague, in par­ weather generator ’ is used. It turns out that the current ticular with respect to the global, i.e. non-local, low level of risk of a major crop failure remains con ­ properties of the system? stant for a temperature rise of up to 1.0-1.1 °C mean seasonal temperature. With increasing variance, i.e. Dealing with Uncertainty: Risk Assessments inter-annual temperature variability, the risk grows sig ­ How can we estimate the climate impact on social sys­ nificantly, however, even if the mean temperature rises tems and take uncertainties into account properly? very slowly. One approach pursued in the department is based on This shows that it is not the climate in terms of mean the risk concept. The assessment embraces both the temperature alone that we have to care about, but real stochasticities of climatic processes and the artifi­ rather the stochasticities, both within the climate sys­ cial stochasticities of climate predictions due to scien­ tem itself and in our knowledge about it. tific uncertainties.

77 Scientific D epartments

Climate Research

Head: Martin Claussen Deputy Head: Friedrich-Wilhelm Gerstengarbe

Staff and Guests

From left to right, back rows: Peter Werner, Friedrich-Wilhelm Gerstengarbe, Reinhard Calov, Andrey Ganopoiski, Victor Brovkin, Claudia Kubatzki, Uwe Bohm, Gerd Burger, Hermann Osterle, Ursula Werner, Stefan Rahmstorf.

Front row sitting: Eva Bauer, Martin Claussen, Vladimir Petoukhov.

Name Discipline Project Contributions

Dr. Eva Bauer ' EUROPA: KLINO

Uwe Bohm Physics RESOURCE, WAVES

Dr. Gerd Burger Mathematics POEM: KLIMOKO

Dr. Victor Brovkin Mathematics POEM: DGVM Intercomparison, MGBM

Dr. Reinhard Calov Physics POEM: CLIMBER 2

Prof. Dr. Martin Claussen Meteorology EUROPA: KLINO

Dr. Andrey Ganopoiski Oceanography POEM

Dr. habil. Friedrich-Wilhelm Gerstengarbe Meteorology RESOURCE, WAVES

Dr. Maarten Krol Mathematics WAVES

Claudia Kubatzki Meteorology POEM

Dr. Hermann Osterle Meteorology WAVES, RESOURCE

Dr. habil. Vladimir Petoukhov Geophysics POEM

78 C limate Research

Dr. Stefan Rahmstorf Oceanography POEM: MILLENNIA

Dr. habil. Peter Werner Meteorology CLIMAGHS, WAVES

Ursula Werner Technical Assistance for several projects

The mission of the Climate Research Department has which 400 are longer than 50 years, 800 are longer changed since the early years of the Institute. In the than 20 years and 1300 are longer than 15 years. The beginning, mere supply of climate data and climate main meteorological parameters of these series are air scenarios to the impact research community was its temperature, precipitation, relative humidity, cloudi ­ main topic. Meanwhile, the Climate Research Depart­ ness, sunshine duration, air pressure, wind velocity ment has come to address basic problems related to and vapour pressure. In addition to this, a number of the diagnosis of climate data, design of climate change data sets have been collected for special research scenarios as well as climate system modelling. tasks. For instance,, grid data sets have been con ­ structed as input for different models (regional climate Climate Analysis and Diagnosis models, impact models etc.). Also a couple data sets A prerequisite for any research related to climate is a were created containing monthly values of different thorough analysis of past and present-day climate on meteorological parameters for different time periods. the basis of high-quality data and reconstructions from These sets are used for the description of climate proxy data, for example an estimate of summer regions and for climate model validation. warmth deduced from the abundance of fossil pollen. The service part of the data bank system gives infor ­ Climate analysis concerns not only “simple” climatic mation about available data sets and makes it possible mean values, such as monthly mean temperatures to select the meteorological parameter, the region and and annual mean precipitation. Instead, for many the time period. Statistical investigations, such as on applications in climate impact research and informa ­ the calculation of frequency distributions, autocorrela ­ tion about climatic extremes is needed, for example tion functions, cross-correlation, trends, spectra and strength and duration of cold spells or rainfall events smoothed series, can be carried out. All results can be etc. Because of the non-linear character of the climate made visible by a special graphics tool. system analysis and diagnosis of climate data are car­ The PIK Data Bank System will be continuously ried out by using multivariate statistical methods. expanded in coming years. Therefore, such methods have been developed and used in the Climate Research Department. Climate Scenarios Methods, which are employed for the analysis and To explore the impact of any climate change - regard ­ diagnosis of climate data, are also applied to the vali­ less of its origin, be it natural or anthropogenic - on dation of climate models. This not only improves the natural and social systems, climate or climate change climate models, but also achieves a better understand­ scenarios have to be formulated. A scenario is not a ing and more appropriate exploration of model results forecast. Because the climate system is influenced by in climate impact research. anthropogenic activities, e.g. emission of greenhouse gases and changes in land use, and because these Climate Data Base activities are hardly predictable, the climate itself can­ An important tool for all climatological and climatology- not be forecasted. Instead, estimates of possible cli­ based investigations is an extensive data base which mate developments - climate scenarios - are com ­ satisfies the quality criteria of the specific scientific puted, based on various estimates of socioeconomic research. To fulfil these demands a climate data base changes and associated changes in the emission of has been constructed over the last few years using the greenhouse gases - so-called emission scenarios. Oracle Data Bank System. Besides the pure collection Tools for the construction of climate scenarios are of data, the main philosophy is to develop algorithms numerical climate models, statistical models, and com ­ to check the quality of the data and to describe their binations of both. In the Climate Research Depart­ statistical behaviour. Since a multitude of different cli­ ment, three general types of methods have been mate data banks already exist world-wide, the priority developed and used. for the PIK Data Bank focused on the collection of The first method is based on climate models only. Glo ­ long-term data series of daily meteorological parame­ bal climate models provide reliable information at ters. At present 2,500 data series are available, of rather coarse spatial scales, say at the scale of conti ­

79 Scientific D epartments

nents. To achieve a scenario for smaller regions, say a (part of the Earth’s upper mantle), which particularly state or a river , one has to transform includes the pedosphere (mainly the soils). this information to the scale in question. The method of In the Climate Research Department, a climate system so-called dynamic downstage makes use of a regional model of intermediate complexity, called CLIMBER (for climate model which is embedded into the global CLIMate and BiospheRE), has been developed. In model and which is run at a much higher spatial and contrast to comprehensive climate models, which are temporal resolution than the global model. It is possi ­ currently operated at other institutes like the Max- ble to adapt a regional model to selected regions of the Planck-lnstitute for Meteorology in Hamburg or the world and to validate the adapted model as well as NCAR (National Center of Atmospheric Research) in regional climate simulations. the USA, CLIMBER is not meant to describe in detail The second method, the so-called expanded downs ­ and with the highest possible spatial and temporal res­ caling, is based on climate model results - either global olution some components of the climate system. This or regional climate models. They are transformed to requires vast computer power and data storage (a smaller scales with statistical methods, thereby provid ­ 100-year simulation would take approximately half a ing climate scenarios at scales at which the numerical year on a super-computer.) Instead, attention is model is unreliable. focused on the interaction among all components of The third method is a coupled statistical model. It com ­ the climate system. Therefore, CLIMBER has been bines results of climate models and observations. In developed to provide a rather coarse-scale, but very this method, observed long-term time series of meteor ­ efficient description of the climate system. It is at least ological data are prepared by statistical methods in 1000 times faster than the comprehensive models such a way, that they reflect changes computed by cli­ and, therefore, suitable for climate system analysis. mate models. Moreover, CLIMBER will become a component of the Potsdam Earth System Model. Climate Systerii Modelling Using CLIMBER questions concerning the role of the The study of climate change not only involves the anal­ vegetation in the climate system as well as the strong ysis of recent climates and estimates of possible future climate variability of the recent geological past will be climates of the next decades and centuries, but it also addressed. Examples are the variations in the North addresses the fragile balance among various compo ­ Atlantic ocean circulation, the warm water radiator of nents of the climate system such as the atmosphere, Europe and most of the Northern Hemisphere, and the hydrosphere (mainly ocean and rivers), the cryo- subsequent drastic temperature changes between gla ­ sphere (mainly inland ice, permafrost, and snow), the cial and interglacial conditions which, if they happened terrestrial and marine biosphere, and the lithosphere today, would be a threat to human society.

80 Global C hange & Natural Systems

Global Change & Natural Systems

Head: Wolfgang Cramer Deputy Head: Petra Lasch

Staff and Guests

From left to right, back row: Andreas Guntner, Thomas Kartschall, Martin Schappeit, Sergey Venevski.

Second row from the back: Majana Heldenreich, Jorg Schaber, Barbel Uffrecht, Harald Bugmann, Beatrix Ebert, Marcus Lindner, Frank Wechsung.

Third row from the back: Stephen Sltch, Valentina Krysanova, Felicitas Suckow, Beate Klocking, Claus Rachimow.

Front row: Markus Erhard, Daniel Katzenmaier, Kirsten Thonlcke, Wolfgang Cramer, Petra Lasch, Alfred Becker, Jan Grafe, Werner Lahmer, Axel Bronstert.

Name Discipline Project Contributions

Dr. Alfred Becker Hydrology RAGTIME

Dr. Alberte Bondeau Remote Sensing POEM: ETEMA

Dr. Axel Bronstert Hydrology WAVES

Dr. Harald Bugmann Systems Ecology CHIEF, POEM

Prof. Dr. Wolfgang Cramer Geography / Ecology POEM: ETEMA, AGREC, CHIEF

Beatrix Ebert Mathematics CHIEF

Markus Erhard Geoecology RAGTIME

Jan Grafe Agricultural Sciences AGREC: FACE

Susanne Grossman-Clarke Physics POEM, AGREC: FACE

Dr. Rudiger Grate Forest Sciences CHIEF

Andreas Guntner Hydrology WAVES

Majana Heldenreich Hydrology .

Dr. Thomas Kartschall Physics AGREC: FACE

Daniel Katzenmaier Hydrology

81 Scientific D epartments

Dr. Beate Klocking Hydrology RAGTIME

Dr. Valentina Krysanova Hydrology RAGTIME, POEM, RESOURCE

Dr. Werner Lahmer Hydrology RAGTIME

Petra Lasch Ecosystem Modelling CHIEF

Dr. Marcus Lindner Forest Sciences CHIEF

Peggy Michaelis Agricultural Sciences AGREC: FACE

Dirk MUIIer-Wohlfeil Hydrology RAGTIME

Dina Plehn Information Technology RAGTIME

Dr. Matthias Pldchl Chemistry PLAI

Werner Poschenrieder Biology AGREC: FACE

Claus Rachimow Mathematics RAGTIME

J6rg Schaber Information Technology CHIEF

Stephen Sitch Mathematics POEM

Dr. Felicitas Suckow Ecosystem Modelling CHIEF

Kirsten Thonicke Geoecology POEM

Barbel Uffrecht Information Technolgy

Dr. Sergey Venevski Mathematics POEM: ETEMA,

Dr. Frank Wechsung Agricultural Sciences AGREC: FACE

Philosophy plants - almost any vegetation type responds differ­ Terrestrial ecosystems are the foundation of human life ently to certain combinations of these factors. The on Earth, providing food, freshwater, fibres and many department carries out research to better understand other services, and requiring only suitable climate and these mechanisms at a range of different scales. soils as input. We are assessing the role of land vege ­ The problem of vegetation feedbacks to climate is tation in the global context from two perspectives: another issue. The Earth system as a whole is influ­ i) what is the sensitivity of managed and unmanaged enced by the land biosphere through the physical vegetation to a changing environment, and ii) which feedbacks at the land surface through changes in sur­ feedbacks occur between environmental change and face roughness and albedo, both of which are strongly the land surface. influenced by vegetation. Even more important, how ­ The sensitivity question is straightforward and complex ever, is the effect of vegetation on carbon fluxes, which at the same time: the geographic pattern of land vege ­ represents a major part of the uncertainty in future cli­ tation is known to be largely caused by climate, and mate change assessments. This field of research is the importance of both long-term trends and short-term addressed at the global scale. events in climate and weather for vegetation is com ­ The "Natural Systems" of the Earth cannot be seen as mon sense. At the same time, an intricate system of independent of human activities. The department interrelated mechanisms exists between the availabil­ accounts for this by carrying out regional sensitivity ity of sunlight, nutrients (including carbon dioxide) and studies of managed ecosystems, such as forests and an acceptable ’envelope ’ of humidity and warmth for agrosystems, and by recognizing the crucial role of

82 Global C hange & N atural Systems

global land use (change) for modelling the global car­ The validation of modelling results remains a critical bon cycle. Land use change itself, however, is consid ­ difficulty and hence a priority - direct or indirect support ered an external driving force which is best described for simulations is derived from experimental studies by scenarios founded on studies by social scientists. (usually carried out in other laboratories, with PIK sci­ Typical research issues in the Natural Systems entists as collaborators) or from observational pro ­ Department include the following: grammes such as those carried out using satellite- • How does the structure of natural vegetation change based sensors. in response to climate change? If adaptation occurs, then on what time scale? • What significance does land vegetation have for glo ­ Main Working Groups of the Department bal biogeochemical cycles, such as the cycles of car­ bon, water and nitrogen? Specifically, how does Global Biosphere Dynamics increasing carbon dioxide affect vegetation dynam­ The task of this team is to develop a dynamic bio ­ ics? sphere model, which can be used as a component for • What impacts do regional changes in the water bal­ the POEM Earth system model. The underlying ance have on natural vegetation, water availability assumption is that physical and geochemical feed­ and the land-use potential of specific catchments? backs between vegetation change and the climate sys­ • What is the possible impact of climate change on the tem are crucial for lags and possible bifurcations of the agricultural or forest potential at the regional scale? coupled system. Beyond the development of a new comprehensive Dynamic Global Vegetation Model Models and Scenarios as Means (DGVM), there are several sub-tasks which relate to of Analysis of Global Change i )analysing more detailed ecosystem dynamics, such Most Global Change processes are best analysed as competition and disturbance (involving the ETEMA using simulation models. Since precise predictions of project funded by the European Union), ii) validate and regional climate or land use are not possible, scenar­ improve biosphere model behaviour using satellite ios of potential environmental changes are used to remote sensing data, iii) review current approaches of assess the sensitivity of ecosystems to possible trends simulating biospheric fluxes (net primary productivity, of the future. Simulation models are available for vari­ NPP) to better understand the global carbon cycle. ous aspects such as water resources, forest succes­ sion or for gas and energy exchange between plants Hydrology and Water Resources and the surrounding atmosphere. If these models are A general cross-cutting issue for the department is the to be integrated into either global Earth system models vertical and horizontal flux of water through all sub­ or regional integrated assessment models, then they components of terrestrial ecosystems. Main goals are usually need to be modified; in some cases completely both to develop appropriate modules which are used new models must be developed. Our efforts are by other working groups, and the integration of directed at finding adequate solutions at different hier­ regional fluxes in watersheds. River discharge is an archical levels and for different sub-systems. important quantity in its own right - here, however, it is For the development of ecosystem simulation models, primarily seen as an integrating and well-observed an important distinction is between regional and global diagnostic of the modelling of all fluxes and hence all approaches: at the regional level usually both is possi­ land surface processes in a region. Mainly connected ble and necessary to analyse at a sub-process level, to the RAGTIME and WAVES projects, the hydrology e.g. for dynamics of real landscapes, which are impos ­ working group therefore works at several scales, with sible to capture in a global model. Global models, on the major aim of providing adequate simulations of the other hand, are necessary if the cycles of water freshwater availability and water quality. A theme with and carbon are supposed to be closed systems. recently increased emphasis is the estimation of flood Another boundary runs between different land-use risks. types or economical sectors: for many studies, it is both feasible and necessary to use different models for Forests and Forestry agriculturally used land and for forests, especially if the For the assessment of the sensitivity of both managed specific issue relates to changes in productivity. A and unmanaged forests, the group primarily works common feature is, however, that all projects in the towards a novel approach to simulate dynamics in department work with geographically explicit analyses managed and unmanaged forests. This new forest for the regions under investigation. stand model, which is developed within the CHIEF project, includes more appropriate physiological for ­

83 Scientific D epartments

mulations of tree growth than previous forest models. Arizona, USA). For other crops a range of models with It also simulates forest management explicitly. For varying complexity is used - together these are com ­ regional assessments, the group currently uses exist­ bined to provide a toolbox for assessing, in the ing tools such as the ForClim model which has been AGREC project, the sensitivity of the entire agricultural extended to provide suitable simulations of forests sector to Global Change. throughout a large range of the boreal and temperate zone of the world. A nationwide pilot study of the influ­ International Cooperation ence of climate change on German forests has been The department is strongly involved in the IGBP (Inter­ started in 1997 (in cooperation with several partners in national Geosphere-Biosphere Programme), through German forest research institutes). its core projects BAHC (Biospheric Aspects of the Hydrological Cycle) and GCTE (Global Change and Agriculture Terrestrial Ecosystems), where a range of direct scien­ The agricultural sector is sensitive to Global Change tific contributions are made. A. Becker is vice chair and processes both due to its direct dependence on cli­ one theme leader of BAHC, W. Cramer is an executive matic conditions (mainly water availability, in connec ­ committee member of GCTE and H. Bugmann is a tion with carbon dioxide) and because of the high task leader in GCTE. W. Cramer is also a member of importance of global markets which are influenced the IGBP task force GAIM (Global Analysis, Interpreta­ both by climatic and socio-economic changes. For the tion and Modeling). The department is closely allied assessment of changing yields in cereals, the group with the BAHC core project office. Several scientists uses and further develops an advanced crop simula­ have contributed as lead authors, contributors and tion model, which is parameterized using results from reviewers to the Intergovernmental Panel on Climate sophisticated experimental studies (e.g., the Free-Air Change (lPCC). Carbon dioxide Enrichment experiment in Maricopa,

84 Global C hange & Social Systems

Global Change & Social Systems

Acting Head: Ferenc Toth Deputy Head: Marian Leimbach

Staff and Guests

From left to right, back row: Carsten Helm, Eva Tothne-Hizsnyik, Fritz Reusswig, Ferenc Toth.

Front row: Detlef Sprinz, Marian Leimbach

Name Discipline Project Contributions

Gerd Bruschek Geography AGREC

Carsten Helm Economics and Political Science ICLIPS, IGR

Dr. Marian Leimbach Economics ICLIPS, RESOURCE

Prof. Dr. Volker Linneweber Psychology RESOURCE

Dr. Fritz Reusswig Sociology QUESTIONS, RESOURCE

Detlef Sprinz, Ph.D. Political Science RESOURCE

Prof. Dr. Ferenc Toth Economics and Policy Analysis ICLIPS, EUROPA: ULYSSES, EFIEA, RICC

Eva Tothne-Hizsnyik Economics ICLIPS, EUROPA: ULYSSES

The broad phenomenology of Global Change gives improve our understanding of the socio-economic driv­ rise to increasing concern about the nature and conse ­ ing forces that trigger global environmental change quences of long-term, large scale interactions between and, simultaneously, we endeavour to provide better social systems and actors and their natural environ ­ assessments of the impacts of Global Environmental ment. The mandate of the Global Change & Social Change on human societies. The ultimate goal is to Systems Department is to study both directions of integrate these studies into a synoptic framework these human-environment interactions. We seek to shedding light on the complex dynamics of human-

85 Scientific D epartments

nature interactions. These insights might furthermore tional environmental problems - on the international improve social and political efforts towards a better negotiation process. Earth system management. In combining methodological and substantive re­ The Department Global Change & Social Systems search, another activity includes the development of a studies the social dimensions of Global Change in the measurement instrument for the effect which interna­ following research fields: tional environmental treaty regimes have on countries of lessening transboundary pollution problems. We Integrated Assessment also investigate the effect of particular regime func­ and Macro-economic Modelling tions, such as lessening scientific uncertainty and pro ­ An integrated assessment of climate change is a main viding systematic monitoring. By comparing the actual focus of the department’s activities. The aim is to inte­ performance with a counterfactual for the non-treaty grate the variety of disciplinary models within a regime case and a political-economic social optimum, broader cost-benefit framework. This should allow a standardized evaluation system for the performance potential damages caused by climate change to be of international environmental treaty systems was de­ evaluated, on the one hand, and costs of measures to veloped. mitigate climate change, on the other hand. Effective This methodology has been applied to the regulating and efficient strategies to prevent and combat the efforts to curb acidification across Europe by way of additional greenhouse effect (e.g. climate policy on an international environmental agreements. Our research international level) depend - among other things - upon demonstrates that two agreements reached within the consistent best-benefit frameworks. United Nations Economic Commission for Europe had The design of socio-economic scenarios as well as the some positive effects, but fall short of the optimal out ­ determination of intertemporal optimized economic come. development paths within the Integrated Assessment framework should reflect the macro-economic system Regional Environmental Management as realistically as possible. Therefore, some deficits of and Environmental Security mathematical-economic modelling have to be over ­ Research activities in this field focus mainly on water come. Here, we worked theoretically and empirically to resources. The aim is to develop tools of water man­ extend aggregated traditional growth models for the agement suited to overcome adaptively the regional integration of components of endogenous technologi ­ scarcity of fresh water. cal progress as well as some preparatory work in order A variety of efforts were undertaken to shed light more to model non-equilibrium states. We are confronted systematically on the relationship between environ ­ with non-equilibrium states when considering phenom ­ mental degradation and the onset of violent conflict. ena of Global Change, as there are for instance econ ­ Water-created violent conflict is the main focus. This omies in transition, unemployment, migration, scarcity comprises work to derive a set of instruments to of land and resources. reduce the degradation of water resources and to Additional conceptual activity concentrates on combin ­ develop a methodology to derive environmental ing traditional cost-benefit analysis with multi criteria thresholds for the future at which the outbreak of vio ­ decision making techniques including extended wel­ lent conflicts over water resources becomes highly fare indicators. probable. A comprehensive research design is under develop ­ International Environmental Institutions ment which specifies the passing of environmental In this research field the focus is on analysing environ ­ thresholds as the sufficient condition for the outbreak mental treaties, e.g. climate protocols and the process of violent conflict. Furthermore the systematic specifi­ of negotiation, as well as the effectiveness of different cation of environment policy instruments and interven­ climate policy instruments, e.g. tradeable emission tions by way of conflict management allow the simulta­ permits and carbon dioxide taxes, under consideration neous specification of the conditions for the outbreak of diverging interests of different actors. Here, meth­ of environmentally induced violent conflicts. ods of non-cooperative as well as cooperative game theory are applied. Closely related to the activities Environmental Psychology and above is also the investigation of the international dis­ Environmental Sociology tribution of emission rights based on different equity Within the framework of the Global Change issue the principles. A further research focus is the effect of sci­ question of how social actors perceive and represent entific uncertainty - a central characteristic of interna­ environmental risks and potential harmful situations is important. The leading question in this type of

86 Global C hange & Social Systems

research is: How and why are human actors and sys­ such thing as „our“ or „the“ modern lifestyle. The more tems worldwide using their environmental resources, developed a country, the more pluralistic its social i,e, sources and sinks, in a way that leads to their structure, including values, attitudes, and practice. depletion, overuse, overcharge or whatsoever. Sociol­ This plurality holds true even regarding the everyday ogy and psychology are two disciplines competent to environmental performance of different lifestyles; one deal with this issue. The latter focuses upon individual can find factor-five differences of carbon dioxide emis­ actors, their internal and external motives and con ­ sions within countries, not only between them. Strate­ straints. The subject of the former is social systems as gies to change modern consumption patterns there­ the behavioural context of individuals, their mecha­ fore have to be lifestyle-specific, not uniform. They nisms and their effects. Recently both disciplines have have to take into account the way lifestyle groups actu­ developed environmental subdisciplines, inquiring into ally include environmental issues (partially) into their the actual ecological conditions and impacts of human consumption patterns, and their changes currently attitudes and into possible changes in the future. One underway. of the tasks is to investigate individual and social con ­ ditions for a sustainable development. Syndrome Dynamics of Global Change The Social Systems Department at PIK is using these The main focus in this research field is the social sci- disciplinary methods widely. One example for PIK ences-based analysis of anthropogenic cause and activities in this field concerns the environmental effect symptoms of Global Change. This follows the aspects of modern lifestyles. Consumption levels and Syndromes-approach as it is performed by the QUES­ patterns of modern industrial societies are responsible TIONS core project, in which recently the Favela-, for about 15-40 % of total energy and resource use Green Revolution - and Asian Tigers syndromes have and related pollution in these countries. Changing con ­ been receiving closer attention. This analysis com ­ sumption patterns are therefore an important global prises qualitative description and modelling by means sustainability issue. The widespread claims of environ ­ of qualitative reasoning (e.g. fuzzy logic, expert knowl ­ mentalists and some sympathetic researchers that we edge), case studies and data analysis. should change “our ” lifestyles, nevertheless miss A second focus is the analysis of societal aspects of important aspects of social structure and dynamics of the global water crisis. As a result of this activity, the so modern societies. called “criticality index” was developed, relating water Empirical evidence, relying upon methods of sociology supply, water demand by sectors and water-related and market research, leads to a somehow more curation potential on a global scale today and for 2025. sophisticated picture of modern societies. There is no

87 Scientific D epartments

Data & Computation

Head: Rupert Klein Deputy Head: Karsten Kramer

Staff and Guests

Left to right, back row: Dietmar Gibietz-Rheinbay, Markus Wrobel, Helmut Miethke, Werner von Bloh, Karsten Kramer, Martin Kucken, Michael Flechsig.

Front row: Frank Toussaint, Rupert Klein.

Name Discipline Project Contributions

Michael Flechsig Mathematics RAGTIME, SDM, CHIEF, EUROPA: WISE

Dietmar Gibietz-Rheinbay Geography and System Administration

Achim Glauer Electric Engineering

Henrik Kinnemann Computer Science

Professor Dr. Rupert Klein Applied Mathematics & Computer Science

Karsten Kramer Electronic Technology and System Administration

Martin Kucken Chemistry WAVES

Helmut Miethke Automation Engineering

Dr. Frank Toussaint Physics SDM

Werner von Bloh Physics POEM

Markus Wrobel Computer & Information Sciences SDM

88 D ata & C omputation

The Data & Computation Concept Particular contributions to PIK core projects are: Climate impact research studies rely heavily on model ­ AGREC and POEM: The sensitivity of natural and agri ­ ling and scientific computing, as the global scales con ­ cultural systems to climate change in Central Europe sidered are too large to allow a sufficient range of relia­ was studied. GIS technology helped to determine ble laboratory experiments. The process of scientific parameters for biome and agricultural production mod ­ computing includes the mathematical modelling of a els and for result preparation and output. given system, the translation of the abstract mathe­ CHIEF: Forest succession and growth models were matical model into a digital analogue, the implementa­ applied to regional forest dynamics under potential cli­ tion on modern computing facilities, their operation and mate changes using Data & Computation ’s parallel the intelligent evaluation and interpretation of the com­ simulation environment (SPRINT-S). This environment puted results. The Data & Computation Department enables flexible simulation experiments and regional supports the ambitious interdisciplinary goals of PIK by studies with the model class used on the IBM SP-2 (I) maintaining the hardware and software pool of a parallel computer. Regional studies for both the State high-level computing environment, by (ii) contributing of Brandenburg and the Dubener Heide used GIS data its mathematical and computer science expertise to a for model parameterization and initial value supply. range of applied research projects and by (iii) pursuing POEM: A new parallel implementation of a two-dimen ­ its own PIK-related research in the field of applied sional geophysiological model now uses Data & Com ­ mathematics and computer science. putation ’s GeoPar library. The parallelization of the The Data & Computation department provides a gen ­ CLIMBER model is in preparation. A C++ object-ori ­ eral scientific computing service to the PIK research ented version of the same model will be developed in team. This includes mathematical support at the model addition to compare efficiency vs. usability of the differ­ development stage, computer science support at the ent implementations. stage of model implementation, runtime support in RAGTIME: Spatial and temporal data for the Elbe terms of hard and software and, again, computer sci­ drainage basin have been evaluated. Typical geo ­ ence support during the phase of evaluation and inter­ graphical data are stored in GIS format. A temporal pretation of results. An additional major challenge for data model has been developed using the ORACLE™ Data & Computation is to map the diverse, interdiscipli­ database system. Metadata from 1390 stations were nary structure of the Institute with an equivalent model ­ stored together with about 10 million items of daily ling environment on the software level. PIK will be able data. to match its ambitious goal of modelling environmental WAVES: The implementation and parallelization of a and socio-economic systems on a global scale only if regional climate model (REMO 0.1) onto the IBM SP-2 such a common modelling environment is at hand. computer at PIK was finished in August 1997. In addi­ This should allow one to embed all of the specialized tion a statistical (cluster-analysis) algorithm was rede­ expertise found at PIK in a modular fashion and it will signed and tuned significantly. significantly streamline the communication between the disciplines. Computing Infrastructure A high-performance state-of-the-art information-tech ­ Interface to the Applied Sciences nology (IT) infrastructure is one of the foundations of Contributions to the Core Projects the scientific work of our Institute. Due to its impor ­ In setting up a computer simulation of a complex envi­ tance, the infrastructure has to change perpetually, ronmental system, it is necessary to identify a model moving in an area of conflict which is spread by the system that is sufficiently elaborate to include all the demand for continuous availability, technical innova ­ major effects, while being sufficiently simple to allow a tion, technical limitations and - last but not least - mathematical / computational analysis within a reason ­ budget constraints. able time span. A successful model formulation Currently the IT-infrastructure of PIK includes a involves both a deep insight into the nature of the sys­ 77-processor IBM RS 6000 SP scalable parallel super­ tem and a solid mathematical underpinning. A similar computer, nearly 150 high-end workstations and per­ combination of skills is needed in implementing a sonal computers; an appropriate storage hierarchy related computer code as well as in evaluating the comprised of about 800 Gigabyte of disk storage computational data produced. Thus, there is a wide backed by 10 Terabyte of tape storage and a computer range of opportunities for mathematics and computer network which connects all resources both internally science support in all the various disciplines encoun­ and with the Internet. tered at PIK.

89 Scientific D epartments

During the years under review the group most notably Scientific Data Management (SDM) made good progress in the following areas: Several German geoscience institutes have joined to • Overall Systems Availability collaborate on development, implementation, and link­ Compute server, disk- and tape storage as well as age of the Meta Data Bases (MDBs) at their sites to Internet connectivity availability was above 99% cal­ cast their data into a common structure and to make it culated on a basis of 24 hours operation per day, mutually accessible. Besides PIK, the Deutsche Klima- 365 days p.a. rechenzentrum (DKRZ, Hamburg) and the Alfred- « Internet Connectivity Wegener-lnstitut fur Polar- und Meeresforschung In a joint effort the Potsdam scientific community (AWI, Bremerhaven) are involved in this project, in the established a metropolitan area network in 1997 first phase. The Forschungszentrum Karlsruhe (FZK) which strengthened the cooperation among all insti­ has also joined in. tutions concerned and provides a 4 Mbps B-WIN

(Breitband Wissenschaftsnetz) internet connection. METADATA STUKAUb AND RETRIEVAL • Disaster Recovery Today most - if not all scientific results, i.e. algo ­ INPUT RETRIEVAL rithms, data, figures, and publications are stored on digital media. One can only imagine the amount of Graphical user interface: Graphical user interface: work and knowledge gathered year by year in our ORACLE Forms ORACLE Forms and Web browser A Institute which could be lost, caused by one single O event. Therefore our everyday backup and recovery scheme has been extended by a disaster recovery plan. • Load Balancing and System Tuning Intermediate control ORACLE Forms A job-queuing system was installed and maintained and input layer: web server 9 main loading tables on our main computer facility to ensure a fair and efficient usage of the system. Moreover - as the sys­ PL/SQL script tem utilization increased - we have made considera ­ ble efforts to optimize various aspects of the system, most notably the network and storage hierarchy. Permanent storage: • Desktop- and Web-Publishing CERA structure of approx. 60 tables Although there is a plethora of tools available in the

desktop- and HTML-publishing (Hypertext Markup Fig. 5: The SDM storage concept at PIK consists of user layer and Language) arena, a serious effort was necessary to storage layer. For input check a loading control layer of data base establish a working environment throughout the tables is introduced. Institute which implements a common framework for PIK publications with support for both hardcopy and The main aims of the common MDB are: Internet publications, see: http://www.pik-potsdam.de . • to make accessible all geographical and other Glo ­ bal Change-relevant data held by any department to PIK employees and collaborators, by archiving the

90 D ata & C omputation

place where and the form in which the data are System Load maps Stations Help stored, SELECTION DONE. Dahme-Spreenald • to give online access to the corresponding data of z^rox-LON/LAT -13.73* S2JS*

the other collaborating institutes, together with qual ­ »ay cJEif iltJbw'c SLAT-SL36* NLAT-S356* WLON-1137* BLON-14J7* ity information, Yoar gclecdcm: Dakne-Sjreevali • to enable researchers to survey all available data SLAT-51.73* NLAT-52 AT WLON-13.41* E LON-14^6* and to assess their quality and reliability, • to coordinate the ordering and storage of data to avoid redundancies, • to enable meta data interchange with national and international institutions by means of a distributed MDB. In 1996 and 1997 the common data structure of the MDB has been developed and released as CERA 2.3 (Climate and Environmental Data Retrieval and Archiving System). The system has been implemented at the four sites mentioned, and also at the Fraun- hofer-lnstitut fur Atmospharische Umweltforschung (IFU). The Institut fur Meereskunde at Hamburg Uni­ versity (IfM) and Umweltforschungszentrum Leipzig- Fig. 6: The graphical user interface (GUI) developed at PIK allows Halle (UFZ) are interested in taking over the developed comfortable selection of data from different geographical regions. structures and user interfaces. The CERA database concept is highly flexible, as the The intranet graphical user interface (GUI) developed necessary relational schemes are separated from at PIK enables comfortable hierarchical queries of dif­ those only used by few institutes. The latter are con ­ ferent geographical coverages and keywords by any tained in modules that can be attached to the core web browser. The self-adapting HTML can easily be CERA table group, if they are applicable for the transferred to views of the various relational data respective institute. bases in use at the Institute.

91 Scientific D epartments

Scientific Cooperation Unit

Head: Manfred Stock BANG Office: Michael Fosberg, IGBP Office: Sabine Lutkemeier Scientific and Public Relations Manager: Petra Schellnhuber

From left to right: Gabriele Dress, Arne Spekat, Wilhelmine Seelig, Holger Hoff, Sabine Lutkemeier

Name Discipline/Function Contributions to

Dr. Alfred Becker Hydrology IGBP

Prof. Dr. Martin Claussen Meteorology BAHC

Prof. Dr. Wolfgang Cramer Geography / Ecology GCTE, GAIM

Gabriele Dress Secretary IGBP

Dr. Michael Fosberg Forestry BAHC

Holger Hoff Geoecology BAHC

Dr. Sabine Lutkemeier Hydrogeology IGBP

Petra Schellnhuber Administration PIK

Annette Schulte-Doinghaus Secretary BAHC

Wilhelmine Seelig Administration BAHC

Arne Spekat Meteorology IGBP

Dr. Manfred Stock Physics PIK, IGBP, BAHC

92 Scientific C ooperation U nit

An essential part of PIK’s research strategy is its close scientific staff of the PIK departments and international cooperation with partner institutions within Germany guests. A regular activity of this Lecture Course on and abroad. This is organized in line with interdiscipli­ Global Change is the PIK doctorate seminar. nary projects and programmes at national and interna­ tional levels using the following functions: The International Geosphere-Biosphere • Scientific and Public Relations Programme - IGBP • Course of Lectures on Global Change To support the International Geosphere-Biosphere • Support to the International Geosphere-Biosphere Programme (IGBP), three offices are located at PIK: Programme the international office of the core project Biospheric • Support to the project Biospheric Aspects of the Aspects of the Hydrological Cycle (BAHC), one of the Hydrological Cycle four international focus offices of the core project Glo ­ bal Change and Terrestrial Ecosystems (GCTE, focus 2 on Ecosystem Structure), and the German National IGBP Secretariat. The three offices support, coordinate, and foster research and organize confer ­ ences and workshops. Established in 1989, the International Geosphere-Bio ­ sphere Programme is aimed at describing and under­ standing the interactive physical, chemical and biologi ­ cal processes that regulate the total Earth system, the unique environment that it provides for life, the changes that are occurring in this system, and the manner in which they are influenced by human actions. Priority is placed on those areas in each of the fields involved which deal with key interactions and significant changes on time scales of decades to cen­ turies which most affect the biosphere. These are most susceptible to human perturbations and will most likely lead to a practical, predictive capability. Petra Schellnhuber IGBP has formulated six fundamental questions rela­ ted to Global Change: Scientific and Public Relations 1) How is the chemistry of the global atmosphere Coordinating Function: Scientific events are arranged regulated and what is the role of biological proc ­ and coordinated. This includes organizing conferences esses in producing and consuming trace gases? and workshops, assisting the reception of guest scien­ 2) How will global changes affect terrestrial ecosys ­ tists and assisting these and other visitors to the Insti­ tems? tute. 3) How does vegetation interact with physical pro ­ Public Relations and Contacts: Communication with cesses of the hydrological cycle? the media is coordinated, interaction is maintained with 4) How will changes in land use, sea level and cli­ associates of the Institute, and the publication of peri­ mate alter coastal ecosystems, and what are the odicals is managed. wider consequences? Information Exchange between the Scientific and 5) How do ocean biogeochemical processes influ­ Administrative Departments: The scientific work of the ence and respond to climate change? Institute is translated on the one hand into administra­ 6) What significant climatic and environmental tive purposes, and on the other hand is conveyed as changes have occurred in the past and what were general information to the public. Contacts with collab ­ their causes? orators and partners are managed in consultation with the heads of the department and according to the Several international core projects of IGBP were annual research plan of the Institute. established to answer these fundamental questions. PIK scientists are involved in the research and organi ­ Course of Lectures on Global Change zation of some of these core projects. Wolfgang All lecture activities at PIK including 1GBP activities Cramer is a Focus Leader in the Scientific Steering and workshops are summarized under the heading Committee of the core project Global Change and Ter­ Course of Lectures on Global Change. This includes restrial Ecosystems (GCTE) and also a member of the

93 Scientific D epartments

task force on Global Analysis, Interpretation and Mod ­ • An International Workshop on Effects of Global elling (GAIM). Change on Ecological Complexity 20-22 October 1997 at Schloss Rauischholzhausen, jointly organ ­ Mission of the National IGBP Secretariat ized with the University of GieBen. The mission of the National IGBP Secretariat is to sup­ National meetings on the following IGBP core projects port the work of the National IGBP Committee and were organized: Joint Global Ocean Flux Study especially to support the work of its chair in accord ­ (JGOFS), Global Ocean Ecosystem Dynamics ance with the overall purpose of the programme. This (GLOBEC), Land Ocean Interactions in the Coastal includes, on the one hand, informing the national sci­ Zone (LOICZ), International Global Atmospheric ence community and national funding agencies about Chemistry Project (IGAC), Stratospheric Processes international activities and, on the other hand, inform ­ and their Role in Climate (SPARC), Biospheric ing the international community about German IGBP Aspects of the Hydrological Cycle (BAHC). activities. The particular tasks of the Secretariat are: • Extended Meeting of National IGBP Coordinators, • to coordinate the contribution of the Federal Repub­ 13 August 1996 in Bonn at the Ministry of Research lic of Germany to the International Geosphere-Bio ­ • Ad hoc IGBP Meeting, 28 April 1997 in Berlin sphere Programme; Scientific developments and contacts with scientists • to integrate as far as possible German concepts as are also maintained by attending national and interna­ well as already funded German projects into the tional conferences on Global Change by the scientific international programme and staff of the Secretariat. • to promote intensively the development of the Ger­ man contribution to IGBP. Future Agenda On 1 January 1996 the National IGBP Secretariat In future the Secretariat will continue to work closely moved from the Institute of Meteorology at the Free with the German IGBP Committee, i.e. the National University of Berlin, where it had been based for six Committee on Global Change Research, established years, to the Potsdam Institute of Climate Impact by the Deutsche Forschungsgemeinschaft in 1996. Research. Scientific Publishing IGBP Activities of the National IGBP Secretariat The IGBP-Informationsbrief is published regularly four in 1996 and 1997 times a year (1 March, 1 June, 1 September and 1 One of the major tasks of the Secretariat is the organi ­ December) and can be obtained free of charge from zation of national and international conferences, work ­ the German IGBP Secretariat. (The latest issue is shops and meetings. This not only includes the local Number 29 as of 1 December 1997.) organization but also implies contacting sponsors and • Bericht fiber den 4. JGOFS-Workshop 20./21. other funding agencies and accounting for funds. November 1995 in Bremen; Ed.: Giese, Martina und In the above-mentioned period the German IGBP Sec­ G. Wefer, Berichte Fachbereich Geowissenschaften, retariat has organized the following international meet­ Universitat Bremen 1996, Nr. 70 ings: • Bericht fiber den 5. JGOFS-Workshop 27728. • the First IGBP Congress in Bad Munstereifel, 18-22 November 1996 in Bremen; Eds.: Giese, Martina April 1996, jointly with the IGBP Secretariat in Stock ­ und G. Wefer, Berichte Fachbereich Geowissen ­ holm. schaften, Universitat Bremen 1997, Nr. 89 • the Global Change and Terrestrial Ecosystems • Bericht fiber den 6. JGOFS-Workshop 475. Dezem- (GCTE) Synthesis Workshop in Berlin/Potsdam, 14- ber 1997 in Bremen; Ed.: Patzold, Martina und G. 20 September 1996, jointly with the GCTE Core Wefer, Berichte Fachbereich Geowissenschaften, Project Office in Canberra, Australia. Universitat Bremen 1998, Nr. 109 • the Pilot Workshop Comparison of Forest Patch • JGOFS-AG "Oaten und Modelle ” Sammlung Models, 15-18 December 1996 at PIK-Potsdam and JGOFS-relevanter Modelle in Deutschland; Eds. S. jointly organized with PIK. Determann, K. Herterich, Berichte Fachbereich • the Joint Meeting of International Group of Funding Geowissenschaften, Universitat Bremen 1997, Nr. Agencies (IGFA), World Climate Research Pro ­ 93 gramme (WCRP), IGBP and International Human • Bericht fiber den zweiten deutschen LOICZ-Work- Dimensions Programme (IHDP), 18-20 August 1997 shop, 16.-18. November 1995, Institut fur Ostseefor- in Potsdam, jointly organized with Helmut Kfihr of the schung; Ed. IGBP-Sekretariat Sabine Lutkemeier, German Aerospace Research Centre Establishment PIK-Potsdam 1996 Project Management for the BMBF (DLR-PT).

94 Scientific C ooperation U nit

• Bericht fiber das Arbeitstreffen “Spurengase ”, 13.- The BAHC IPO is becoming integrated into the PIK 14. November 1996, GKSS-Forschungszentrum research agenda through supporting the RESOURCE Geesthacht; Ed. IGBP-Sekretariat Sabine Ltitke- project at PIK on Global Change and water resources meier, PIK-Potsdam 1997 and in a modelling effort to introduce disturbance into • Report on the German LOICZ Focus 4 Workshop dynamic global vegetation models. “The changing Coastal Regions: Past, Current and Future Human Activities - Assessment of Research Activities of the BAHC IPO from 1995 to 1997 Needs”, 17-18 June 1997, GKSS-Forschungszen- Among the tasks of the BAHC IPO, organizing of con ­ trum Geesthacht; Ed. IGBP-Sekretariat Sabine ferences and workshops plays a major role. In the Lutkemeier, PIK-Potsdam 1997 above-mentioned period the following meetings amongst others were prepared, organized and sup­ Biospheric Aspects of the Hydrological Cycle - ported financially by the BAHC IPO. BAHC • First BAHC Science Conference and BAHC SSC At present the IGBP is structured into 11 programme Meeting in conjunction with the XX. General Assem­ elements addressing the six fundamental questions, bly of the European Geophysical Society (EGS), 3-8 mentioned on page 93, and in addition, data manage ­ April 1995 in Hamburg ment, capacity building and synthesis, and integration. • UNESCO/BAHC/GCTE Workshop “Predicting Glo ­ Each of these programme elements is served by a bal Change Impacts on Mountain Hydrology and small permanent staff to conduct the day-to-day affairs Ecology ” 30 March - 2 April 1996 in Kathmandu, of the programme under the direction of an Interna­ Nepal tional Scientific Steering Committee. Alfred Becker and • Chinese BAHC Science Conference, 10-12 Novem ­ Martin Claussen are in the Scientific Steering Commit ­ ber 1996 in Beijing, China tee of the BAHC project. The International Project • Workshop “BAHC Research in Germany” at PIK, 18 Office (IPO) of the Biospheric Aspects of the Hydrolog ­ April 1997 in Potsdam ical Cycle (BAHC) is one of these offices. PIK is the • BAHC SSC Meeting, 29 May - 1 June 1997 in Poi­ host agency for the BAHC IPO. son, USA The primary activities of the IPO are to facilitate the • BAHC-LUCC Joint International Symposium on international science programme by organizing and “Interactions between the Hydrological Cycle and conducting scientific meetings, to provide a clearing Land Use and Land Cover ”, 3-7 June 1997 in Kyoto, house for all BAHC activities and to carry out research Japan support for the various science activities. As an exam­ ple of this support the BAHC IPO coordinates the Scientific Publishing of BAHC European contributions to the data and information The following publications are either edited or system of LBA (Large Scale Biosphere - Atmosphere authored by members of the BAHC IPO or appeared in Project in Amazonia) and provides a mirror site for the BAHC-sponsored special issues of journals. LBA home page. The BAHC IPO carries out independ­ • BAHC Research in Germany, 18 April 1996, Work ­ ent studies on policy makers’ needs for scientific infor ­ shop Report, BAHC IPO, 1997 mation, facilitates research planning for major studies • Strategies for Monitoring and Modelling C02 and and provides help for synthesis and integration of Water Vapor Fluxes over Terrestrial Ecosystems; D. BAHC science. Examples of these independent stud­ Baldocci, R. Vaientini, S. Running et. al.; Thematic ies are the competitively funded study on defining pol­ Issue of Global Change Biology, Nr. 2,3,1996 icy makers needs’ for information on freshwater • HAPEX Sahel; Ed.: J.P. Goutorbe, A.J. Dolman, resources, the development of a synthesis and inte­ J.H.C. Gash et. al.; Special Issue of Journal of gration effort to document the first six years of BAHC Hydrology, 188/189,1997 accomplishments, and the development of a competi ­ • Aggregate Description of Land-Atmosphere Interac­ tively funded proposal to develop a research study on tions; Ed.: J.D. Michaud, W.J. Shuttleworth; Special freshwater resources in sub-Saharan Africa. Issue of Journal of Hydrology, 190,3/4,1997 The BAHC IPO also provides support to the IGBP Glo ­ • BAHC-an update; Michael Fosberg; The Globe, 40, bal Change and Terrestrial Ecosystems Focus 2 leader 1997 (member of the PIK staff).

95 Scientific D epartments

96 D as Potsdam Institut fur Klimafolgenforschung

Zusammenfassung

Das Potsdam-Institut fur Klimafolgenforschung

Einfiihrung

1992, im Jahr der Rio-Konferenz, hatten sich die wis- jeweilige System erschdpfend beschreibenden senschaftlichen Hinweise auf einen bevorstehenden, Gesamtbild zu verbinden. Diese Aufgabe wird aller- anthropogenen Klimawandel stark verdichtet. Gleich- dings durch eine Beobachtung handhabbar, die man zeitig stellte sich heraus, daB das Wissen ilber die an alien hinreichend komplexen dynamischen Syste- Konsequenzen rascher Klimaveranderungen, seien men machen kann. Sie soil hier mitsamt ihren for- sie nun vom Menschen verursacht Oder auf naturliche schungsstrategischen Konsequenzen kurz erlautert Weise hervorgerufen, ungenugend war. Wie wurden werden. sich solche Veranderungen auf die Natur, die Wirt- Wenn wir reale dynamische Systeme genuiner Kom ­ schaft, die menschlichen Lebensgewohnheiten aus- plexitat betrachten, stellen wir test, daB sich diese wirken? Welche wissenschaftlichen Vorgehensweisen Komplexitat zumeist in einer Hierarchie von charakteri- und welche natur- und sozialwissenschaftlichen Diszi- stischen Mustern, Typen Oder Entitaten organisiert. plinen und Methoden waren fur eine seribse Folgenab- Jede Stufe dieser Hierarchie wird ihrerseits durch eine schatzung notwendig und hinreichend? Wie waren die Oligarchie von uberschaubar vielen Elementen gebil- verschiedenen Disziplinen zur Schaffung einer homo- det. Das trifft auf den in Galaxienhaufen, MilchstraBen genen Forschungsstrategie zu vereinen, ohne dabei und Sonnensystemen gegliederten Kosmos ebenso zu ein "babylonisches ” Durcheinander zu erzeugen? wie auf die terrestrische Biosphare mit ihrem taxono- Die Grundung des Potsdam-lnstituts fur Klimafolgen ­ mischen Artengefuge. DaB diese Ausfuhrungen mehr forschung, empfohlen durch den Wissenschaftsrat, sind als blutleeres, erkenntnistheoretisches Rasonie- muB vor dem Hintergrund dieser Fragen gesehen wer- ren, zeigt der Blick auf die robuste und sich laufend den. Das PIK ist von seiner Idee und Struktur her ein erneuernde Organisation einer Bevolkerung im Raum. Institut ohne Prototyp Oder Vorganger, an dem ein vol- Obwohl es prinzipiell vorstellbar ist, daB sich in einer lig neuer Ansatz entwickelt wird, der fur die Untersu- beliebigen Landschaft eine gleichmaBige Besiedlung chung all dieser Fragestellungen geeignet ist. durch immer gleich groBe Gruppen, seien es nun Familien, Dorfgemeinschaften Oder noch groBere Kon- Der konzeptuelle Hintergrund des PIK-Ansatzes glomerate, oder umgekehrt eine Zusammenballung Das PIK ist bestrebt, die empirischen Resultate vieler alter Individuen auf engstem Raum herausbildet, wird Fachrichtungen und Einrichtungen aufzugreifen, auf- man in der Realitat fast immer eine hierarchische zuarbeiten, zusammenzufassen und ihre Einsatzmog- Gesamtheit aus den Elementen “Dorf ”, “Stadt”, lichkeiten zu bewerten. Auf der so entstehenden viel- “Region ” und “Staat” finden. Diese Beobachtung von schichtigen und vernetzten Datenbasis kann dann Strukturiertheit der Komplexitat realer Systeme zusam- jene Gesamtheit von meteorologischen, hydrologi- men mit der im folgenden ausgefuhrten Einsicht ist schen, okologischen, soziodkonomischen und konstitutiv fur die Entwickiung von Modellen interme- transdisziplinaren Modellen errichtet werden, die das diarer Komplexitat, welche mittlerweile zu den wichtig- wissenschaftliche Stammkapital des PIK bildet und sten Werkzeugen des PIK geworden sind. rechnergestutzt die Simulation vergangener, gegen- Zunachst einmal wird jede wissenschaftliche Theorie wartiger und zukunftiger Umweltwirklichkeiten ermog- die dynamischen Muster der jeweils zu analysierenden licht. Realitat zur Kenntnis nehmen und versuchen, die Wer nun dem System Erde, dem Globalen Wandel, dadurch erkannte “Granularitat” des Systems auszu- den Folgen der anthropogenen Klimaanderungen etc. nutzen. Je nach GroBe des Systems ist dabei eine von das Netz der Theorie uberwerfen will, steht vor einer zwei moglichen Vorgehensweisen erfolgversprechend: auBerordentlich schwierigen Aufgabe: Aufgrund der Bei den extrem kleinen (Elementarteilchen) und gro- Vielzahl von Faktoren, die relevant fur die jeweiligen Ben (Raum-Zeit-Architektur) Determinanten des Kos ­ Prozesse sind, sowie der Heterogenitat der beteiligten mos versucht man, die entsprechende Musterbildung Komponenten, ist es denkbar schwierig, die einzelnen quantitativ aus “ersten Prinzipien” (wie den Grundge- Wechselwirkungen zu erfassen und sie zu einem das setzen der Quantenmechanik oder der Molekularbiolo-

97 ZUSAMMENFASSUNG

gie) zu erklaren, d.h. deduktiv herzuleiten. Bei Syste- rung mit der Erdsystemanalyse Oder der Klimawir- men mittlerer GroBe hingegen scheitert dieses Unter- kungsforschung hat gezeigt, daB dieser schmale inter­ fangen in der Regel - eine molekulardynamische mediare Pfad weiter beschritten werden muB. Die Art Computersimulation mit, sagen wir, 1030 Teilchen wird und Weise, wie das PIK diesen Weg im Spannungs- praktisch unendlich large brauchen, bis sie das fauni- feld zwischen Grundlagenforschung und Politikbera- sche Muster “Giraffe” erfunden hat, und eine indivi- tung verfolgt, demonstriert dieser Zweijahresbericht dual-psychologische Rekonstruktion der Gesell- auf vielfaltige Weise. schaftsdynamik des 20. Jahrhunderts durfte nicht zwangslaufig einen “Hitler” Oder “Gorbatschow ” als Projekte und Abteilungen - emergenten staatsmannischen Typ hervorbringen. die Forschungsstrukturen des PIK Die mesoskopischen Entitaten, die gerade unsere Das Institut gliedert sich seit der Grundung in die vier Umweltwirklichkeit strukturieren, lassen sich dagegen Abteilungen Klimaforschung, Globaler Wandel und am besten auf “traditionellem ” Wege erklaren, d.h. naturliche Systeme, Globaler Wandel und soziale indem ihre Existenz vorausgesetzt, ihr effektives Ver- Systeme und Data & Computation und eine funfte halten studied und anschlieBend eine Theorie entwik- Abteilung Integrierte Systemanalyse, die die einzelnen kelt wird, die die Beobachtungen moglichst vollkom- Gebiete verbindet. men beschreibt. Das bedeutet aber keinesfalls, daB Es wurde aber bald offenkundig, daB das Erdsystem die wissenschaftliche Auseinandersetzung mit jenen und die Dynamik des Globalen Wandels anhand Gegenstanden lediglich phanomenologisch gefuhrt representatives abteilungsubergreifender Schlussel- werden kann Oder soil: Theorien mittlerer analytischer fragen untersucht werden mussen. Diese wurden Tiefe und Reichweite, die das Fundament fur die anfangs in einem internen EvaluierungsprozeB unter bereits erwahnten Modelle intermediarer Komplexitat Beteiligung des wissenschaftlichen Beirats des PIK bilden, versuchen die durch Inspektion aufgefundenen (SAB) aus einer Reihe von Vorschlagen ausgewahlt. Muster formal zu kodieren - z.B. durch parametrisierte Ergebnis dieses Prozesses waren neun Forschungs- Differentialgleichungen Oder empirisch begrundete komplexe, die sogenannten Kernprojekte, die von Wis- Listen von Evolutionsregeln. Ober den Formalismus senschaftlern aus den verschiedenen Abteilungen lassen sich dann quantitative Aussagen iiber Dyna- gemeinsam bearbeitet werden. Die Forschung des mik, Stabilitat Oder Synergie der konstitutiven GroBen PIK ist damit in Form einer Matrix aus Abteilungen und gewinnen. Kernprojekten organisiert, dargestellt in Bild 2 auf Diese heuristische Strategic spielt fur die Forschung Seite 4. Dabei ist es Aufgabe der wissenschaftlichen am PIK in der Tat eine wesentliche Rolle. Sie kommt Abteilungen, die Kernprojekte eng an die methodische z.B. in der Art zum Ausdruck, wie die Waldsukzession Entwicklung in den einzelnen Disziplinen anzubinden, unter den Triebkraften des Globalen Wandels Oder die die Wissenschaftler zu fordern und zu unterstutzen globale Wechselwirkung zwischen Vegetation und und die Qualitat der Arbeit und der Ergebnisse sicher- Atmosphare mittels funktionaler Typen simuliert wird zustellen. Daruber hinaus werden die Fortschritte und (Kernprojekte CHIEF bzw. POEM/DGVM). Sie spiegelt Erfolge alter Kernprojekte jahrlich vom SAB evaluiert, sich wider im Konstruktionsprinzip des Erdsystem- der daraufhin zur Fortsetzung, Intensivierung Oder Modells CLIMBER, das charakteristische klimatologi- Reduktion Oder sogar zur Aufgabe einzelner Kernpro ­ sche Strukturen und Prozesse antizipiert, Oder im hier- jekte rat. archischen Aufbau der Elbe-Okohydrologie aus Derzeit gibt es acht Kernprojekte am PIK, die auf glo ­ “Hydrotopen ” unterschiedlicher Skalenebenen (RAG­ baler oder regionaler Skala entweder unter sektoralem TIME). Sie liefert das Grundrezept bei der semi-quanti- oder integrativem Blickwinkel Fragen zum Globalen tativen Zerlegung des Globalen Wandels in Syndrome Wandel untersuchen. Die Europaischen Netzwerkakti- (QUESTIONS) und scheint u.a. bei der Formulierung vitaten, an denen das PIK beteiligt ist, werden derzeit effektiver (“reduced-form ”) Module fur die integrierte unter dem Namen EUROPA zu einem neunten Kern- Klimaschutzbewertung (ICLIPS) auf. projekt vereint. Bild 1 auf Seite 1 gibt einen Uberblick Intermediare Modelle versuchen quantitative Beschrei- uber die Forschungsthemen. bung und qualitative Intuition bestmdglich miteinander zu verbinden; deshalb sind sie oft die einzig adaqua- Die Wechselwirkungen zwischen dem integrierten For- ten Instrumente, urn komplexen Umweltsystemen zu schungsansatz und der interdisziplinaren Struktur des Leibe zu rucken und brauchbare Antworten auf die PIK lassen sich an den hier vorgelegten Forschungs- wichtigsten Fragen zu erhalten. Die bisherige Erfah- ergebnissen nachvollziehen.

98 PROJEKTE MIT GLOBALER PERSPEKTIVE

Globale Perspektive Regionale Perspektive Sektorale Perspektive

POEM EUROPA AGREC Potsdamer Erdsystem- Europaische Netzwerkaktivi- Agro-okonomische Auswirkun- Modellierung taten zum Globalen Wandel gen des Globalen Wandels

ICLIPS RAGTIME CHIEF Integrierte Klimaschutzstrategien Regionale integrierte Model- Europaische Walder unter dem lierung im Elbegebiet EinfluB des Globalen Wandels

QUESTIONS WAVES RESOURCE Qualitative Dynamik von Syndro- Wasserverfugbarkeit im Soziale Dimensionen der men des Globalen Wandels Nordosten Brasiliens Wasserverfugbarkeit

Projekte mit globaler Perspektive

POEM - Potsdamer Erdsystem-Modellierung

Derzeit verandert die menschliche Zivilisation den gewisse Teilaspekte interessieren. Urn die Dynamik qualitativen Zustand des Erdsystems, also etwa die des gesamten Erdsystems zu verstehen, reicht es chemische Zusammensetzung der Atmosphare Oder aber nicht aus, das Verhalten der Untersysteme zu die Struktur der Landoberflache. Unklar ist, ob dies die kennen und durch deren lineare Uberlagerung auf das Stabilitat des Gesamtsystems beeinflussen konnte. Verhalten des Gesamtsystems zu schlieBen. Da die Tatsachlich war das Klima der letzten 10.000 Jahre im Untersysteme nicht-linear miteinander gekoppelt sind, Gegensatz zu den 100.000 Jahren davor eher stabil; reagieren sie im Verbund anders auf Storungen, als die Entwicklung von Ackerbau - und damit einherge- jedes fur sich allein Oder in Verbindung mit nur einigen hend von Zivilisation - in dieser Periods ist vermutlich anderen. Als Konsequenz kann die Frage nach der kein Zufall. Ein Teil der (naturlichen) Klimavariabilitat Dynamik des Erdsystems nur durch die integrative ist wahrscheinlich durch Anderungen des Nordatlantik- Analyse des vollstandigen, gekoppelten Systems stroms verursacht. Die Amplitude dieser Anderung war beantwortet werden. in den letzten sechs bis sieben tausend Jahren eher Die zeitliche Entwicklung des Erdsystems wird in gering, doch bleibt die Frage, ob ein durch den Men- POEM mit einer Hierarchie von Modellen untersucht. schen verandertes Klima wieder zu Schwankungen Der extrem langsame Kreislauf des Kohlenstoffs, fuhren konnte. bestimmt durch das Wachstum der Kontinente, die all- Eine der derzeit groBten wissenschaftlichen Heraus- mahliche Zunahme der Leuchtkraft der Sonne sowie forderungen besteht deswegen darin, das dynamische durch die Verwitterung silikatreichen Gesteins zu Kar- Verhalten des Erdsystems sowie seine Anpassungsfa- bonatgestein, wird durch das COEM-Modell beschrie- higkeit an groBraumige Storungen, wie die anhaltende ben, einem Modell der Koevolution von Geosphare Emission von Kohlendioxid und anderen Verbren- und Biosphare. Auf Zeitskalen von Jahrhunderten und nungsprodukten in die Atmosphare, zu erforschen. Jahrtausenden sind die Ruckkopplungen zwischen Das Kernprojekt POEM (Potsdamer Erdsystem-Model ­ Atmosphare, Ozeanen, Vegetation und Inlandeis von lierung) soli zur Losung dieser Fragen beitragen, Bedeutung, die mit Hilfe des Klimasystemmodells indem die dynamischen Prozesse zwischen Biosphare CLIMBER untersucht werden. Die vergleichsweise und Geosphare, also zwischen der belebten und der kurzfristige Wechselwirkung zwischen Vegetation und leblosen Natur, analysiert werden. Klima im Bereich weniger Jahrzehnte bis Jahrhun- Fur viele Untersuchungen wird die Geosphare in derte, wie der Aufbau von Biomasse Oder der Abbau Atmosphare, Hydrosphare, Kryosphare und Litho- organischer Materie im Boden, werden mit einem sphare aufgeteilt. Dies ist gerechtfertigt, wenn nur dynamischen globalen Vegetationsmodell erfaBt.

99 ZUSAMMENFASSUNG

Das dynamische globale Vegetationsmodell - Prozesse, die den Kohlenstoffkreislauf betreffen und DGVM mit dem - meist hinsichtlich des genaueh Zeitpunktes Auf der Kurzzeitskala von Jahrzehnten bis zu Jahrhun- unberechenbaren - Absterben und Zersetzen der derten ist die Dynamik der Vegetation fur den Zustand Pflanzen zusammenhangen, werden zumindest plau­ des Erdsystems insofern von Bedeutung, als sie sible Annahmen gemacht, urn sie und ihre Abhangig- Trends im Gesamtsystem verstarken Oder verzogem keit von der Umwelt in das Modell einzubringen. kann. Zum einen liegt das an der physikalischen Rfick- Die Entwicklung von dynamischen Vegetationsmodel- kopplung zwischen Vegetation und Atmosphere: len basiert auf der Annahme, daB die Antwort der Oko- Anderungen des Klimas andern den Zustand der systeme auf globale Umweltveranderungen stark orts- Vegetation und somit die Rauhigkeit der Erdoberflache abhangig ist. Beispielsweise wirkt sich verminderte sowie die Absorption bzw. Reflexion der Sonnenstrah- Feuchtigkeit in Savannen viel starker auf die Brand- lung an der Erdoberflache. Zum anderen speichern wahrscheinlichkeit aus, als in tropischen Waldern, wo Boden und Vegetation einen GroBteil des Kohlenstoffs dagegen Anderungen in der Landnutzung eine groBe an Land. Da die dabei relevanten Vorgange - Photo- Rolle spielen. Entsprechend wird bei den Simulationen synthese der Pflanzen, Aufbau von Biomasse und dem regionalen Muster des Klimas eine groBe Bedeu­ Abbau organischer Materie im Boden - auf unter- tung zugemessen. Je nach Region werden dann nur schiedlichen Zeitskalen ablaufen, ist fraglich, ob das die Aspekte des Globalen Wandels berucksichtigt, die Okosystem jemals im Gleichgewicht mit dem Klima dort starke Auswirkungen haben. sein kann. Dies hat fur die Systemanalyse vor allem in Neben der Entwicklung eines Prototyps und seiner Zeiten schneller Klimaanderungen und Schwankun- Weiterentwicklung zu einem umfassenden DGVM, gen der Kohlendioxidwerte Konsequenzen, da sich leitet das PIK noch die vom IGBP geforderten Evalua- dann die Menge des im Boden gespeicherten Kohlen ­ tionen bzw. Vergleichsstudien verschiedener DGVM- stoffs nicht aus dem momentanen Klima abschatzen Modelle sowie der globalen Modelle fur die Netto- lalBt, sondern die Gesamtentwicklung des Systems primarproduktion (veranschaulicht in Abbildung 2 auf herangezogen werden muB (siehe auch Fig. 1 auf Seite 11). Seite 10). Aus Sicht der Modellierung sind die fur die globale Das Klima- und Biospharenmodell - CLIMBER Dynamik wichtigsten Elemente die lebende und die Mit Hilfe des am PIK neu entwickelten Klimasystem- tote Biomasse und zwar, sowohl die jeweilige Gesamt- Modells CLIMBER (fur CLIMate and BiosphERe) wird menge als auch alle Prozesse, die zu ihrer Bildung die Wechselwirkung zwischen Geosphare und Bio- Oder ihrem Abbau fiihren. Ein dynamisches, globales sphare fiber Zeitraume von Jahrhunderten bis Jahrtau- Vegetationsmodell muB deswegen die Photosynthese senden simuliert - also die Ruckkopplung zwischen als wichtigsten Motor fur die Kohlenstoffassimilation Vegetation, Atmosphare, Ozean sowie Inlandeis, und berucksichtigen sowie die autotrophe Atmung, bei der damit die (nicht-lineare) Synergie zwischen samtlichen die Pflanzen die von ihnen produzierten Kohlehydrate Komponenten des Klimasystems. Im Mittelpunkt der selbst wieder verbrauchen, und die heterotrophe Untersuchungen stehen die Klimazustande der Ver- Atmung, bei der pflanzlicher Kohlenstoff durch andere gangenheit, insbesondere die der letzten 150.000 Organismen umgesetzt wird. Neben diesen kurzzeiti- Jahre, aber auch mogliche Klimaanderungen in den gen Prozessen berucksichtigen DGVMs auch das lan- nachsten 1000 Jahren. Fur solch langfristige Rech- gerfristige Verhalten der Vegetation, das u.a. durch nungen lassen sich komplexe gekoppelte Atmo- Wachstum, Konkurrenz mit benachbarten Pflanzen sphare-Ozean-Modelle nicht einsetzen. Ebenso er- und naturliche Storungen (Feuer, Sturm) Oder mensch- scheint es nicht sinnvoll, einfache Modelle zu benut- liche Eingriffe gepragt ist. Da die Wechselwirkungen zen, bei denen viele Prozesse, die bei komplexen Mo- zwischen sehr verschiedenen Pflanzen, wie Baumen dellen berechnet werden, vorgeschrieben Oder fiber und Grasern, schwer zu simulieren sind und viele der Parameter eingestellt werden mfissen. Daher wurde benotigten Parameter nur fur wenige Pflanzen bekannt CLIMBER als “Modell mittlerer Komplexitat ” entworfen. sind, ist es nicht moglich, die damit verbundenen Vor ­ Im Gegensatz zu den voll-komplexen Modellen be­ gange fur jede Pflanze zu modellieren. Deswegen defi- rechnet CLIMBER nicht das Wetter, sondern be- niert man einen geeigneten Satz funktionaler Pflan- schreibt lediglich den Effekt des Wetters auf die mitt- zentypen, denen die tatsachlichen Pflanzen zugeord- lere Zirkulation der Atmosphare. Ahnliches gilt ffir die net werden, und parameterisiert die physiologischen Darstellung des Ozeans, bei der im wesentlichen nur Prozesse fur jeden dieser Typen. Das Konkurrenzver- die durch Temperatur und Salzgehalt getriebene “kli- halten urn Nahrstoffe, Wasser und Licht wird dann zwi­ mawirksame” Stromung explizit berechnet wird. schen den verschiedenen Typen abgeschatzt. Ober

100 Projekte mit globaler Perspective

Trotz dieser vereinfachten Darstellung kann CLIMBER Die Aufgabe des Biospharen-Geospharen Evolutions- die globalen Strukturen des jetzigen Klimas gut wie- Modells COEM ist es, die aus der Entwicklung des dergeben. Auch die Reaktion des Modells auf Storun- Erdsystems resultierenden Grenzen und Extrema der gen des jetzigen Klimazustandes stimmt gut mit den Dynamik der Biosphare genauer zu analysieren. Dazu Rechnungen komplexer Modelle uberein. werden Methoden aus der Theorie dynamischer Die eigentliche Validierung von CLIMBER erfolgt durch Systeme und der strukturellen Analyse sowie rechner- die Simulation vergangener Klimazustande wie z.B. gestutzte Modeilierungen herangezogen. Entschei- des letzten glazialen Maximums, also des Hohepunk- dend ist die Annahme, daB die gegenwartige Erd-Bio- tes der letzten Kaltzeit, vor gut 20.000 Jahren. Einer- sphare eine von vielen mdglichen Biospharen ist, die seits stimmt die Simulation mit palaogeologischen sich als Gieichgewichtselement eines aus “Klima und Rekonstruktionen dieses Zeitabschnittes uberein. Biosphare ” bestehenden dynamischen Systems erge- Andererseits konnten wesentliche Prozesse im Klima- ben. Im Laufe der Langzeitentwicklung des Planeten system identifiziert werden, die vor 20.000 Jahren zur durchlauft das System, stark von bioiogischen Riick- starken Abkuhlung insbesondere der Nordhalbkugel kopplungsmechanismen beeinfluBt, eine Reihe von beitrugen. Dazu zahlen die Verschiebung der Zone, in Bifurkationspunkten. Auf der Basis eines Evolutions- der das nordatlantische Tiefenwasser gebildet wird, modells fur das Erdsystem werden die langfristigen von heute etwa 65°N auf etwa 45°N nach Suden, Ruckkopplungsprozesse zwischen Atmosphare, Bio ­ sowie der damit verbundene stark reduzierte Warme- sphare und Lithosphare bei zunehmender Sonnenein- transport in die hohen Breiten des Nordatlantiks. strahlung untersucht. Dieses Modellschema (Fig. 5 auf In einer anderen Studie wurde das Klima des mittleren Seite 14) wurde urn geodynamische Prozesse wie das Holozans, also der Zeit vor etwa 6000 Jahren, unter- Auseinanderdriften der Flatten und das Wachsen der sucht (siehe Abb. 4 auf Seite 14). Damals waren die Kontinente erweitert. Die Werte, die die mittlere glo- Sommer in vielen Regionen der nordlichen Hemi­ bale Temperatur, die Kontinentalflache, der Kohlendi- sphere warmer, so da(3 die Baumgrenze deutlich wel­ oxidgehalt und die anderen Zustandsvariablen wah- ter im Norden verlief als heute. Auch in der Sahara rend der Ruckkopplungsprozesse in der Erdentwick- wuchs wegen des feuchteren Klimas vor 6000 Jahren lung annehmen, andern sich so langsam, daB sie als eine subtropische Steppen- und Savannenvegetation. stationare Werte fur die Berechnung der Kurzzeitdyna- Mit CLIMBER konnte der Klimazustand realistisch mik des Klima-Biospharensystems eingesetzt werden nachgebildet werden. Ferner wurde gezeigt, daB das konnen. Durch diese Strategic lassen sich die dynami­ Klima des mittleren Holozans nur durch die Synergie schen Prozesse des Systems quasi separat analysie­ zwischen Vegetation, Atmosphere und Ozean zu ren. erklaren ist. Die Atmosphare allein reagiert viel zu schwach auf die externe Anregung, die die Klimaande- EU-finanzierte Projekte in Verbindung mit POEM rungen der letzten Jahrtausende angestoBen hat, namlich die allmahliche, periodisch wiederkehrende Europaische Aktivitaten zur Modellierung Anderung in der Erdumlaufbahn und der Neigung der terrestrischer Okosysteme - ETEMA Erdachse. ETEMA ist ein europaisches Gemeinschaftsprojekt, koordiniert von Martin Sykes, Schweden, das in enger Das Biospharen-Geospharen Evolutions-Modell - Verbindung zur Entwicklung von DGVM-Modellen COEM steht und darauf abzielt, die Auswirkungen menschli- Wichtige grundlegende Eigenschaften des globalen chen Einwirkens auf europaische Okosysteme vorher- Okosystems Erde, wie seine derzeitige Stabilitat Oder zusagen. Dazu wurde ein modulares Gerust entwik- die momentanen geologischen Rahmenbedingungen, kelt, das Kohlenstoff-, Stickstoff- und Wasservor- lassen sich nur erklaren, wenn man die langfristige kommen und -kreislaufe, AbfluBverhalten, Zusammen- Entwicklung des Erdsystems kennt. Nach der Theorie setzung der Vegetation und deren vertikale Struktur in nicht-linearer Prozesse sollte dieses halboffene Abhangigkeit von Klima, Kohlendioxid-Konzentration System eine Reihe von stabilen Zustanden mit einer und Landnutzungsformen berechnen kann (Schema, komplizierten Ubergangsstruktur besitzen. Das kurz- Seite 16). Das am PIK entwickelte Gerust soil den und mittelfristige dynamische Verhalten laBt sich des- Austausch einzelner Komponenten erlauben, ohne wegen besser analysieren und verstehen, wenn man daB deswegen die ubrigen Teile geandert werden die benachbarten stabilen Zustande und die elasti- mussen. schen Grenzen der stabilen Bereiche kennt.

101 ZUSAMMENFASSUNG

Numerische Simulation und Analyse der Neue Version des Moskauer globalen Klimavariabilitat im Bereich von Jahrzehnten und Biospharenmodells - MGBM Jahrhunderten - Millenia In diesem Projekt wird untersucht, ob es mehr als Ziel des internationalen Projektes ist es, naturliche Kli- einen Gleichgewichtszustand der Biosphere gibt, und maschwankungen mit einer Dauer von Jahrzehnten wie wahrscheinlich ein Ubergang zwischen zwei mbg- bis zu Jahrhunderten zu verstehen. Zu solchen lichen stabilen Zustanden ware. Dazu wurde ein Schwankungen zahlt zum Beispiel die kleine Eiszeit in Ansatz entwickelt, der die Biosphare als eine Gesamt- Europa, die von 1550 bis 1850 andauerte und die auf heit auffaBt, mit einer sehr groBen Anzahl von Elemen- eine ausgesprochen warme Periode im Mittelalter ten, die sich aus einer Vielzahl von Zustanden der folgte. Ein anderes Beispiel ist die Nordatlantische Hydrosphere, des Klimas, der Anthroposphare etc. Oszillation (NAO), die mit einer Periode von ca. 20 ergeben. Die menschliche Gesellschaft ist dabei Teil Jahren das Klima Europas mitbestimmt und die milden der Biosphare. An Verzweigungspunkten, an denen Winter der achtziger und fruhen neunziger Jahre mit keine Vorhersage iiber die zukunftige gemeinsame sich brachte. Ein besseres Verstandnis solcher Klima- Entwicklung von Biosphare und menschlicher Gesell­ schwankungen ist zum einen notig, um sie eines schaft getroffen werden kann, wird dieses raumlich Tages vorhersagen zu konnen, wie es heute schon fur diskrete System durch ein kontinuierliches, aktives El Nino im Pazifik geschieht. Zum anderen mochte Medium mit verschiedenen Phasen ersetzt. Jeder bio- man lernen, naturliche Klimaschwankungen besser geochemische Kreislauf des Erdsystems wird durch von menschlichen Einflussen zu unterscheiden. ein entsprechendes derartiges Model! dargestellt. Mit Schwerpunkt der Arbeit am PIK ist die Rolle des Oze- Hilfe einer speziellen Theorie konnen dann Aussagen ans bei diesen Klimaschwankungen. Dazu wurde bis- uber die dynamischen Eigenschaften des Gesamtsy- her u.a. die Wirkung des Mittelmeerausstroms auf die stems und seiner Teilsysteme in dem Kreislauf Stromungen und das Klima im Nordatlantik analysiert gemacht werden, beispielsweise fiber die dynamische und der EinfluB der Winde der Sudhalbkugel auf die Verteilung der Kohlenstoffquellen und -senken im Atlantikzirkulation untersucht (siehe Abb. 7 Seite 17). gesamten Kohlenstoffkreislauf.

QUESTIONS - Qualitative Dynamik von Syndromen des Globalen Wandels

Mit dem Projekt “Qualitative Dynamik von Syndromen ” schnellen Wirtschaftsentwicklung wiedergibt und das wird bei der Untersuchung der Auspragungen und Ent­ Hoher-Schornstein Syndrom (iii), das die Schadigung wicklung globaler Umweltveranderungen ein vollig der Umwelt durch groBflachige Emission langlebiger neuer Ansatz verfolgt, der sogenannte Syndrom-An- Substanzen beinhaltet. Die Identifizierung der weltweit satz. Er basiert auf der Beobachtung, daB sich der auftretenden Syndrome ist eine gut faBbare Methode, Globale Wandel in einer Reihe von kritischen Sympto- um sich einen Uberblick fiber die Gesamtproblematik men auBert, wie Bodenerosion, Entwaldung, Nah- des Globalen Wandels zu verschaffen. Durch die rungsmittelknappheit, Bevolkerungswachstum Oder Modellierung all jener Regionen, die ein spezielles Migration. Diese Symptome treten nicht isoliert son- Symptom in einer bestimmten Auspragung aufweisen, dern in bestimmten Konstellationen (Mustern) auf und und Vergleich dieser Studien lassen sich die Mecha- sind durch ein jeweils spezifisches System von Wech- nismen aufdecken, die das Syndrom hervorrufen und selwirkungen miteinander verknupft. Eine ffir viele eventuell noch verstarken und schlieBlich “Behand- Weltregionen typische Konstellation von Symptomen lungsstrategien ” finden. Das stark normativ gepragte mit den zugehorigen Wechselwirkungen wird als Syn­ Denken iiber “Nachhaltige Entwicklung ” bekommt drom bezeichnet. Wichtig bei diesem interdisziplinaren durch die hier durchgefiihrte Fokussierung auf ver- Ansatz ist, daB er explizit die menschlichen Eingriffe in schiedene Muster der Nicht-Nachhaltigkeit eine ge- den globalen Umweltwandel miteinbezieht. Bislang nauere analytische Grundlage. konnten 16 Syndrome identifiziert und in i) Nutzungs- In diesem Projekt werden Syndrome analysiert sowie syndrome, ii) Entwicklungssyndrome und iii) Senken- in ihrem derzeitigen AusmaB identifiziert und kartogra- syndrome eingeteilt werden (siehe S. 20 Tabelle 1). phisch erfaBt. AuBerdem wird die Disposition mdg- Beispiele sind das Sahel-Syndrom (i), das die Uber- lichst vieler Regionen fur die einzelnen Syndrome nutzung marginaler landwirtschaftlicher Standorte be- untersucht und schlieBlich die mogliche zukunftige schreibt, das Kleine-Tiger Syndrom (ii), welches die Entwicklung der Syndrome modelliert (siehe die Abb. Nichteinhaltung von Umweltstandards zugunsten einer 1 auf Seite 21 und Abb. 2 auf Seite 22).

102 PROJEKTE MIT GLOBALER PERSPEKTIVE

Bisher gibt es noch keine definierte Vorgehensweise, wachstum im Verein mit steigendem Energie- und nach der man die Existenz von Syndromen und ihre Ressourcenverbrauch. Das Verhalten wird durch ein Starke abschatzen konnte. Die naheliegende Vorge ­ undemokratisches politisches System gefordert, das hensweise, anhand der syndromspezifischen Konstel- Umweltbelangen und Partizipationsbestrebungen eine lation von Symptomen und ihrem zeitlichen Verhalten niedrige Prioritat einraumt. Starke Wasser- und Luft- einen direkten Zugriff auf die Syndrome zu haben, verschmutzungen sowie Bodenkontamination sind die scheitert derzeit meist aufgrund mangelnder Oaten. In Folge. Um den Entscheidungsbaum fur dieses Syn­ diesen Fallen muB man auf alternative Methoden drom zu erstellen, muBte folgende Frage beantwortet zuruckgreifen, etwa indem man die Ergebnisse globa- werden: Welche Regionen weisen gute naturliche ler Modelle benutzt. Insgesamt wurde in den letzten Bedingungen fur eine exportorientierte Produktion auf, zwei Jahren die weltweite Intensitatsverteilung von bieten gute dkonomische, politische und soziale Vor- sechs Syndromen untersucht. aussetzungen fur hohe Wachstumsraten und eine kul- turelle Disposition, die wirtschaftlichem Wachstum fdr- Die Anfalligkeit fur die Syndrome derlich sind? In den vergangenen zwei Jahren wurden Der Syndromansatz dient nicht nur dazu, diejenigen die regionalen Dispositionen fur funf Syndrome Regionen zu identifizieren, die aufgrund entsprechen- berechnet und die Ergebnisse kartiert (siehe Fig. 4 auf der Wechselwirkungen zwischen Natur und menschli- Seite 25). chem Verhalten bereits Symptome des Globalen Wan- dels zeigen, sondern auch die Gebiete zu finden, in Methoden der Qualitativen Modellierung denen ein spezifisches Syndrom in der Zukunft auftre- Das groBte Problem bei der Modellierung von Syndro ­ ten konnte. Dies fuhrt auf die Frage: Nach welchen Kri- men ist das mangelhafte Wissen uber sie: Einzelheiten terien ist eine Region disponiert, d.h. anfallig, fur ein uber den Zustand der beteiligten Symptome sind hau- spezielles Syndrom? An welchen charakteristischen fig unbekannt. Oft kdnnen auch die Wechselwirkungen Merkmalen erkennt man, daB dort in der Zukunft ein zwischen ihnen nicht ohne Einschrankung quantifiziert Syndrom auftreten kann? Die Beantwortung dieser werden. Dies liegt zu einem GroBteil in der Natur der Frage gibt einen ersten Einblick in die Mechanismen, Wechselwirkungen begrundet: Welche quantitativen die bei der Ausbildung von Symptomen in einem dis- Aussagen sollten uber die Beziehung zwischen “Verar- ponierten Gebiet ablaufen. Daruber hinaus ist die mung ”, “landwirtschaftlicher Expansion ”, “Obernutzung Kenntnis dieser Regionen aus Sicht der Politik extrem von Boden ” und anderen Symptomen getroffen wer­ wichtig, da hier durch gezielte und spezifische Praven- den? tionen der Ausbruch von Syndromen vielleicht zu ver- Deswegen muBte eine Methode gefunden werden, die hindern ist. geeignet ist, SchluBfolgerungen auf der Basis qualitati ­ Urn herauszufinden, ob eine Region anfallig fur ein ven Wissens zu liefern. Am PIK wird dazu der Forma- bestimmtes Syndrom ist, wahlt man anhand der syn- lismus der Qualitativen Differentialgleichungen ver- drom-inharenten Mechanismen eine Reihe von geeig- wendet, bei dem mit Klassen gewdhnlicher Differenti­ neten Indikatoren fur die Disposition aus. Im Fall des algleichungen gerechnet wird. Als Ergebnis erhalt man Sahel-Syndroms sind derartige Indikatoren beispiels- alle Ldsungen, die mit einer Klasse konform sind. weise die Bodenqualitat und das Klima, das Bevdlke- Diese Klassen werden meist durch einfache, mono ­ rungswachstum und die langfristige Sicherheit ausrei- tone Aussagen wie “Je hoher der Zustand der Armut, chender Ernahrung. Da Syndrome an der Schnittstelle desto hoher ist die Zunahmerate der Landwirtschaft” zwischen Mensch und Natur ansetzen, mussen die charakterisiert. Indikatoren sowohl naturliche als auch soziale Charak- In dem Formalismus andert sich der Zustand einer teristiken abfragen. Die Analyse von Dispositionen fur Variable nur, wenn bestimmte Schwellenwerte uber- ein Syndrom fuhrt - unter Verwendung von Experten- schritten werden. Die mdglichen Ldsungen liefern das wissen, Modellergebnissen und Fallstudien - auf qualitative Verhalten, das sich als Folge qualitativer einen Entscheidungsbaum mit relevanten Indikatoren Zustande darstellt. Allerdings kdnnen keine Aussagen (siehe Fig. 3 auf Seite 24). Kennt man die Werte der uber die Zeitspanne zwischen zwei Zustanden getrof ­ Indikatoren in einer bestimmten Region und deren fen werden. Dennoch bietet diese Methodik eine viel- Wichtung, so kann die Disposition dieser Region fur versprechende Alternative zu den ublichen Modellie- das betreffende Syndrom abgeschatzt werden. Diese rungsverfahren, die nur dazu in der Lage sind, scharf- Vorgehensweise sei am Beispiel des Kleinen-Tiger- quantitative Oaten und Zusammenhange zu verarbei- Syndroms skizziert. Bei diesem Syndrom kommt es ten. typischerweise zu rasch aufholendem Wirtschafts-

103 ZUSAMMENFASSUNG

ICLIPS - Integrierte Klimaschutzstrategien

1992 unterzeichneten und ratifizierten 150 Staaten die In einer weiterfuhrenden Studie wurde untersucht, wie Rahmenvereinbarungen zum Globalen Klimawandel sich der Handlungsspielraum fur emissionbeschran- (FCCC) in Rio de Janeiro. GemaB Artikel Zwei ver- kende MaBnahmen andert, wenn in den nachsten Jah- pflichten sie sich damit, die Konzentrationen derTreib- ren zunachst kein verandertes Verhalten bei den Emis­ hausgase in der Atmosphare auf Werte zu stabilisie- sionen erfolgt. Dabei bestatigte sich, daB wir maximal ren, die “gefahrliche anthropogene Eingriffe in das Kli- noch etwa zwei Jahrzehnte soviet Treibhausgase in masystem ausschlieBen”. Dabei sollen diese Werte die Atmosphare emittieren durfen, wie gemaB den innerhalb eines Zeitraumes erreicht werden, der “eine heutigen Prognosen zu erwarten ist. Wird dieser Zeit- natiirliche Anpassung der Okosysteme erlaubt, eine raum uberschritten, so besteht unter den gegenwarti- ausreichende Nahrungsmittelproduktion gewahrleistet gen Annahmen keine Moglichkeit mehr zu verhindern, und okonomisch eine Fortentwicklung gemaB dem daB das Klima den oben angegebenen Bereich ver- Prinzip der Nachhaltigkeit ermoglichf . Wie dieses Ziel laBt. Aber auch, wenn nur bis 2010 ungedrosselt wel­ erreicht werden soil und wie es im Detail aussieht, wird ter emittiert wird, schrankt sich der Handlungsspiel ­ in Artikel Zwei nicht spezifiziert: Unterhalb welcher raum sehr stark ein. SchlieBlich wurde auch berilck- Konzentration von Treibhausgasen tritt sicher kein sichtigt, daB, gemaB Annex I des FCCC, Entwick- gefahrlicher Eingriff auf? Wieviel Zeit verbleibt noch, lungslander einen geringeren Beitrag zur Absenkung bevor die Emissionen von Treibhausgasen reduziert der Globalen Emission von Treibhausgasen leisten werden mussen? In welchem Umfang milssen wir sie mussen als Industrielander. Die Berechnungen mit reduzieren? dem Fensteransatz ergaben nicht nur, daB dadurch In dem internationalen und interdisziplinaren For- die Emissionen der Treibhausgase in den Industrielan- schungsvorhaben ICLIPS werden Methoden und dern insgesamt noch starker reduziert werden mus­ Werkzeuge ausgearbeitet, die eine integrierte sen, sondern auch daB sich der Handlungsspielraum Abschatzung von Klimaschutzstrategien erlauben und fiber den gesamten berechneten Zeitraum von 200 derartige Fragen beantworten. Sie sollen zumindest Jahren drastisch einschrankt. Quantitative Aussagen teilweise fur politische Entscheidungstrager direkt sind aus Abbildung 3 auf Seite 34 zu entnehmen. handhabbar sein. Das von der Bundesregierung gefor- Ein groBer Vorteil des Ansatzes ist, daB ausgehend derte Projekt wurde vom Potsdam-lnstitut fur Klima- vom “Fenster” tolerierbarer Klimaanderungen schritt- folgenforschung initiiert und wird hier auch koordiniert. weise die daraus folgenden Implikationen berechnet Kernstuck ist der sogenannte Fensteransatz, der bei werden, die das vorgegebene Klimafenster riickwir- Vorgabe von - aus gesellschaftlicher Sicht - nicht-tole- kend starker beschranken (siehe Bild 1, Seite 30). Bei- rierbaren Klimafolgen die Bestimmung derjenigen Kli­ spielsweise wird im ersten Schritt ermittelt, welche maschutzstrategien erlaubt, die ein Verbleiben des Kli- geophysikalischen Konsequenzen, z.B. welchen mas im zulassigen Bereich sicherstellen. Andererseits Anstieg des Meeresspiegels, die vorgegebenen Klima­ schlieBt er aber auch die Klimaschutzstrategien aus, anderungen nach sich ziehen konnten und bei wel­ deren soziodkonomische Konsequenzen gesellschaft- chen Klimaanderungen sich daraus unzumutbare oko- lich nicht akzeptiert werden. logische Oder soziodkonomische Folgen ergeben wur­ Mit dem bisher ausgearbeiteten Ansatz wurden erste den. Daraus ergibt sich ein neues “tolerierbares ” Kli­ konkrete Ergebnisse erzielt: Dm eine Temperaturande- mafenster. Im nachsten Schritt werden die rung von mehr als 2 °C gegenuber dem vorindustriel- klimatischen Entwicklungen untersucht, die sich an die len Wert und eine Anderungsrate von mehr als 0,2 °C tolerierbaren Klimate anschlieBen wurden. Die beiden pro Jahrzehnt zu vermeiden sowie um einen schritt- folgenden Schritte zielen nun auf die Eingriffs- weisen Ubergang zu einer Energieversorgung ohne moglichkeiten des Menschen ab: In ihnen werden die Verwendung fossiler Brennstoffe zu ermoglichen, muB zugehorigen Treibhausgaskonzentrationen sowie die spatestens in etwa zwei Jahrzehnten die Emission von Emissionsprofile ermittelt, die das Klimasystem im Treibhausgasen effektiv verringert werden. In diesem tolerierbaren Fenster halten. Bis hierher sind die ein- Fall muBten anschlieBend aber extreme Einschnitte zelnen Schritte zwischen Klimawandel und Emission bei der Emission erfolgen. Auf kosteneffektivstem fiber naturwissenschaftliche Modelle gekoppelt. In die Wege lieBe sich das Einhalten der Klimaschranken noch verbleibenden Berechnungen gehen weitere durch eine Klimaschutzstrategie realisieren, die zu normative Vorgaben ein, namlich die in Verhandlungen weniger als 1 % Wohlstandsverlust - gemessen am multilateral abgestimmten jeweiligen Emissions- privaten Einkommen - fiihren wurde. beschrankungen sowie die Einschrankung, daB ein

104 PROJEKTE MIT REGIONALER PERSPEKTIVE

Teil der klimatologisch erfolgversprechenden MaBnah- Politik, Wirtschaft, Gesellschaft) zu akzeptablen Ande- men gesellschaftlich nicht durchsetzbar sind. Zuletzt rungen fiihren. Diese schrittweise Berechnung sorgt warden mit einem soziookonomischen Modell die Aus- zum einen fur Transparenz, zum anderen hat sie den wirkungen auf den Wohlstand der Bevolkerung aus Vorteil, daB die einzelnen Teilmodelle - Klimamodell, den Emissionsvorgaben errechnet, bzw. welche Vor- soziookonomisches Modell - unabhangig voneinander gaben zu einer tolerierbaren Anderung des Lebens- ausgetauscht warden konnen, so daB uberholte standards fiihren konnten. Dieses letzte Fenster legt Modelle ohne groBen Aufwand durch verbesserte damit test, welche MaBnahmen in alien Bereichen ersetzt warden konnen. (Klima, geobiophysikalische Folgen, Langzeitklima,

Projekte mit regionaler Perspektive

RAGTIME - Regionale integrierte Modellierung im Elbegebiet

Der Globale Wandel ist zwar ein weltumspannender Der RAGTIME-Ansatz ProzeB, an seinem Ursprung sind aber maBgeblich Mit Hilfe des in RAGTIME entwickelten integrierten regionale und lokale Storungen des terrestrischen Modellierungskonzeptes lassen sich bei Vorgabe von Okosystems beteiligt, wie beispielsweise Veranderun- regionalen Klima- und Landnutzungsszenarien die gen in der Landnutzung, Kohlendioxidemissionen Auswirkungen auf naturliche Ressourcen wie Wasser, sowie Produktion und Lagerung diverser Abfalle. Urn Boden, Vegetation usw. berechnen (Bild 1 auf den Globalen Wandel verstehen sowie politische und Seite 36). Fur diese naturraumlichen Untersuchungen technische MaBnahmen zur Verminderung Oder Ver- werden je nach Fragestellung verschiedene Modelle meidung negativer Entwicklungen ableiten zu konnen, eingesetzt, insbesondere SWIM und ARC/EGMO, die ist eine Analyse alter wesentlichen Prozesse auf regio ­ eine Modellierung auch kleinraumiger Landoberfla- naler Ebene Voraussetzung. Bel diesen Untersuchun- cheneinheiten erlauben. Dadurch laBt sich die reale gen ist es sinnvoll, die naturlichen Strukturen des Oko ­ “Mosaikstruktur ” der Landschaft am besten wiederge- systems zu beriicksichtigen, etwa FluBlaufe, Gebirge, ben, und Anderungen der Landnutzung konnen effek- Waldgebiete etc., well diese spezifischen EinfluB auf tiv abgebildet werden. Fur groBskalige Modellierungen die Dynamik der beteiligten Prozesse haben. konnen kleine, hydrologisch ahnlich reagierende Das Projekt “Regionale integrierte Modellierung im Gebiete zu groBeren Einheiten zusammengefaBt wer­ Elbegebiet ” beschaftigt sich speziell mit den Mecha- den. Wahrend ARC/EGMO aufgrund seiner sehr fei- nismen und Auswirkungen des Globalen Wandels im nen Flachenunterteilung insbesondere fur Untersu­ Einzugsgebiet der Elbe (ca. 100.000 km2). FluBgebiete chungen von Landnutzungsanderungen pradestiniert stellen landschaftsintegrierende Einheiten fur Wasser ist, erlaubt SWIM bei groberer Flachenuntergliederung und darin mitgefiihrte Stoffe dar, die Aussagen fiber zusatzlich zur Simulation hydrologischer GroBen eine qualitative und quantitative Anderungen aufgrund Modellierung der Stickstoff- und Phosphatdynamik, anthropogener EinfluBnahmen sowie allgemeiner des Getreidewachstums sowie der Bodenerosion. Die Umweltveranderungen erlauben. Der in der Modellre- Ergebnisse der Simulationsrechnungen spiegeln die gion Elbe entwickelte Modellierungsansatz und die okologischen und hydrologischen Charakteristiken der Untersuchungsmethoden lassen sich grundsatzlich untersuchten Region wieder und sind gleichzeitig auch auf andere FluBgebiete (ibertragen, in denen die Grundlage fur eine soziookoiogische Bewertung und Bedeutung von Wasser fur die gesellschaftliche Ent- die Entwicklung von MaBnahmen zur Verhinderung wicklung hohe Bedeutung hat (vgl. hierzu die Kernpro- negativer Entwicklungen. Ein dazu entwickeltes “Meta- jekte “Soziale Dimensionen der Wasserwirtschaft” modell ” verdichtet die naturraumlichen und soziooko ­ RESOURCE und “Wasserverfugbarkeit im Nordosten nomischen Daten und Ergebnisse auf einer relativ gro- Brasiliens” WAVES). ben raumlichen und zeitlichen Ebene (administrative Einheiten, Jahre).

105 ZUSAMMENFASSUNG

Ergebnisse der naturraumlichen Modellierung Einzugsgebiet der Stepenitz (575 km2) zur Simulation Mit Hilfe von ARC/EGMO wurde das Elbegebiet der Stickstoffdynamik eingesetzt. Die fur verschiedene zunachst hydrologisch beschrieben. Dazu hat man Bodenschichten und AbfluBkomponenten erzielten das Einzugsgebiet auf der Basis verfugbarer Grundla- Ergebnisse sind durchaus geeignet, erste Empfehlun- genkarten in 64.500 “Elementarflachen” untergliedert gen fur Anderungen landwirtschaftlicher Praktiken und verschiedene WasserhaushaltsgrolBen, wie Ver- zugunsten der Boden- und Grundwasserqualitat zu dunstung, Sickerwasserbildung und Oberflachenab- formulieren (siehe Abb. 4 auf Seite 38). fluB, in Tagesschritten flachendeckend berechnet. Die Neben diesen Untersuchungen zur Wasserqualitat meteorologischen Eingangsdaten von 33 Klima- und simulierte die Projektgruppe mit Hilfe von SWIM auch 107 NiederschlagsmeBstationen wurden pro Simula- die Auswirkungen einer moglichen Klimaanderung auf tionsschritt mit Hilfe eines geeigneten Interpolations- den Wasserkreislauf und die Ertrage unterschiedlicher verfahrens auf die Einzelflachen ubertragen. Die Getreidesorten im Land Brandenburg. Dazu wurde ein Ergebniskarten weisen u.a. Teilgebiete der Elbe aus, Klimaszenario aus der Klimaabteilung des PIK ver- die in Trockenperioden besonders gefahrdet sind wendet, das eine Erwarmung urn 1,5 °C innerhalb der (siehe Abb. 2 auf Seite 37). nachsten 100 Jahre annimmt. Die Berechnungen Daruber hinaus konnten mit Hilfe von ARC/EGMO und ergaben eine Zunahme der Verdunstung und des einer modifizierten Version des schwedischen Modells Oberflachenabflusses, wahrend die Grundwasserneu- HBV in 35 Teileinzugsgebieten die wichtigsten Kompo- bildung nahezu unverandert blieb. Die Auswirkungen nenten des lateralen Wasserabflusses - Oberflachen-, auf die Ertrage hingen von der Getreidesorte ab sowie hypodermischer und GrundwasserabfluB - berechnet davon, ob ein Dungeeffekt durch eine Zunahme der werden. Diese spielen eine wichtige Rolle fur den Kohlendioxidkonzentration berucksichtigt wurde Oder Transport von Nahr- und Schadstoffen und fur Unter- nicht. Insbesondere konnte gezeigt werden, daB die suchungen der Wasserqualitat, wie sie anschlieBend Ergebnisse der Simulationsrechnungen sowie daraus mit SWIM durchgefuhrt wurden. Die Ergebnisse dien- ableitbare Bewirtschaftungsempfehlungen empfind- ten u.a. auch dazu, die NebenfluBgebiete in vier lich auf die jeweils angenommene Klimaanderung rea- grundsatzlich verschiedene Klassen einzuordnen. gierten. Nach der hydrologischen Validierung in funf Teilein­ zugsgebieten der Elbe wurde das Modell SWIM im

WAVES - Wasserverfugbarkeit im Nordosten Brasilians

Semi-aride Regionen gehdren bei den zu erwartenden beitrag Brasiliens und Deutschlands zum Global Klimaanderungen zu den gefahrdeten Gebieten auf Change Programme. Die Hauptphase des Projektes der Erde. Vor allem Wasserknappheit und starke begann 1997 und wird bis 2001 dauern. Schwankungen bei den Niederschlagen tragen signifi- Urn die Auswirkungen eines Klimawandels auf semi- kant zur Verletzbarkeit dieser Regionen bei. Die semi- aride Gebiete abzuschatzen, mussen die Beziehungen ariden Gebiete bedecken etwa ein Drittel der Erdober- zwischen der Natur und den sozialen und okonomi- flache und sind von 20 % der Weltbevolkerung besie- schen Systemen untersucht werden, was aufgrund der delt, wobei die Lebensbedingungen im allgemeinen Vielzahl unterschiedlicher Faktoren nur mit interdiszi- unter dem globalen Durchschnitt liegen. Aufgrund hau- plinaren Mitteln moglich ist. Entsprechende Teilpro- fig auftretender Durreperioden kommt es zur Abwan- jekte beschaftigen sich mit der Analyse und Model ­ derung von groBen Teilen der Landbevdlkerung in die lierung des Klimas und der Agrarwirtschaft, der Stadte oder andere weniger gefahrdete Gebiete. Beschreibung des Wasserhaushaltes und der Vegeta ­ Hauptziel des WAVES-Projektes ist es, die Wechsel- tion sowie mit den soziookonomischen und soziokul- wirkungen zwischen Wasserverfugbarkeit und Migra ­ turellen Bedingungen. tion aus landlichen Gebieten zu verstehen, urn so Zur Beantwortung der zentralen Frage reicht es nicht, mogliche Wege einer nachhaltigen Entwicklung besser die Ergebnisse aus den einzelnen Disziplinen einan- einschatzen zu kdnnen. Dies soli zunachst am Beispiel der gegenuberzustellen. Vielmehr wird daran gearbei- der brasilianischen Bundesstaaten Piauf und Ceara tet, aus den Modellen der Einzelprojekte ein integra ­ erarbeitet werden, die durch stark begrenzte Ressour- tes Gesamtmodell zu entwickeln, in dem die jeweiligen cen, deutliche Klimaschwankungen und soziale Span- Systeme bzw. die sie beschreibenden Teilmodelle auf nungen gepragt sind. WAVES ist ein Gemeinschafts- der Basis ihrer Wechselwirkungen miteinander gekop-

106 Projekte mit regionaler Perspektive

pelt werden (siehe Abb. 3, Seite 41). Auf der Grund- Integrierte Modellierung lage von Szenarien, in denen mogliche Entwicklungen Fur die Riickkopplung innerhalb der wissenschaftli- aller Teilsysteme gemeinsam beschrieben sind, wer­ chen Einzeldisziplinen werden die relevanten sektora- den Wege fur einen nachhaltigen Umgang mit den len Prozesse in unterschiedlichen Zeit- und Langen- naturlichen Ressourcen sowie Entwicklungspotentiale skalen zunachst interdisziplinar-kompatibel definiert. sozialer Systeme aufgezeigt. Das WAVES-Projekt untersucht die Effizienz nachhalti- ger Entwicklungen in semi-ariden Gebieten mit Hilfe Klimaanalyse und Klimamodellierung eines Modellierungsansatzes, der die verschiedenen Die durchgefiihrten Analysen der raumlichen und zeit- Disziplinen integriert und systematisch auf verschiede­ lichen Klimabedingungen in Piauf und Ceara liefern nen Einzelmodellen aufbaut. Dabei ubertrifft die Band- die grundlegenden Informationen fur die Entwicklung breite der wissenschaftlichen Einzeldisziplinen - ange- moglicher Klimaszenarien. Aus diesen werden die Kli- fangen mit Klimatologie und Hydrologie, die auf physi- makomponenten fur das integrierte Gesamtszenarium kalischen GesetzmaBigkeiten aufbauen, uber die gebildet. Dazu werden sowohl beobachtete als auch Agrarokonomie bis hin zu der Soziologie/Psychologie berechnete Niederschlags-, Temperatur- und Feuch- der Migration, die menschliches Entscheidungsverhai- tigkeitswerte verwendet. Mit Hilfe speziell entwickelter ten beschreiben - die bisher erprobten integrativen statistischer Verfahren wird untersucht, ob es zeitliche Untersuchungen. Dieser Umstand macht WAVES zu Veranderungen hinsichtlich Beginn, Ende und Dauer einem Pilotprojekt. Urn das integrierte WAVES-Modell der Regen- bzw. Trockenzeiten gibt (siehe Abb. 5, aufzustellen, wird die Beziehung zwischen Wasser- Seite 42). Die Ergebnisse sind wichtige Indikatoren bei verfugbarkeit und Migration aus zwei Richtungen der Untersuchung der Migration. AulBerdem wird ein angegangen: Zum einen werden die relevanten inter- dynamisches Klimamodell im regionalen MaBstab an nen Prozesse sowie die von auBen steuernden Krafte die Untersuchungsregion angepaBt und mit einem groBraumig untersucht, zum anderen werden in den groBraumigen hydrologischen Modell gekoppelt. Teilprojekten die Mechanismen der Einzelprozesse teilweise detailliert nachvollzogen, urn die ProzeBpara- GroBraumige hydrologische Modellierung meter des integrierten Modells abschatzen zu konnen. FGr die zentrale Fragestellung des Projektes ist es In dem erarbeiteten Modellkonzept (siehe Abbildung 9, wichtig, den gesamten Wasserkreislauf der untersuch- Seite 45) ist die Landflucht als eine Anpassung der ten Region quantitativ erfassen zu konnen. Dazu Bevolkerung an die sich verschlechternden Lebensbe- wurde mit der Entwicklung eines Modells zur groBrau ­ dingungen definiert. Beschaftigung und Einkommen migen Beschreibung der hydrologischen Bedingungen auf der Basis von Ackerbau und Viehzucht sind wich­ begonnen, das dann auf die spezifischen Verhaltnisse tige Faktoren fur die Lebensqualitat. Diese hangen Nordostbrasiliens mit seinem ausgepragten semi-ari- stark vom Klima und der Wasserverfiigbarkeit ab. Der- den Klima - fast alle Niederschlage fallen in der vier- zeit existiert eine erste Modellversion, allerdings ohne monatigen Regenzeit - und einer insgesamt recht raumliche Auflosung, die aus einzelnen Modulen auf- durftigen Datenlage angepaBt werden muB (siehe gebaut ist. Diese werden spater durch die in den Teil­ Abb. 7, Seite 43). Das Modell soli in der Lage sein, projekten entwickelten, verbesserten Module ersetzt. quantitative Abschatzungen der relevanten Kompo- Dabei muB noch berucksichtigt werden, daB die Pro ­ nenten des Wasserkreislaufs in raumlicher Differenzie- zesse in den Einzeldisziplinen sowie die bendtigten rung zu liefern, insbesondere den OberflachenabfluB, Daten teilweise eine ganz unterschiedliche Zeit- und die Grundwasserneubildung, die Wasserspeicherfa- Raumaufldsung erfordern. higkeit des Bodens und die Speicherung in Staubek- ken. Dadurch erhalt man einen detaillierten Oberblick Deutsche Kooperationspartner fiber die physikalische Wasserverfiigbarkeit in der Die Agrarwirtschaft, die soziokulturellen und sozio- Region. Dies ist unverzichtbar fur die Untersuchung okonomischen Bedingungen sowie die Landschafts- der Landwirtschaft, Wasserwirtschaft und der sozio- okologie werden an den Universitaten Stuttgart- okonomischen Bedingungen. Dieses Modell wird das Hohenheim, Kassel, der Fachhochschule Kdln sowie Kernstiick bei der Entwicklung des Wassermoduls fiir der Technischen Universitat Munchen untersucht. das integrierte Gesamtmodell sein.

107 ZUSAMMENFASSUNG

EUROPA - Europaische Netzwerkaktivitaten zum Globalen Wandel

Die Kooperation mit anderen Europaischen For- Regionale Klimamodellierung und integrierte schungsinstituten war und ist fur die Arbeit des PIK Folgenforschung zum Globalen Wandel in der von groBer Bedeutung. Mittlerweile gibt es eine ganze europaischen Arktis - CUMPACT Reihe von Gemeinschaftsprojekten und -aktivitaten, Die Arktis ist aufgrund der Auswirkungen, die ein dorti- die allesamt von allgemeinem europaischem Interesse ger Klimawandel auf Europa haben kdnnte, von allge ­ und wissenschaftlicher Relevanz sind. Folgende euro ­ meinem Interesse. Modellrechnungen deuten zudem paische Projekte werden im Rahmen der Kernprojekte darauf hin, daB eine kiinftige Erwarmung in der Arktis durchgefuhrt: ausgepragter sein kdnnte als anderswo. In CUMPACT, • Modellierung von agrookonomischen Systemen das von M. Lange, Universitat Munster, koordiniert unter EinfluB des Globalen Wandels (MAGEC) in wird, sollen sowohl das AusmaB als auch die Auswir­ AG REG kungen des Klimawandels untersucht werden. • Dynamische Reaktion der Wald-Tundra Zone auf Umweltanderungen (DART) in CHIEF Netzwerk fur eine koordinierte wissenschaftliche und • Regionale Langzeiteffekte des Klimawandels auf technische Unterstutzung bei der Verwendung von europaische Walder, Folgenabschatzung und Kon- Klimadaten - ECLAT-2 sequenzen des Kohlenstoffhaushalts (LTEEF-II) in Ziel dieser konzertierten Initiative ist es, durch den CHIEF Aufbau eines Netzwerkes alien im EU Klima- und Um- • Europaische Aktivitat zur Modellierung terrestri- weltprogramm beteiligten Wissenschaftlern die verfilg- scher Okosysteme (ETEMA) in POEM baren klimatologischen Daten, Quellen und weitere • Numerische Simulation und Analyse der Klimavaria- Informationen zuganglich zu machen und zu einem bilitat im Bereich von Jahrzehnten Oder Jahrhunder- koordinierten, konsistenten und effizienten Gebrauch ten (Millenia) in POEM klimatologischer Informationen anzuregen. • FluBuberschwemmungen in Europa und Risikoab- schatzung (EUROTAS) in RAGTIME Europaisches Forum zur integrierten • Modellierung der Effekte von Landdegradation auf Umweltbewertung - EFIEA das Klima (OLD) in RESOURCE. Die integrierte Umweltbewertung unter Einbeziehung Alle weiteren europaischen Projekte sollen unter dem von Wissenschaftlern und Akteuren ist ein sich dyna- Namen EUROPA zu einem neuen Kernprojekt zusam- misch rasch entwickelndes Gebiet. Es fehlt hierbei mengebunden werden. Sie werden im folgenden kurz aber an einer systematischen Abstimmung der unter- beschrieben (siehe auch Obersichten auf den schiedlichen Ansatze. EFIEA dient als Diskussionsfo- Seiten 47 und 48). rum, soil zu Kooperationen auf diesem Gebiet anregen und zur Verbesserung der Qualitat der verwendeten Konzertierte Aktion zur umfangreichen Folgen- und Ansatze beitragen. Dabei soil die Zusammenarbeit Anpassungs-Bewertung fur die Europaische Union - zwischen Politik und Wissenschaft gefordert werden, ACACIA indem u.a. einige politische MaBnahmen konkret unter Dieser Netzwerkaktivitat, koordiniert von M. Parry, Uni­ Gesichtspunkten der integrierten Umweltbewertung versity College, London, soil bei der laufenden Evalu- untersucht werden. ierung und Neustrukturierung der europaischen Klima- folgenforschung eine Schlusselrolle zukommen. Ziel Klimatologie und Prognose klimainduzierter ist es zu ermitteln, welche Akteure Oder welche Institu- Anderungen hydrographischer GroBen in Nord- und tionen auf die Ergebnisse der Klimafolgenforschung Ostsee - KLINO angewiesen und an ihr interessiert sind. Weiterhin sol ­ Das PIK erstellt fur dieses Verbundprojekt eine hoch- len die interessierten Zielgruppen charakterisiert wer­ aufgeloste, spektrale Klimatologie des Seegangs fur den. Das Projekt wird mit einem Bericht fiber den die Nord- und Ostsee. Schwerpunkt der Untersuchung gegenwartigen Wissensstand zu moglichen Folgen liegt auf der Bestimmung der Fernwirkungen der nord- und Anpassungsstrategien der Klimafolgenforschung, atlantischen Sturmregionen auf kustennahe Gebiete. bezogen auf die EU, abschlieBen. Dafiir wurde u.a. das operationelle Seegangsmodell am PIK erweitert, urn die Auswirkungen der Klimaver- anderungen im Atlantik auf die Klimatologie des See­ gangs in Kustennahe bestimmen zu kdnnen. Das Pro-

108 PROJEKTE MIT REGIONALER PERSREKTIVE

jekt wird durch das Bundesministerium fur Bildung, Auswirkungen auf die Wasserressourcen: Wissenschaft, Forschung und Technologie finanziert. Zwei regionale Wassermodelle wurden zur Abschat- zung der Implikationen des moglichen Klimawandels Umweltveranderungen und soziookonomischer benutzt. Fur die angenommenen Ubergangsszenarien Wandel in Bergregionen - Mountain errechnet das Modell eine Unterschreitung der kriti- Das Forschungsprogramm Mountain untersucht die schen DurchfluBwerte in den Flussen uber einen ver- Folgen des Globalen Wandels in Bergregionen. Dabei haltnismaBig langeren Zeitraum. Das konnte eine Ver- interessiert insbesondere die Abhangigkeit der Auswir- ringerung der Wasserverfugbarkeit, eine Minderung kungen von der Hohenlinie bzw. vom Gradienten. So der Wasserqualitat und eine Beeintrachtigung der wird erwartet, daB die Regionen, in denen sich schon aquatischen dkosysteme bewirken. unter naturlichen Bedingungen die hydrologischen Auswirkungen auf landwirtschaftliche Ertrage oder okologischen Eigenheiten andern, besonders Eine quantitative Untersuchung der Auswirkungen, die sensibel auf Anderungen des Klimas Oder der Land- ein moglicher Klimawandel auf landwirtschaftliche nutzung reagieren. Beispiele dafiir sind die Lage der Ertrage hatte, erfordert regionale Langzeit-Simulatio- Baum- Oder Schneegrenze, die Ausdehnung von Glet- nen. Eine derartige Studie wurde bisher nurfur Weizen scher- Oder Feuchtgebieten. Ein wesentlicher Aspekt durchgefuhrt (vgl. AGREC Seite 111 ). Fur andere betrifft die Nachhaltigkeit von Umwelt und Kultur in Nutzpflanzen konnen bisher nur qualitative Abschat- Bergregionen unter dem EinfluB des Globalen Wan­ zungen vorgenommen werden. Ein Temperaturanstieg dels. aufgrund hoherer Kohlendioxidkonzentrationen wirkt sich auf den Wachstums- und ReifungsprozeB in zwei- Regionale integrierte Studien facher Hinsicht aus: Zum einen verkurzen hohere zu Auswirkungen des Klimawandels - RICC Temperaturen das Reifen der Korner, zum anderen Auf der Basis einer Pilotstudie fur das Land Branden­ nimmt das Wachstum aufgrund der Dunge-Effekte des burg werden Methoden fur integrierte Regionalstudien Kohlendioxids zu. Wahrend ersteres ertragsmindernd generalisiert und weiterentwickelt. In diesem Pilotpro- ist, steigert das zweite den Ertrag. Ob sich effektiv jekt wurde konkret fur das Land Brandenburg eine hohere Oder niedrigere Ertrage ergeben, kann erst regionale, integrierte Untersuchung zu den Auswirkun­ durch entsprechende Rechnungen fur die betroffenen gen eines moglichen Klimawandels durchgefuhrt. Ins­ Regionen und ihre Struktur gezeigt werden. besondere wurden anhand unterschiedlicher Klima- Auswirkungen auf Walder und naturliche dkosysteme: szenarien die Folgen fur die Wasserressourcen, die Die Auswirkungen eines Klimawandels auf Walder Walder, die Landwirtschaft sowie die menschliche wurden mit zwei verschiedenen Ansatzen untersucht: Gesundheit und die Energiewirtschaft analysiert. Die Anhand von Sukzessionsmodellen, die beschreiben, mittlerweile welter verbesserte Brandenburgstudie 1st wie eine Lucke im Bestand infolge der Konkurrenz ver- insbesondere wegen ihres Modellcharakters fur schiedener Spezies urn Licht, Wasser und Nahrstoffe andere regionale Untersuchungen in Europa von aufgefullt wird, kann die kunftige Zusammensetzung Bedeutung. simuliert werden. Mit einem Modell fur Kiefernbe- Kiimaszenarien: stande wurden Wachstum und Ertrag speziell von Kie- Urn die Folgen eines Klimawandels abzuschatzen, fern bei Klimaanderungen berechnet. Die Simulatio- muB zunachst ein Szenario fur die Klimaentwicklung nen zeigten fur Brandenburg, daB Buchenbestande der Region erarbeitet werden. Das setzt eine Absiche- infolge steigender Temperaturen und abnehmender rung des zu erwartenden Temperaturanstiegs voraus. Niederschlage zuruckgehen, stattdessen auf nahrstoff- Bei ungeminderter Zunahme der Kohlendioxidkonzen- reichen Boden gemischte Laubwalder, auf nahrstoffar- tration in der Atmosphare prognostizieren globale Zir- men Boden gemischte Kiefernbestande wachsen wur­ kulationsmodelle eine weltweite Erwarmung urn 1,5 den. Der Ertrag der Kiefernbestande wurde seinerseits bis 4,5 °C bis 2100, fur Zentraleuropa wird ein Tempe­ bei sinkenden Niederschlagen signifikant zuruckge ­ rate ranstieg zwischen 2 und 4 °C erwartet. Da neben hen. der Temperaturentwicklung andere Klimaparameter Auswirkungen auf die menschliche Gesundheit: eine Rolle spielen, reicht fur verlaBliche Folgenab- Die Auswertung von Sterbestatistiken weist auf teil- schatzungen ein einziges Klimaszenario nicht aus. weise zunehmende Todesfalle aufgrund der prognosti- Neben einem Referenzszenario fur das gegenwartige zierten extremen Sommer hin. Hingegen wird bei Klima wurden deswegen mehrere Obergangsszena- Krankheiten wie Malaria, Ebola, Cholera Oder Lepra rien entwickelt. Sie zeichnen sich alle durch mehr keine Zunahme in Mitteleuropa erwartet. warme und trockene Perioden im Sommer und gema- Bigte und feuchte Winter aus.

109 ZUSAMMENFASSUNG

Urbaner Lebensstil, Nachhaltigkeit und integrierte Auswirkungen klimatischer Extrema auf naturliche, Umweltabschatzung (ULYSSES) soziale und Wirtschaftssysteme (WISE) Dieses europaische Forschungsprojekt soli mogliche In diesem Gemeinschaftsprojekt britischer, niederlan- Distanzen zwischen Umweltforschung und demokrati- discher und italienischer Forschungseinrichtungen schem Handeln in der Klimapolitik uberbrucken. sowie dem PIK werden anhand veroffentlichter okono- Anhand von Diskussionsgruppen mit Burgern zu mischer Daten die Auswirkungen heiBer Sommer, war­ jeweils einem umweltrelevanten Thema werden Mei- mer Winter und heftiger Windsturme auf soziodkologi- nungsbilder erstellt, die Politikern zuganglich gemacht sche Systeme in den beteiligten Landern untersucht. werden sollen. Dadurch soil eine offentliche Beteili- Dies 1st ein alternativer Ansatz der Klimafolgenfor- gung an der Klimapolitik erreicht werden. Dies setzt schung zu den Modellierungen soziodkonomischer voraus, daB die Beteiligten einen moglichst vollstandi- Systeme auf der Basis von Klimaszenarien. gen Uberblick uber die relevanten Probleme und mog ­ Die Auswirkungen auf Landwirtschaft, Tourismus, liche Losungen haben. Bin Beitrag des PIK besteht Wasser, Energieverbrauch und Brandgefahr werden darin, umfassende Szenarien zu den Auswirkungen regional erfaBt und uberregionale Vergleiche ange- des globalen Klimawandels zu entwickeln und diese stellt. Soweit mdglich sind die durch extreme Wetter- den Diskussionsgruppen zur Verfugung zu stellen. bedingungen verursachten Kosten zu ermitteln. Urn Weiterhin beteiligt sich das PIK an der Ausrichtung von festzustellen, ob sich die Empfindlichkeit der soziodko- regionalpolitischen Foren mit Vertretern aus Wirt- nomischen Systeme auf klimatische Extrema andert, schaft, Politik und von Umweltorganisationen. In ihnen werden die Auswirkungen derzeitiger Wetterperioden geht es urn explizite, regionale Antwortstrategien zum mit entsprechenden Beobachtungen aus den frilhen Globalen Wandel. AuBerdem untersucht das PIK die 70er Jahren verglichen. Die sozialen Auswirkungen Frage, ob und unter welchen Bedingungen in Europa werden anhand von Befragungen analysiert, wobei Kapital zur Entwicklung von Technologien, die fossile insbesondere interessiert, ob bereits Anpassungen an Brennstoffe nur minimal gebrauchen, zur Verfugung veranderte Wetterbedingungen stattgefunden haben. gestellt wird. Zu diesem Thema wurde ein Workshop mit Vertretern moglicher Investoren organisiert.

Projekte mit sektoraler Perspektive

AGREC - Agro-okonomische Auswirkungen des Globalen Wandels

Das Kernprojekt “Agro-okonomische Auswirkungen Klimaanderung mindern konnten. Eine Hauptaufgabe des Globalen Wandels” (AGREC) untersucht die FoF besteht darin, mit Hilfe mechanistischer, prozessorien- gen eines mdglichen Klimawandels auf die landwirt- tierter Ertragsmodelle Ertragsszenarien zu entwickeln, schaftliche Produktion und den Agrarmarkt in Zentral- wobei die Abschatzung der Dungeeffekte des Kohlen- und Westeuropa am Beispiel Deutschlands. Wichtige dioxid auf Pflanzenwachstum, Wasserverbrauch und Fragen sind in diesem Zusammenhang: Ertrag besonders wichtig ist. Daran anschlieBend sol ­ • Inwieweit kann bei verandertem Klima die Nachfrage len die okonomischen Konsequenzen veranderter nach tierischen und pflanzlichen Rohstoffen abge- Nutzpflanzenertrage fur Zentral- und Westeuropa ana­ deckt werden, wenn die gegenwartige Agrarstruktur lysiert werden. beibehalten wird? • Welche strukturellen Anpassungen des Agrarsektors Freiluftexperimente zum Anstieg des an Klimaanderungen sind mdglich und realistisch? Kohlendioxids in der Atmosphere - FACE • Welche Kosten hatten vorbeugende agrarpolitische Die Kohlendioxidkonzentration in der Erdatmosphare MaBnahmen, die eine strukturelle Anpassung an Kli­ ist mit Beginn der Industrialisierung kontinuierlich maanderungen abwenden Oder verzogern konnten? gestiegen und wird sich bis zum Ende des 21. Jahr- AGREC soil zur Identifizierung derjenigen landwirt- hunderts wahrscheinlich verdoppelt haben. Urn die schaftlichen Aktivitaten beitragen, deren Modifizierung Auswirkungen dieser Entwicklung auf landwirtschaftli- Oder regionale Verschiebung Folgen einer mdglichen che Nutzpflanzen abschatzen zu kbnnen - etwa auf

110 PROJEKTE MIT SEKTORALER PERSPEKTIVE

Baumwolle, Weizen und Gerste - wurden in Arizona messungen durchgefuhrt, und diese mit entsprechen- vom U.S. Water Conservation Laboratory Freiluftexpe- den Simulationen verglichen (Bild 3 auf Seite 57). rimente (Free-Air Carbon dioxide Enrichement; FACE) Daneben wurden fur das Bundesland Brandenburg durchgefiihrt, an denen das PIK beteiligt war. Dabei regional aufgegliederte Weizenertrage mit demeter wurden auf dem Versuchsfeld Dusen in kreisformiger simuliert und mit den tatsachlichen mittleren Ertragen Anordnung (0=22m) installiert (Bild 2 auf Seite 56), des dort angebauten Weizens verglichen. Die Untersu- die die Nutzpflanzen innerhalb der Versuchsanord- chungen in Bernburg zeigten, daB das Verhalten der nung mit Kohlendioxid begasten. Die Konzentration amerikanischen Weizensorten auch unter europai- des Kohlendioxid in der Luft wurde dadurch auf die fur schen Wachstumsbedingungen mit demeter korrekt die Mitte des 21. Jahrhunderts prognostizierten Werte beschrieben wird. Die Ertragssimulationen fur das angehoben. Untersucht wurden die Kurz- und Lang- Land Brandenburg ergaben hingegen systematische zeiteffekte des Kohlendioxid i) unter unveranderten Abweichungen, die darauf zuruckzufuhren sind, daB Bedingungen, ii) mit einer zusatzlich um 30 % redu- die in den FACE-Experimenten verwendeten Weizen­ zierten Stickstoffversorgung bzw. iii) einer zusatzlich sorten ein anderes Ertragsniveau erzielen als die in um 50 % reduzierten Wasserversorgung. Als Kontrolle Brandenburg angebauten. Dies macht eine entspre- dienten die auf dem Feld unter normalen Bedingungen chende systematische Korrektur einiger pflanzenspe- wachsenden Nutzpflanzen. Bei alien Experimenten zifischer Parameter im Modell demeter bei der Anwen- zeigte sich, daB bei einem hoheren Kohlendioxidange- dung auf andere Weizensorten erforderlich. bot die Pflanzen ihre Photosynthese steigern, durch SchlieBen der Stomata die Verdunstung reduzieren, Simulation von Weizenertragen fur Brandenburg damit das Wasser effizienter nutzen und gleichzeitig Um festzustellen, wie sich mogliche Umweltanderun- mehr Biomasse und Korner produzieren kbnnen. gen auf die Ertrage von Winterweizen auswirken, wur­ Diese Stimulation ist bei einem geringeren Wasseran- den mit dem Modell demeter die Weizenertrage bei gebot deutlich groBer als bei einem normalen, bei den gegenwartigen Wetter- und Umweltbedingungen einem geringeren Stickstoffangebot nur leicht groBer und unter einer prognostizierten Klimaentwicklung als bei einem normalen. Entgegen fruheren Annah- untersucht. Die Simulationen erfolgten fur drei Peri- men wurden keine Effekte gefunden, die auf eine oden: 1) 1983 - 1990, 2) 2023 - 2030 und 3) 2043 - “Akklimatisierung ” an hohere Kohlendioxidkonzentra- 2050. Die Klimavorgaben der ersten Periode basierten tionen hindeuten (siehe Abb. 4 und 5 auf Seite 58). auf beobachteten Wetterdaten, daneben waren fur diese Periode die mittleren Ertrage alter Landkreise in Modellierung von Getreideertragen den einzelnen Jahren verfugbar. Bei der zweiten und Auf der Basis der in den FACE-Experimenten gewon- dritten Periode wurden Szenarien u.a. mit einem all- nenen Oaten wurde 1993 begonnen, das Modell dem­ mahlichen Temperaturanstieg um 1,5 °C bis 2050 und eter zur Simulation des Wachstums von Weizen wei- einer linearen Zunahme der Kohlendioxidkonzentra ­ terzuentwickeln, so daB nun u.a. das physiologische tion gemaB dem Trend der beiden letzten Jahrzehnte Verhalten und der Energie- und Gasaustausch von angenommen. Die Simulationen zeigten, daB die Wei­ Weizen mit einer Auflosung von Minuten bis zuTagen, zenertrage Brandenburgs relativ unempfindlich gegen- simuliert werden kbnnen. Fur die Zielsetzung in uber den verwendeten Szenarien sind. Von entschei- AGREC wird zur Zeit uberpruft, inwieweit das Modell dender Bedeutung fur das Simulationsergebnis waren demeter auf das europaische Wachstumsverhalten mit die Annahmen fiber Niederschlagsmenge und -vertei- welchen Modifikationen anwendbar ist. Dazu wurden lung sowie der Kohlendioxid-Dungungseffekt, der im sachsen-anhaltinischen Bernburg an der im FACE- niedrigere Wachstums- und Ertragsaspekte weitge- Experiment untersuchten Weizensorte bei naturlicher hend kompensierte (Bild 9 auf Seite 60). Kohlendioxidkonzentration umfangreiche Freiland-

CHIEF - Europaische Walder unter dem EinflulB des Globalen Wandels

Walder gehoren zu den weitweit wichtigsten erneuer- strischen Kohlenstoffs und sind durch Photosynthese, baren Ressourcen. Sie liefern Holz, sind Erholungsge- Atmung und Mineralisierung an dem schnellen Aus- biete, Lebensraum fur Tiere und Pflanzen und bieten tausch zwischen Biosphare und Atmosphere beteiligt. Schutz vor Hochwasser und Bodenerosionen. Global Dadurch spielen sie eine wichtige Rolle im Kohlen- gesehen speichern Walder einen GroBteil des terre- stoffkreislauf, der seinerseits die Entwicklung des

111 ZUSAMMENFASSUNG

Erdsystems mitbestimmt. Zwar reagieren einerseits Brandenburgs untersucht werden, wurden mdgliche die meisten der Austauschprozesse empfindlich auf Folgen fur die Walder abgeschatzt. Dazu verwendete Klimaanderungen, andererseits tolerieren Walder aber man zwei Sukzessionsmodelle, die die Waldentwick- in einem gewissen Rahmen Klimaschwankungen. Erst lung auf kleinen Waldparzellen beschreiben. Die wenn bestimmte Schwellenwerte z.B. in der Wasser- Modelle wurden so erweitert, daB in die Berechnung versorgung Oder der Windgeschwindigkeit uberschrit- des Wachstums der verschiedenen Baumarten auch ten werden, bricht das System plotzlich zusammen. der Grundwasserspiegel einflieBt. Simulationen mit Ziel des Kernprojektes CHIEF 1st es daher, Art und beiden Modellen ergaben, daB sich Klimaanderungen AusmaB moglicher Folgen des Globalen Wandels fur stark auf die Zusammensetzung der Waldbestande in i) Wachstum und die Artenzusammensetzung der Wal­ Brandenburg auswirken kdnnen (Bild 3 auf Seite 66). der, ii) die Waldbewirtschaftung und Forstokonomie Bei einem angenommenen Temperaturanstieg um und iii) die sekundaren Waldfunktionen zu bestimmen. 3 °C gehen die Buchenbestande zuruck und stattdes- Die Untersuchungen werden unterschiedlich detailliert sen breiten sich auf schlechten Boden Kiefernbe- in europaischem, nationalem und regionalem MaBstab stande, auf guten Boden Laubmischwald (Eichen, Lin­ durchgefuhrt. den, Hainbuchen) aus.

Regionale Studien Nationale Wirkungsanaiyse fur den Wirkungen von Luftverschmutzungen auf Sektor Forstwirtschaft Kiefernwalder in der Dubener Heide In Zusammenarbeit mit sieben anderen forstwissen- Innerhalb der letzten zwei Jahre fuhrten wir zwei regio ­ schaftlichen Arbeitsgruppen werden im Projekt Walder nale Studien durch. Im SANA-Projekt wurde die Ent- und Forstwirtschaft Deutschlands im globalen Wandel wicklung von uber 5000 Kiefernwaldern in der die Folgen von Klimaveranderungen fur die Forstwirt ­ Dubener Heide berechnet, wozu der Wasserkreislauf, schaft in Deutschland analysiert (Bild 4 auf Seite 67). die Stickstoff- und Kohlenstoffbilanz sowie Hohe und Ein Ziel dieses Projektes ist es auch, optimierte Wald- Durchmesser der Stamme und die Zahl der Baume in bewirtschaftungsstrategien als Reaktion auf verander- gleichalten Bestanden simuliert wurden. Dazu wurde liche Umweltbedingungen zu entwickeln. das in CHIEF entwickelte Waldwachstumsmodell FORSANA benutzt, das, ausgehend von einer gege- Entwicklung eines neuen benen Boden- und Bestandsinitialisierung, die Ent- Wald-Sukzessionsmodells wicklung von Kiefernwaldern unter Berucksichtigung Sukzessionsmodelle, die seit ca. 20 Jahren zur von Witterung, Deposition, Dungung und Bewirtschaf- Beschreibung des dynamischen Verhaltens von Wal- tung simuliert. Die Ergebnisse zeigten u.a., daB bei dern verwendet werden, basieren auf der Annahme, starker Luftverschmutzung die Blattdichte abnimmt, daB das Wachstum von Baumen von den Standortbe- wodurch die Bedeutung der Bodenvegetation fur den dingungen, die durch Klima und Bodenqualitat gege- Wasser-, Kohlenstoff- und Stickstoffkreislauf steigt. ben sind, und der Konkurrenz benachbarter Pflanzen Selbst in trockenen Jahren nehmen die Walder jedoch um Licht, Wasser und Nahrstoffe abhangt. Die bisher mehr Kohlenstoff und Stickstoff auf, als sie abgeben verwendeten Modelle beinhalten eine Reihe verein- (Bild 2 auf Seite 65). fachter Annahmen, obwohl mittlerweile das Wissen Simulationen mit verschiedenen Klima- und Deposi- uber funktionale Ablaufe in Pflanzengemeinschaften tionsszenarien ergaben, da(3 in der Nahe von Indu- weit fortgeschritten ist. Deswegen wird in CHIEF das striezentren die Baume urn so starker wachsen, je neue Sukzessionsmodell 4C entwickelt. Es simuliert geringer die Luftverschmutzung ist. Dieser Effekt das Wachstum naturlicher und bewirtschafteter Walder schwacht sich mit zunehmender Entfernung der Emit- unter Berucksichtigung des Wasser-, Kohlenstoff- und tenten ab bis hin zu einem verminderten Wachstum Stickstoffkreislaufes. Wichtige Prozesse werden aufgrund reduzierten Nahrstoffangebots. Weitere mechanistisch beschrieben. In funf Teilmodellen wer­ Untersuchungen zeigten, daB sich Verminderungen im den Wasser- und Nahrstoffangebot im Boden, der jahr- Wasserangebot, vor allem bei einer geringen Wasser- liche Verlauf der Nettophotosynthese, die Verteilung speicherkapazitat des Bodens, auf das Wachstum der Kohlenstoffanreicherung auf die einzelnen Pflan- auswirken. zenteile aufgrund von Umwelteinflussen, Zu- und Abgangsraten in den Populationen sowie menschliche Klimafolgen fur Walder in Brandenburg Eingriffe und naturliche Storungen beschrieben (Bild 1 Im Rahmen der Brandenburgstudie, in der die regiona- auf Seite 63). len Auswirkungen von Klimaanderungen am Beispiel

112 PROJECTS MIT SEKTORALER PERSPECTIVE

RESOURCE - Soziale Dimensionen der Wasserverfiigbarkeit

Regionale Frischwasserressourcen spielen eine her- wirtschaftlichen Wohlstand abschatzen zu konnen. ausragende Rolle als Lebensgrundlage und als Basis Allerdings beeinflussen nicht nur Klimaanderungen die fur die soziale, okonomische und kulturelle Entwick- Wasserverfiigbarkeit. Bevolkerungswachstum, wirt- lungsfahigkeit einer Region. Ohne sie waren weder schaftliche Entwicklung und Anderungen der Landnut- Landwirtschaft noch Industrie moglich. Umgekehrt ent- zung konnen beispielsweise ebenfalls positive Oder stehen durch Wasserknappheit viele Probleme bis bin negative Auswirkungen auf die Wasserressourcen zu regionalen Auseinandersetzungen urn knappe Res- haben. In Zusammenarbeit mit israelischen Partnerin- sourcen. Der Mittelmeerraum gehort zu den Regionen, stituten werden fur die ostliche Mittelmeerregion die wo Wasserknappheit und die damit verbundenen Pro ­ entsprechenden Verkettungen analysiert und model- bleme derzeit zunehmen, und die daran beteiligten liert. Mit Hilfe der daraus resultierenden Trends fur die Mechanismen gut beobachtet werden konnen. Zur Wasserverfiigbarkeit sollen die Auswirkungen auf die Vermeidung von ernsthaften Konflikten und nachhalti- Gesellschaft, beispielsweise durch eine verminderte gen Schadigungen des Okosystems ist es notwendig, landwirtschaftliche Produktivitat, abgeschatzt werden. bald geeignete MaBnahmen zu finden. Mit dem Projekt Eine Verminderung der Lebensqualitat, etwa durch Soziale Dimensionen der Wasserverfiigbarkeit tragt Dezimierung von Erholungsgebieten, sowie die Folgen das PIK zur Abschatzung der Anfalligkeit der Region fiir die natiirliche Vegetation, etwa durch Versteppung, durch Wasserknappheit und den damit verbundenen sollen ebenfalls durch eine regionale, integrierte Fol- Folgen bei. Auf den Ergebnissen dieser Untersuchun- genabschatzung ermittelt werden. Bei der Analyse der gen aufbauend, sollen Strategien zur Minderung der okonomischen Auswirkungen werden die Schaden Verknappung einerseits und zur Anpassung an die und Verluste in monetaren Werten dargestellt. Wasserverhaltnisse andererseits entwickelt werden. Die Aktivitaten des ehemaligen Kernprojekts Auswir- Abschatzung der regionalen Anfalligkeit fur kungen des Globalen Wandels auf die Umwelt und die Wasserverknappung im Mittelmeerraum Gesellschaft der Mittelmeer und Maghreb Staaten Der Begriff der Anfalligkeit bezieht sich auf alle naturli­ (CLIMAGHS), in dem Flut- und Durrekatastrophen chen und soziookonomischen Eigenschaften einer untersucht wurden, sind in RESOURCE aufgegangen. Region, die sie filr Krisen disponieren. Eines der Ziele in RESOURCE ist die integrierte Abschatzung der Regionaldatenbank klima- und Anfalligkeit fiir Krisen und Konflikte im Zusammen- wasserrelevanter Parameter hang mit Wasserressourcen fiir den Mittelmeerraum. Eine wichtige Voraussetzung fur Trendanalysen zur Als erster Schritt dazu wurde ein geographisch bezo- Wasserknappheit einer Region ist die Entwicklung von gener kritischer Index auf die Region angewendet, der Klimaszenarien. Dafur wird in RESOURCE die raumli- im Kernprojekt QUESTIONS gemeinsam mit einer che und zeitliche Struktur meteorologischer und hydro- Arbeitsgruppe an der University Kassel entwickelt logischer Parameter basierend auf beobachteten und wurde. Die Idee, die dem Index zugrunde liegt, ist im gemessenen Temperatur-, Niederschlags- und Feuch- Prinzip einfach: Die Anfalligkeit einer Region fiir was- tigkeitswerten sowie der naturlichen Variability, analy- serinduzierte Probleme ist stark, wenn der Wasserver- siert (Beispiel in Bild 1 auf Seite 69). Eine so entstan- brauch der naturlichen Wasserverfiigbarkeit entspricht dene Datenbank fur den Mittelmeerraum wird welter und gleichzeitig keine MaBnahmen zur Eindammung ausgebaut. dieses Problems zur Verfiigung stehen. Umgekehrt ist sie schwach, wenn entweder genug Wasser naturlich Regionale Untersuchung soziodkonomischer vorhanden ist Oder die Knappheit ausgeglichen wer­ Dimensionen von Wassen/erfugbarkeit den kann, etwa durch Entsalzungsanlagen fiir Meeres- In semi-ariden Regionen konnen schon kleine Ande- wasser, Tiefbrunnen Oder Pipelines. rungen der Niederschlagsmengen, der Temperatur Der kritische Index bedient sich dreier komplexer Pa­ und der Verdunstung drastische Anderungen im Was- rameter, die jeweils verschiedene Informationen fiber serdargebot bewirken. Mit Hilfe regionaler Messungen den Mittelmeerraum miteinander kombinieren: Der er- hydrologischer GroBen und der am PIK entwickelten ste bezieht sich auf den nationalen Wasserverbrauch, hydrologischen Modelle konnen quantitative Vorhersa- der zweite auf die berechnete Wasserverfiigbarkeit gen fiber Anderungen im Wasserkreislauf getroffen und der dritte auf das Potential einer Gesellschaft, bei werden. Dies ist eine notwendige Voraussetzung, urn effektiver Wasserknappheit die Ressourcen mit Hilfe die Folgen fur die Vegetation sowie den sozialen und der oben angesprochenen Einrichtungen kiinstlich auf-

113 ZUSAMMENFASSUNG

zufullen. Allerdings herrscht keine Einigkeit daruber, in Klima, bei denen in einem Fall dem dritten Index eine welchem AusmaB der dritte Index eine tragfahige hohe Relevanz, im anderen eine niedrige eingeraumt Rolle spielt. Diese Tatsache kann bei der Abschatzung wurde, ergaben z.B. fur Marokko, Jordanien und Agyp- der regionalen Anfalligkeit fur wasserinduzierte Krisen ten u.a. folgendes: Selbst wenn diese Lander in der berucksichtigt werden, indem die Rechnungen parallel Lage waren, Entsalzungsanlagen, Tiefbrunnen usw. mit mehr Oder weniger starker Wichtung des dritten einzurichten, um der Wasserknappheit entgegenzuwir- Parameters durchgefilhrt werden. Zwei Simulationen ken, gerieten sie dennoch in eine massive Wasser- fur das gegenwartige und das fur 2025 prognostizierte krise (Bild 2 auf Seite 70).

Wissenschaftliche Abteilungen

Abteilung Integrierte Systemanalyse

Der Erfolg moderner Wissenschaft beruht zu einem Methoden und Strategien groBen Teil auf einer immer feiner werdenden Zerglie- Die Erfahrungen, die in den vergangenen Jahren in derung der betrachteten Problems und Systeme. Um integrierten Projekten gemacht wurden, z.B. bei der nun den Globalen Wandel, seine zivilisatorischen Zusammenfuhrung von Prozessen, die auf unter- Ursachen und seine Auswirkungen auf Natur und schiedlichen Skalen ablaufen, haben gezeigt, daG es Gesellschaft zu untersuchen, mussen zahlreiche vorteilhaft ist, einen zentralen und gemeinsamen Resultate dieses Ausdifferenzierungsprozesses re- Fokus im Projektteam zu haben, etwa ein gemeinsa- integriert werden. Der Grund dafur ist u.a. die hohe mes Modell Oder ein gemeinsamer Formalismus bei Komplexitat der Systeme, die es nicht erlaubt, erst die der Analyse. Das bedeutet allerdings nicht, daG es Einzelteile zu untersuchen und die Teilergebnisse eine einzige 'beste” Herangehensweise gibt. Vielmehr dann additiv zu einem Gesamtresultat zu kombinieren. ist auf der Basis der konkreten Fragestellung eine Neben diesem Problem der Re-Integration widmet adaquate Vorgehensweise zu entwickeln, die diese sich die Abteilung Integrierte Systemanalyse Fragen Aufgabe erfullen kann. Innerhalb der Abteilung werden zur Identifikation von Strategien fur eine nachhaltige hier insbesondere Methoden der zyklischen Integra­ Entwicklung, erkenntnistheoretischen Problemen und tion, der Metamodellierung, der Entwicklung von Mini- der Weiterentwicklung von Methoden, die eine Ana­ malmodellen Oder der formalen qualitativen Analyse lyse relevanter Eigenschaften des Erdsystems an sich und Modellierung entwickelt. erlauben. Konkret lassen sich einige der behandelten Fragestellungen wie folgt benennen: Komplexe Systemanalyse • Ist es angebracht, die naturwissenschaftliche Per- In den letzten ca. 20 Jahren sind in der Physik und spektive “deterministischer Systeme” auch auf Mathematik zahlreiche Methoden zur Analyse komple- soziale Systeme anzuwenden? Oder umgekehrt: xer Systeme entwickelt worden, die Aussagen uber Lassen sich Regeln und Gesetze der unbelebten fundamentale Eigenschaften dieser Systeme, wie z.B. Natur auch in der Sprache der Soziologie ausdruk- Zahl der Freiheitsgrade Oder topologische Merkmale, ken, ohne daG dabei wichtige Details verlorenge- erlauben. In der Abteilung wurden hier u.a. zellulare hen? MuB ein neuer transdisziplinarer Sprachge- Automaten genutzt, um eine raumlich explizite Erwei- brauch eingefuhrt werden, um Wissen aus einer Dis- terung des beruhmten “Daisy World" Modells von ziplin in eine andere einzubringen? Lovelock zu untersuchen. Hierbei wird die Antwort • Wie kdnnen normative Vorgaben durch die Politik eines virtuellen, nur aus Pflanzen unterschiedlicher integriert werden, ohne daG die “wissenschaftliche Farbe bestehenden Planeten auf Kontrollparameter Kodierung von richtig und falsch (Luhmann)” verletzt wie Fragmentierung der Landschaft Oder Sonnenein- wird? Wie lassen sich Strategien fur eine nachhaltige strahlung simuliert. Zu den wichtigsten Resultaten Entwicklung formal beschreiben und bewerten? zahlt der Nachweis der Existenz eines fur die klimati- • Kann die Komplexitat des Erdsystems uberhaupt sche Stabilitat des Planeten kritischen Schwellen- durch Methoden der modernen Physik Oder Mathe- werts. Andere Anwendungen betreffen die Nutzung matik adaquat beschrieben werden? kunstlicher neuronaler Netze fur die Entwicklung einer

114 WlSSENSCHAFTLtCHE ABTE1LUNGEN

nicht-linearen, nachbarschaftserhaltenden Kategori- rentialinklusionen und Fuzzy-Steuerung. Erstere wer­ sierung, z.B., des Klimas Oder fur die vereinfachte und den zur Formalisierung des sog. Pessimierungs-Para- hocheffiziente ‘reduzierte Modellierung ’ der naturlichen digmas verwendet, in dem unter Vorgabe explizit als Vegetation. nicht-tolerabel angesehener Erdsystemzustande (z.B. Abschalten der fur Nord- und Mitteleuropa als ‘Warme- Kontrolltheorie pumpe ’ agierenden nordatlantischen Tiefenwasserbil- Zahlreiche Untersuchungen zum Globalen Wandel dung bei einer globalen Erwarmung) Strategien fur die arbeiten mit Szenarien, d.h., basierend auf Annahmen garantierte Vermeidung solcher Zustande gesucht uber mogliche “Zukiinfte” einiger treibender GroBen werden. Daruber hinaus wurden in einem konzeptio- werden - z.B. mit Hilfe von Modellen - Aussagen nellen Modell zur Fuzzy-Steuerung erste Ansatze fur uber die Reaktion davon abhangiger Variablen unter- solche “Vermeidungsstrategien ” entwickelt, die im sucht. Im Gegensatz dazu versucht die Kontrolltheorie wesentlichen nur auf Kenntnissen lokaler, zeitlich und Strategien und Methoden fur das Erreichen expliziter raumlich begrenzter, Information auskommen. Zielvorgaben zu entwickeln. Hierbei leistet die Abtei- lung methodisch-konzeptionelle Beitrage uber Diffe-

Abteilung Klimaforschung

Die Abteilung Klimaforschung konzentriert sich auf Ein wichtiger Fundus fur alle klimatologischen Unter­ grundlegende Problems im Zusammenhang mit der suchungen ist eine umfangreiche Datenbank, die den Diagnose von Klimadaten, der Erstellung von Szena­ Qualitatsanspriichen der einzelnen wissenschaftlichen rien zum Klimawandel und der Modellierung des Kli- Untersuchungen entspricht. Zu diesem Zweck erstellte masystems. Dies 1st eine Ausweitung der ursprungli- die Abteilung in den vergangenen Jahren eine Klima- chen Aufgabenstellung, die anfangs nur die Zuliefe- datenbank, und es wurden Algorithmen zur Qualitats- rung von Klimadaten und Klimaszenarien an die kontrolle und statistischen Analyse entwickelt. Da anderen Abteilungen beinhaltete. bereits eine Vielzahl unterschiedlichster Klimadaten- banken weltweit existiert, werden in der PIK-Daten- Klimaanalyse und Diagnostik bank schwerpunktmaBig Langzeitserien von meteoro- Voraussetzung fur jede klimabezogene Forschung ist logischen Daten gesammelt, die taglich erhoben wor- eine sorgfaltige Analyse des Klimas in der Vergangen- den sind. Gegenwartig verfugt sie uber 2.500 Daten- heit und in der Gegenwart auf der Basis von qualitativ reihen, von denen 400 langer als 50 Jahre, 800 langer hochwertigen Daten und durch Rekonstruktion aus als 20 Jahre und 1.300 langer als 15 Jahre sind. Die sekundaren Befunden wie beispielsweise die Abschat- wichtigsten meteorologischen Parameter der Daten zung der Sommertemperaturen anhand der gefunde- sind Lufttemperatur, Niederschlag, relative Feuchtig- nen Menge fossiler Pollen. Klimaanalyse betrifft nicht keit, Bewolkung, Sonnenscheindauer, Luftdruck, nur die “einfachen” klimatischen Mittelwerte wie mitt- Windgeschwindigkeit und Dampfdruck. Daruber hin­ lere Monatstemperatur und mittleren Jahresnieder- aus wurden fur spezielle Aufgaben weitere Datenrei- schlag. Fur viele Anwendungen in der Klimafolgenfor- hen gesammelt. schung werden vielmehr Informationen uber klimati- sche Extrema bendtigt, beispielsweise Harte und Klimaszenarien Dauer von Kalteperioden. Wegen des nichtlinearen Urn die Auswirkungen jeglichen Klimawandels auf na- Charakters des Klimasystems werden die Klimadaten turliche und soziale Systeme zu untersuchen, mussen mit Hilfe von multivariaten statistischen Methoden ana- zunachst Klimaszenarien entwickelt werden. Dabei lysiert und diagnostiziert. Derartige Methoden werden handelt es sich nicht urn Vorhersagen! Da menschli- in unserer Abteilung entwickelt und angewandt. che Aktivitaten - etwa die Emission von Treibhausga- Die Methoden fur die Datenanalyse und -diagnose sen, Veranderungen in der Landnutzung - das Klima werden auBerdem fur die Bewertung von Ergebnissen maBgeblich beeinflussen, und da diese Aktivitaten aus Klimamodellierungen herangezogen. Dies tragt kaum vorhersagbar sind, kann auch das Klima selbst nicht nur zur Verbesserung der Modelle bei, sondern nicht vorhergesagt werden. Stattdessen werden an­ auch zum besseren Verstandnis und zu einer ange- hand verschiedener Einschatzungen der wirtschaftli- messenen Bewertung der Ergebnisse der Model ­ chen und sozialen Entwicklung und, damit verbunden, lierung in der Klimafolgenforschung. der Entwicklung von Treibhausgasemissionen, Ein-

115 ZUSAMMENFASSUNG

schatzungen moglicher Klimaentwicklungen - soge- Zeitauflosung, was umfangreiche Rechenleistungen nannter Klimaszenarien - berechnet. Ausgangspunkt und Speicherkapazitaten beanspruchen wurde. Viel- bei der Erstellung von Klimaszenarien sind numeri- mehr soil das Zusammenspiel alter Komponenten des sche Klimamodelle, statistische Modelle und Kombina- Klimasystems untersucht werden. Deshalb liefert tionen von beiden. CLIMBER eine zwar relativ grobskalige aber effiziente Beschreibung . Es ist mindestens tausend mal schnel- Klimasystemmodellierung ler als die komplexen Modelle und eignet sich deswe- Die Untersuchung des Klimawandels bezieht sich gen fur die Klimasystemanalyse. AuBerdem soil nicht nur auf die Analyse vergangener Klimate und die CLIMBER Teil des Potsdamer Erdsystem-Modells wer­ Abschatzung der Klimaentwicklung in den nachsten den. Jahrzehnten Oder Jahrhunderten. Daruber hinaus in- Mit Hilfe dieses Modells sollen Fragen nach der Rolle teressiert auch die Wechselwirkung zwischen den ver- der Vegetation im Klimasystem ebenso beantwortet schiedenen Komponenten des Klimasystems, wie At­ werden, wie die Ursache fur die starken Klimaschwan- mosphere, Hydrosphare (in erster Linie Meere und kungen der letzten Eiszeit. Beispiele dafur sind die Flusse), Kryosphare (vor allem Inlandeis, Permafrost deutlichen Anderungen in der Nordatlantischen Stro- und Schnee), die marine und die terrestrische Bio ­ mung, der Warmwasserheizung Europas und groBer sphere und die Lithosphare (Bereich des oberen Erd- Teile der nordlichen Hemisphare, und als Folge davon mantels), die insbesondere die Pedosphare (haupt- drastische Temperaturanderungen zwischen eiszeitli- sachlich die Boden) enthalt. chen und zwischeneiszeitlichen Bedingungen. Ein In der Abteilung Klimaforschung wurde ein Klimasy- Wiederaufflackern dieser Klimaumschwunge heutzu- stemmodell mittlerer Komplexitat namens CLIMBER tage wurde eine massive Bedrohung fur die menschli- entwickelt. Im Gegensatz zu den komplexen Modellen che Gesellschaft darstellen. arbeitet CLIMBER nicht mit groBtmoglicher Raum- und

Abteilung Globaler Wandel und Naturliche Systeme

Okosysteme sind die Produzenten von Nahrung, SuB- Eine globale Frage ist die Bedeutung der Vegetation wasser, Holz und anderen Lebensgrundlagen und fur das Klima. Anderungen in der Struktur der Land- damit die Voraussetzung alien menschlichen Lebens oberflache sowie deren Albedo, die beide stark von auf der Erde. Dafur bendtigen sie lediglich fruchtbare der Bodenvegetation abhangen, beeinflussen durch Boden und ein geeignetes Klima. In der Abteilung Glo ­ physikalische Ruckkopplungen das gesamte Erdsys- baler Wandel und Naturliche Systeme untersuchen wir tem. Noch wichtiger ist die Bedeutung der Vegetation die Rolle der Landvegetation aus zwei Blickwinkeln: fur den Kohlenstoffkreislauf, eine der groBten Unsi- i) wie empfindlich reagieren naturliche und kultivierte cherheiten bei der Abschatzung der Auswirkungen Vegetation auf Veranderungen in der Umwelt und kunftiger Klimaanderungen. ii) welche Ruckkopplungsmechanismen bestehen zwi­ Die "Naturlichen Systeme” der Erde konnen nicht los- schen Veranderungen der Vegetation und der Atmo ­ gelost von menschlichen Aktivitaten betrachtet wer­ sphere? den. Dazu werden in der Abteilung regionale Studien Die Frage nach der Empfindlichkeit ist einfach und zur Empfindlichkeit von kultivierten Okosystemen wie zugleich kompliziert: Einerseits ist das geographische Forst- und Ackerflachen angestellt. AuBerdem unter­ Muster der Landvegetation offensichtlich klimabedingt; suchen wir die Rolle der globalen Landnutzung und die Bedeutung langfristiger Klimatrends liegt ebenso deren Anderung, urn dies bei der Modellierung der glo ­ auf der Hand wie die kurzfristige Entwicklung des Wet- balen Kohlenstoffkreislaufe einzubringen. Die Ande­ ters. Gleichzeitig gibt es ein kompliziertes Wechsel- rung der Landnutzung an sich wird am besten durch spiel zwischen der Verfugbarkeit von Sonnenlicht und die von Sozialwissenschaftlern entwickelten Szenarien Nahrstoffen (darunter Kohlendioxid) sowie ausreichen- beschrieben. der Feuchtigkeit und Warme fur die Pflanzen. Die Typische Forschungsthemen der Abteilung sind: Wie Arbeit in der Abteilung zielt darauf ab, dieses Wechsel- andert sich die naturliche Vegetation afs Antwort auf spiel auf verschiedenen Skalen zu untersuchen und eine mogliche Klimaanderung? Auf welchen Zeitska- dabei die Mechanismen, die auf der jeweiligen MaB- len findet - wenn uberhaupt - eine Anpassung statt? stabsebene zum Tragen kommen, zu identifizieren Welche Bedeutung hat die Landvegetation fur die glo ­ und besser zu verstehen. balen biogeochemikalischen Kreislaufe wie den.Koh-

116 WlSSENSCHAFTLICHE ABTEILUNGEN

lenstoff-, Wasser- Oder Stickstoffkreislauf? Wie wirkt Grundsatzlich zu unterscheiden sind die vertikale und sich der Kohlendioxid-Anstieg auf die Vegetationsdy- die horizontale FlieBrichtung des Wassers. In der namik aus? Welche Auswirkungen haben regionale Gruppe werden Module fur Simulationen in anderen Anderungen der Wasserbilanz auf die naturliche Vege ­ Arbeitsgruppen entwickelt. AuBerdem werden regio ­ tation, die Wasserverfugbarkeit und das Hochwasser- nale FlOsse in die Einzugsgebiete integriert. In enger management? Welche moglichen Auswirkungen ha­ Verbindung mit dem RAGTIME und dem WAVES Pro- ben Klimaanderungen auf die regionale Forst- und jekt arbeitet die Hydrologie-Arbeitsgruppe daran, die Landwirtschaft? Wirkung von Anderungen des Klimas Oder der Land­ Da prazise Vorhersagen Giber die regionale Klimaent- nutzung auf Frischwasserverfugbarkeit und Wasser- wicklung und Landnutzung nicht moglich sind, wird bei qualitat in unterschiedlichen Skalen zu simulieren. der Abschatzung der Empfindlichkeit des Okosystems gegenuber kunftigen Trends auf mogliche Umwelt- Walder und Forstwirtschaft szenarien zuruckgegriffen. Die meisten Prozesse des Die Gruppe erarbeitet einen neuen Ansatz, mit dem Globalen Wandels lassen sich am besten mit Simula- die Dynamik von kultivierten und naturlichen Watdern tionsmodellen analysieren. Derartige Modelle zur simuliert und damit die Empfindlichkeit gegenuber Untersuchung unterschiedlicher Aspekte wie Wasser- Umweltveranderungen abgeschatzt werden kann. verfugbarkeit, Entwicklung von Waldbestanden Oder Dieses im Kernprojekt CHIEF entwickelte - Modell Gas- und Energieaustausch zwischen Pflanzen und berucksichtigt gegentiber frUheren Waldmodellen auf ihrer Umgebung existieren bereits. Um sie fur Untersu- angemessenere Weise die Physiologie des Baum- chungen zu implementiereri, die je nach Fragestellung wachstums und simuliert explizit die Waldbewirtschaf- das gesamte Erdsystem Oder integrativ einzelne tung. In einer bundesweiten Pilotstudie werden seit Regionen beschreiben, mOssen sie jedoch modifiziert, 1997 die Auswirkungen eines Klimawandels auf die in manchen Fallen sogar neu entwickelt werden. Die Walder in Deutschland untersucht. Bewertung von Ergebnissen der Modellierungen im Verhaltnis zu Beobachtungen 1st dabei ein schwieriges Landwirtschaft Problem und 1st deswegen ein weiterer Schwerpunkt Zwei Faktoren des Globalen Wandels beeinflussen der Arbeit, u.a. unter Nutzung von Satellitendaten und den Agrarsektor entscheidend: Die klimatischen Daten aus Feldexperimenten. Bedingungen, vor allem die WasserverfOgbarkeit in Verbindung mit dem Kohlendioxidangebot, sowie der Weltagrarmarkt, der seinerseits empfindlich von klima- Arbeitsgruppen der Abteilung tischem und soziookonomischem Wandel abhangt. Fur die Ertragsabschatzung verwendet die Gruppe ein Globale Dynamik der Biosphare von ihr entwickeltes modernes Simulationsmodell fur In der Gruppe wird ein umfassendes Modell zur Weizenertrage, dessen Parametrisierung auf den Beschreibung der Gesamtdynamik der Biosphare Ergebnissen von Freiluftexperimenten (Free-Air Car­ (DGVM) entwickelt, das spater in das POEM-Erdsys- bon dioxide Enrichment, in Maricopa, Arizona, USA) tem Modell integriert werden soil. Ihm liegt die basiert. Fur andere Getreidearten werden eine Reihe Annahme zugrunde, daB physikalische und biogeo- unterschiedlich komplexer Modelle verwendet. Sie alle chemische Ruckkopplungen zwischen Vegetations- werden im Kernprojekt AGREC eingesetzt, um abzu- anderungen und dem Klima verantwortlich fur die schatzen, wie empfindlich der gesamte Agrarsektor Tragheit und fur Bifurkationen des gekoppelten auf den Globalen Wandel reagiert. Systems sind. Neben der Entwicklung des Modells gibt es weitere Aufgaben die sich mit i) der detaillierteren Internationale Kooperationen Analyse der Dynamik des Okosystems beschaftigen Die Abteilung ist Giber die IGBP-Kernprojekte BAHC und dabei beispielsweise Konkurrenz und Storungen (Biospheric Aspects of the Hydrological Cycle) und berucksichtigen, ii) das Verhalten der Biospharenmo- GCTE (Global Change and Terrestrial Ecosystems) delle anhand von Satellitendaten bewerten und ver- eng in das Internationale Geospharen-Biospharen bessern und Hi) die derzeitigen Ansatze zur Simulation Programm eingebunden, in das eine Vielzahl wissen- der Biospharenkreislaufe uberprufen, um den globalen schaftlicher Beitrage direkt einflieBt. Daruber hinaus Kohlenstoffkreislauf besser zu verstehen. engagieren sich viele Mitarbeiterinnen und Mitarbeiter personlich in Funktion und Koordination des IGBP und Hydrologie und Wasserressourcen weiterer internationaler Programme. Der Wasserkreislauf 1st fur alle Aspekte der Klimawir- kung auf Landokosysteme von zentraler Bedeutung.

117 ZUSAMMENFASSUNG

Abteilung Globaler Wandel und Soziale Systems

Der Globale Wandel mit seiner Vielzahl von Erschei- auch der kooperativen Spieltheorie angewandt. nungsformen ruft eine wachsende Beunruhigung uber Angrenzend an diese Aktivitaten untersuchen wir auch die Konsequenzen langfristiger, weitreichender Wech- die auf unterschiedlichen Gleichheitsprinzipien beru- selwirkungen zwischen sozialen Systemen und ihrer hende, Internationale Verteilung von Emissionsrech- naturlichen Umgebung hervor. Die Abteilung Globaler ten. In einem weiteren Punkt beschaftigen wir uns Wandel und Soziale Systeme untersucht beide Rich- damit, wie sich die Unsicherheit wissenschaftlicher tungen dieser Mensch-Umwelt-Beziehung. Ziel 1st es, Aussagen - ein zentrales Charakteristikum globaler unser Verstandnis uber die soziodkonomischen Trieb- Umweltprobleme - auf Internationale Verhandlungs- krafte zu verbessern, die den Globalen Umweltwandel prozesse auswirkt. auslosen, um die Auswirkungen des Globalen Umwelt- Auch entwickeln wir ein MeBinstrument fur die Effizi- wandels auf die menschliche Gesellschaft besser enz internationaler Umweltvertrage hinsichtlich der abschatzen zu konnen. Letztendlich sollen diese Stu- Verringerung grenzuberschreitender Umweltver- dien in ein ganzheitliches Gerust munden, das die schmutzung. Um die Umsetzung internationaler komplexe Dynamik der Wechselwirkung zwischen Umweltvertrage bewerten zu konnen, haben wir ein Mensch und Natur erhellen soil. Wir untersuchen die standardisiertes Evaluierungssystem entwickelt. Es sozialen Dimensionen des Globalen Wandels auf fol- wurde bereits auf Abkommen angewandt, mit denen genden Gebieten: die Umweltverschmutzung in Europe reguliert werden soil. Makrookonomische Modellierung Die Bereitschaft, zur Verhinderung eines Anstiegs der Regionales Umweltmanagement und Treibhausgase in der Atmosphere effektive und effizi- Umweltsicherheit ente Strategien einzusetzen - was groB angelegt nur Unter dieser Uberschrift werden Themen, die im iiber eine Internationale Klimapolitik organisiert war­ Zusammenhang mit Wasserressourcen stehen, unter­ den kann - laBt sich entscheidend durch Kosten-NuP sucht. Ziel ist es, Werkzeuge fur das Wassermanage- zen-Analysen motivieren. Die Entwicklung eines ment zu entwickeln, die sich zur Uberwindung regiona- Modellgerustes, das derartige Analysen unterstutzt, ler Frischwasserknappheit eignen. und die Einbettung vieler geeigneter Modelle aus den Insbesondere beschaftigen uns die kriegerischen Kon- Einzeldisziplinen in dieses Gerust ist das Ziel dieser flikte um Wasserressourcen. In diesem Zusammen­ Forschungsaktivitaten. Es soil die Bewertung potenti- hang werden u.a. Methoden entwickelt, die eine Min- eller, durch den Klimawandel verursachter Schaden derung der Ressourcen verhindern sollen. Mittels ermoglichen und die Kosten ermitteln, die durch MaB- eines speziell auszuarbeitenden Verfahrens soil prog- nahmen zur Eindammung des Klimawandels entste- nostiziert werden, oberhalb welcher umweltbezogener hen. Kernpunkt solcher Analysen ist die Ermittlung Schwellenwerte gewaltsame Auseinandersetzungen zeitlich optimierter Pfade der wirtschaftlichen Entwick­ um Wasserressourcen zu erwarten sind. lung. Deren Plausibilitat hangt entscheidend davon ab, inwieweit Defizite der mathematisch-dkonomischen Umweltpsychologie und -soziologie Modellierung bei der Abbildung der Dynamik makro- Eine der Hauptfragen zum Sozialverhalten des Men- okonomischer Systeme und bei der empirischen Fun- schen als Risikofaktor fur eine stabile Umwelt ist, dierung soziookonomischer Szenarien uberwunden warum und auf welche Weise die zivilisierte Mensch- werden konnen. heit weltweit die naturlichen Ressourcen durch Uber- nutzung und Verschmutzung miBbraucht und damit Internationale Umwelteinrichtungen zerstort. Soziologie und Psychologie scheinen geeig- Dieser Forschungsschwerpunkt beschaftigt sich - nete Disziplinen zur Untersuchung dieses Phanomens unter Berucksichtigung der unterschiedlichen Interes- zu sein. Letztere konzentriert sich auf das Individuum, sen der einzelnen Parteien - mit der Analyse von seine inneren und auBeren Motive und Zwange, wah- Umweltvertragen, insbesondere mit den Klimaproto- rend erstere die sozialen Systeme im Umfeld des ein­ kollen und den Verhandlungsprozessen an sich, sowie zelnen untersucht. mit der Effektivitat der verschiedenen politischen Die weitgesteckten Forderungen von Umweltaktivisten Instrumente zum Schutz des Klimas, z.B. handelbaren vernachlassigen wichtige Aspekte der Sozialstruktur Emissionszertifikaten Oder Kohlendioxidsteuern. Dazu und der Dynamik moderner Gesellschaften. So verlan- werden sowohl Methoden der nicht-kooperativen wie gen sie u.a., daB wir “unseren” Lebensstil andern sol-

118 WlSSENSCHAFTLlCHE ABTEILUNGEN

len, obwohl mit Hilfe voi\Methoden aus der So?iologie sionen. Strategien, zur Anderung des Musters moder ­ und der Marktforschung empirisch gezeigt wurde; daB • nen Konsumverhaitens miissen deswegen spezifisch es so etwas wie “unseren” Oder “den” modernen auf unterschiedliche Lebensstile zugeschnitten sein. Lebensstil nicht gibt. Je starker ein Land entwickelt ist, desto pluralistischer ist seine Sozialstruktur einschlieB- Dynamik der Syndrome des Globalen Wandels lich der Werte, Einstellungen und Verhaltensweisen. Hauptaufgabe dieser Forschungsaktivitat ist die sozial- Diese Pluralitat erstreckt sich auch auf den taglichen wissenschaftliche Analyse der anthropogenen Ursa- Umgang mit der Umwelt; so findet man innerhalb chen und Symptome des Globalen Wandels. Dabei eines Landes urn den Faktor fiinf differierende Unter- verwenden wir den Syndrom-Ansatz, der im Kernpro- schiede in den verbraucherseitigen Kohlendioxidemis- jekt QUESTIONS beschrieben wird.

Abteilung Data & Computation

Klimafolgenforscher und -forscherinnen sind in beson- scher Eigenschaften. Eine ahnliche Kombination von derem MaBe auf digitate Modelle und die mit ihrer Hilfe Fachwissen wird fur die Formulierung von Modellen in durchgefuhrten Simulationen auf Hochleistungsrech- Programmiersprachen und die Auswertung und Pril- nern angewiesen, da die betrachteten Systeme kaum fung der produzierten Daten bendtigt. Dies bietet der experimentell untersucht werden konnen. Der Kom- Abteilung Data & Computation weitreichende Mdglich- plex Modellierung und Simulation umfaBt die mathe- keiten sowohl fur eigenstandige Forschungen in den matische Modellierung eines gegebenen Systems, die Bereichen Mathematik und Informatik als auch fur die Diskretisierung des abstrakten mathematischen Mo- aktive Teilnahme an transdisziplinaren Forschungsak- dells, die Formulierung von Algorithmen und deren lm-. tivitaten des; PIK. Einige ausgewahlte Beitrage zu PIK plementierung auf modernen Rechenanlagen, die ■Kernprojekten: eigentlichen Berechnungen und die sorgfaltige Be- AGREC und POEM: Fur eine Studie zum EinfluB mbg- wertung und Interpretation der Ergebnisse. Die Model ­ licher Klimaanderungen in Mitteleuropa auf die Pro- lierung komplexer, nichtlinearer Wirkungszusammen- duktivitat naturlicher und landwirtschaftlicher Systeme hange von Umwelt- und sozio-okonomischen Syste- wurden spezielle Techniken geographischer Informati- men im regionalen und globalen MaBstab erfordert onssysteme eingesetzt, urn Modelle zu parametrisie- einen hochgradig transdisziplinaren Modellierungsan- ren und Resultate zu verarbeiten . satz, der nur mit Hilfe einer flexiblen, objekt-orientier- CHIEF: Die Sukzessions- und Wachstumsdynamik ten Softwareumgebung umgesetzt werden kann. von Waldern im regionalen MaBstab unter moglichen Die Abteilung Data & Computation unterstutzt folgende Klimaanderungen wurde mit Hilfe der in der Abteilung Facetten der Forschung des PIK: D & C entwickelten parallelen Simulationsumgebung • Modellierung: mathematische Modellbildung, Diskre­ SPRINT-S berechnet. Das ermdglicht die einfache und tisierung, Algorithmen. flexible Durchfuhrung komplexer Simulationsexperi- • Programmierung: Software Analyse und Design, mente und raumlich expliziter Modellstudien auf Paral- objekt-orientierte Programmierung, Datenmodellie- lelrechnern. rung. POEM: Die neue parallelisierte Implementierung eines • Produktion: Hochstleistungsrechner, hierarchisches zweidimensionalen geophysiologischen Modells ver- Speichermanagement, Datennetze, rechnerbasierte wendet die in der Abteilung entwickelte GeoPar-Pro- Kommunikation und Publikation. grammbibliothek. Die Parallelisierung des CLIMBER- • Interpretation: Statistik, Visualisierung. Modells ist in Vorbereitung. Gleichzeitig soli dieses Model! in einer objekt-orientierten Version implemen- Transdisziplinaritat - Beitrage zu den tiert werden, um-numerische Effizienz und Programm- Kernprojekten qualitat der verschiedenen Versionen vergleichen zu Die rechnergestiitzte Simulation komplexer Umweltsy- konnen. steme erfordert mathematische Modelle, die alle RAGTIME: Die Abteilung baute ein geographisches wesentlichen Mechanismen umfassen miissen, aber Informationssystem mit gepruften Geo- und Raum- nicht zu komplex sein durfen, damit Berechnungen daten und eine relationale Zeitreihendatenbank fur innerhalb vertretbarer Zeiten moglich sind. Erfolgrei- den deutschen Teil des Elbe-Einzugsgebietes auf. In che Modellierung bedingt deshalb eine genaue Kennt- letzterer sind Metadaten von fiber 1400 MeBstationen nis der betrachteten Systeme und deren mathemati- und etwa 19 Millionen Datensatze erfaBt.

119 ZUSAMMENFASSUNG

WAVES: Die Portierung und Parallelisierung eines standardisierten Rahmen fur die Produktion von regionalen Klimamodells (REMO 0.1) wurde abge- Druck- und Online Publikationen im World-Wide-Web schlossen. Ein Algorithmic zur Clusteranalyse konnte bietet. Erwahnenswert sind weiterhin die Anstrengun- wesentlich verbessert warden. gen, die zur Optimierung der Speicherhierarchie unter- nommen wurden, die Einrichtung einer Lastverteilung Rechnerinfrastruktur fur Parallelrechner und Workstations und - last but not Die hochleistungsfahige informationstechnische Infra- least - die wesentlich verbesserte Datensicherheit (all- struktur ist eine wesentliche Grundlage der wissen- gemeine Datensicherung und Katastrophenschutz). schaftlichen Arbeit des PIK. Hardwareseitig besteht sie gegenwartig aus einem 77-Prozessor Parallelrech- Wissenschaftliches Datenmanagement ner (Typ IBM SP), Festplattenspeicher mit einer Kapa- Eine Reihe geowissenschaftlicher Institute in Deutsch­ zitat von 800 Gigabyte, die durch 10 Terabyte Band- land haben sich zusammengeschlossen, um ihre speicher erganzt und gesichert werden, sowie Datenbestande mit Hilfe von Metadaten zu beschrei- 150 Workstations und PCs. Alle Ressourcen sind ben und durch ein standardisiertes Metadatenmodell durch ein Rechnernetzwerk intern und mit dem Inter­ gegenseitig zuganglich zu machen. An diesem Projekt net verbunden. Die Verfugbarkeit der Serversysteme sind neben dem PIK das Deutsche Klimarechenzen- lag im Berichtszeitraum bei uber 99%. In gemeinsamer trum, das Alfred-Wegener-lnstitut fur Polar- und Mee- Anstrengung konnte 1997 ein Regionales Hochlei- resforschung und das Forschungszentrum Karlsruhe stungsdatennetz der Potsdamer Wissenschaftseinrich- beteiligt. 1996 und 1997 wurde ein gemeinsames, tungen errichtet werden, das dem PIK - neben verbes- modular aufgebautes Datenmodell fur Klima- und serten Moglichkeiten der Kooperation innerhalb der Umweltmetadaten entworfen (CERA 2.3) und bei alien Potsdamer- und Berliner Wissenschaftslandschaft - beteiligten Einrichtungen implementiert. Das PIK ent- den Zugang zum Breitband-Wissenschaftsnetz und wickelte auf der Basis dieses Datenmodells eine allge- dem Internet mit einer Bandbreite von gegenwartig mein einsetzbare, grafisch-interaktive Schnittstelle 4 Mbps gestattet. zwischen Mensch und Maschine, die durch den Ein- Im Bereich Software wurde zur Effizienzsteigerung der satz der Programmiersprachen Java und Hypertext fur den Erfolg des PIK wesentlichen Dokumentations- Markup Language eine sehr komfortable, standort- und Publikationsarbeit eine digitate Publikationsumge- und plattformunabhangige Navigation durch die geo- bung etabliert, die alien Mitarbeitern des Hauses einen graphisch verteilten Datenbestande ermoglicht.

Wissenschaftliche Funktionseinheiten

Ein wesentliches Element in der Forschungsstrategie Workshops, Konferenzen sowie durch die Betreuung des PIK sind die Kooperationen mit Partnerinstituten von Besuchern und Gastwissenschaftlern. innerhalb und auBerhalb Deutschlands. Diese Zusam- Offentlichkeitsarbeit und Kontakte: Kommunikation menarbeit wird dadurch erleichtert, daB die Forschung und Austausch zwischen den Medien und Institutsan- bei interdisziplinaren Projekten und Programmen auf gehorigen werden ebenso in die Wege geleitet wie die nationaler und internationaler Ebene abgestimmt wird. Publikation von regelmaBigen Veroffentlichungen. Zur Unterstutzung dieses Prozesses gibt es am PIK Auch der Informationsaustausch zwischen den wis- die folgenden Einheiten: senschaftlichen Abteilungen und der Administration • Wissenschaftliche Kooperation und Offentlichkeit wird durch diese Einheit gefdrdert und unterstutzt. • Kolleg Globaler Wandel • Unterstutzung des Internationalen Geospharen- Kolleg Globaler Wandel Biospharen Programms (IGBP) und Die am PIK gehaltenen Vorlesungen einschlieBlich der • Biospharen Aspekte des Hydrologischen Kreislaufs IGBP Aktivitaten, der Einladung von Gastwissen­ (BAHC), ein Kernprojekt des IGBP schaftlern und Workshops werden unter dem Namen “Kolleg Globaler Wandel” zusammengefaBt. Beteiligt Wissenschaftliche Kooperation und Offentlichkeit an diesen Aktivitaten sind sowohl Wissenschaftler des Koordination: Wissenschaftliche Begegnungen wer­ PIK als auch Internationale Gaste. Der Aufenthalt von den organisiert und arrangiert, beispielsweise durch Gastwissenschaftlern am PIK soil zukunftig welter ausgebaut werden.

120 WlSSENSCHAFTLICHE ABTEILUNGEN

Das Internationale Geospharen-Biospharen • die Entwicklung deutscher Beitrage zum IGBP inten- Programm - IGBP siv zu fordern, Das IGBP 1st 1989 mit dem Ziel ins Leben gerufen • die nationals Wissenschaftsgemeinschaft uber die worden, die miteinander wechselwirkenden physikali- internationalen Arbeiten zu informieren und schen, biologischen und chemischen Prozesse zu • nationals und Internationale Konferenzen, Work ­ beschreiben und zu verstehen, die das gesamte shops und Meetings zu organisieren. Erdsystem sowie die einzelnen Untersysteme regulie- Im Berichtszeitraum wurden insgesamt funf Internatio ­ ren. Die Anderungen in diesen Systemen sollen nale und 13 nationals Meetings ausgerichtet. Die ebenso untersucht werden wie die Art und Weise, auf wissenschaftlichen Publikationen der Mitarbeiter des die der Mensch diese Systeme beeinflulBt. nationalen IGBP Sekretariats sind auf Seite 94 auf- Derzeit gliedert sich das IGBP in 11 Kernprojekte, die gelistet. sich mit den sechs grundlegenden Fragen zum Globa- len Wandel beschaftigen, die vom IGBP formuliert Biospharen-Aspekte des Hydrologischen wurden. Kreislaufs - BAHC Zur Unterstiitzung des Internationalen Geospharen- Das Sekretariat (IPO) des BAHC, eines der 11 Kern­ Biospharen Programms (IGBP) sind das Buro des projekte des IGBP, ist im PIK untergebracht. Die Mit­ internationalen Kernprojektes Biospharen Aspekte des arbeiter organisieren und leiten wissenschaftliche Hydrologischen Kreislaufs (BAHC), eines von vier Meetings und unterstutzen auf wissenschaftlicher Fokus-Buros fur das Projekt Global Change and Terre­ Grundlage die verschiedenen Forschungsaktivitaten. strial Ecosystems (GCTE, focus 2 on Ecosystem Im Berichtszeitraum wurden insgesamt 25 Workshops Structure) und das deutsche nationals IGBP Sekreta- und Konferenzen organisiert und finanziell unterstutzt. riat am PIK untergebracht. Daruberhinaus untersuchen sie in eigenen, unabhan- Das nationals Sekretariat des IGBP hat die Aufgabe, gigen Studien, welche wissenschaftlichen Informatio- die Arbeit des nationalen IGBP und insbesondere die nen von Seiten der Politik bendtigt werden. des Vorsitzenden zu unterstutzen. Die wichtigsten Auf- Die Mitglieder des BAHC-IPO sind in die Forschungs- gaben bestehen darin, arbeiten des PIK integriert, beispielsweise das Kern- • die Beitrage der Bundesrepublik Deutschland zum projekt RESOURCE, das sich dem Thema Globaler internationalen IGBP zu koordinieren, Wandel und Wasserressourcen widmet. Des weiteren • Forschungskonzepte Deutschlands sowie bereits waren sie auch an Verbesserungen von globalen finanzierte Forschungsprojekte, soweit es geht, in dynamischen Vegetationsmodellen beteiligt. Wissen­ das Internationale Programm einzubinden, schaftliche Publikationen sind auf Seite 95 aufgelistet.

121 ZUSAMMENFASSUNG

122 Publications

Appendix

Publications

Publications, peer-reviewed Oberflachenabdichtung. Wasser und Boden, 48 (12), 38- Andrade, R.F.S., Schellnhuber, H.J. 1997: Electronic States 54. on a Fractal: The Consequences of Self-Energy Variation. Bronstert, A., Plate, E.J. 1997: Modelling of Runoff Physical Review, B55,19-25. Generation and Soil Moisture Dynamics for Hillslopes Bauer, E. 1996: Characteristic Frequency Distributions of ■ and Micro-Catchments. Journal of Hydrology,198 (1-4), Remotely Sensed, In Situ and Modelled Wind Speeds. 177-195. International Journal of Climatology, 16,1087-1102. Bronstert, A., Plate, E.J. 1996: Ein physikalisch begrundetes Staabs, C., Bauer, E. 1997: Statistical Comparison of Global hydrologisches Modeil fur Range und kleine Significant Wave Heights from Topex and ERS-1 Einzugsgebiete. Die Wasserwirtschaft, 86 (6), 315-323. Altimeter and from Operational Wave WAM. Physics and Brovkin, V., Ganopolski, A., Svirezhev, Y. 1997: A Chemistry of the Earth , 23 (7/8). Continuous Climate-vegetation Classification for Use in Bauer, E., Staabs, C. 1998: Statistical properties of global Climate-biosphere Studies. Ecological Modelling, 101, significant wave heights and their use for validation. J. 251-261. Geophys. Res., 103,1153-1166 Bruckner, T., Groscurth, H.-M., Kiimmel, R. 1997: Becker, A., Lahmer, W. 1996: Klimawandel und seine Competition and Synergy between Energy Technologies Auswirkungen auf den Wasserhaushalt. gwf-Wasser in Municipal Energy Systems. Energy, 22,1005-1014. Special, 14/96. Bruckner, T., Kummel, R., Groscurth, H.-M. 1997: Belotelov, N., Bogatyrev, B., Kirilenko, A. Venevsky, S. 1996: Optimierung emissionsmindernder Energietechnologien: Modelling of Time-dependent Biome Shifts Under Global Konkurrenz und Synergie in kommunalen Climate Changes. Ecological Modelling, 87, 29-40. Energiesystemen. Energiewirtschaftliche Tagesfragen, Beniston, M., Tol, R.S.J., Delecolle, G, Hoermann, G, 47(3), 139-146. Iglesias, A., Innes, A.J., McMichael, A.J., Martens, Bugmann, H. 1996: A Simplified Forest Model to Study W.J.M., Nemesova, R., Nicholls, R. and Toth, F. 1998: Vegetation Composition Along Climate Gradients. Europe. In: Watson, R.T., Zinyowera, M.C., Moss, R.H. Ecology, 77, 2055-2074. and Dokken, D.J.: The Regional Impacts of Climate Bugmann,- H. 1997: An Efficient Method for Estimating the Change: An Assessment of Vulnerability. A special report Steady State Species Composition of Forest Gap Models. of IPCC Working Group II. Cambridge: Cambridge Canadian Journal of Forest Research, 27, 551-556. University Press. Bugmann, H. 1997: Gap Models, Forest Dynamics and the von Bloh, W., Block, A., Schellnhuber, H.J. 1997: Self­ Response of Vegetation to Climate Change. In: Huntley, stabilization of the Biosphere Under Global Change: A B., Cramer, W., Morgan, A.V., Prentice, H.C., Allen, Tutorial Geophysiological Approach. Tellus, 49B, 249- J.R.M. (eds.): Past and Future Rapid Environmental 262. Changes: The Spatial and Evolutionary Responses of Bronstert, A. 1996: Climate Change and River Flooding: A Terrestrial Biota. Berlin: Springer, 441-453. German Review. Proceedings of the International Bugmann, H. 1997: Sensitivity of Forests in the European Conference on Water Resources & Environment Alps to Future Climatic Change. Climate Research, 8, 35- Research: Towards the 21st Century. Kyoto, Japan, 29. - 44. 31, Oktober 1996, Vol. II, 539-546. Bugmann, H., Fischlin, A. 1996: Simulating Forest Dynamics Bronstert, A. 1996: River Flooding in Germany: Influenced by in a Complex Topography Using Gridded Climatic Data. Climatic Change? Physics and Chemistry of the Earth, 20 Climatic Change, 34, 201-211. (5-6), 445-450. Bugmann, H., Fischlin, A., Kienast, F. 1996: Model Bronstert, A. 1997: Klimaanderungen und Hochwasser - Convergence and State Variable Update in Forest Gap Zusammenhange und Auswirkungen. Models. Ecological Modelling, 89,197-208. In: fmmendorf, R. (Hrsg.): Hochwasser. Ursachen - Bugmann, H., Yan, X., Sykes, M.T., Martin, Ph., Lindner, M., Wirkungen - Strategien. Landscape Verlag, Koln. Desanker, P.V., Gumming, S.G 1996: A Comparison of Bronstert, A., Brovkin, V., Krol, M., Ltideke, M., Petschel- Forest Gap Models: Model Structure and Behaviour. Held, G, Svirezhev, Y., Wenzel, V., 1997: Integrated Climatic Change, 34, 289-313. Systems Analysis at PIK: A Brief Epistemology. PIK Burger, G 1996: Expanded Downscaling for Generating Report No. 27, Potsdam: Potsdam-lnstitut fur Local Weather Scenarios. Climate Research,?, 118-28. Klimafolgenforschung e.V.,23. Burger, G 1997: On the disaggregation of climatological Bronstert, A., Merkel, U., Zischak, R. 1996: means and anomalies. Climate Research, 8,183-194. Stromungsverhaltnisse im Hangbereich einer Deponie-

123 Appendix

Cassel-Gintz, M., Ludeke, M., Petschel-Held, G., Reusswig, Huntley, B., W. Cramer, A.V. Morgan, H.C. Prentice and F., Plochl, M., Lammel, G., Schellnhuber, H.J. 1997: J.R.M. Allen (eds.). Berlin: Springer, 469-483. Fuzzy Logic Based Global Assessment of the Marginality Fischer, A., Kergoat, L., Dedieu, G. 1997: Coupling Satellite of Agricultural Land Use. Climate Research, 8 (2), 135- Data With Vegetation Functional Models: Review of ISO. Different Approaches and Perspectives Suggested by the Claussen, M. 1996: Variability of Global Biome Patterns as a Assimilation Strategy. Remote Sensing Review, 15, 283- Function of Initial and Boundary Conditions in a Climate 303. Model. Climate Dynamics, 12, 371-379. Fischer, A., Louahala, S., Maisongrande, P., Kergoat, L., Claussen, M. 1997: Modeling Biogeophysical Feedback in Dedieu, G 1996: .Satellite Data For Monitoring, the African and Indian Monsoon Region. Climate Understanding and Modelling of Ecosystem Functioning. Dynamics, 13, 247-257. In: Walker, B., Steffen, W. (eds): Global Change and Claussen, M., Gayler, V. 1996: The Greening of Sahara Terrestrial Ecosystems. Cambridge: Cambridge during the Mid-Holocene: Results of an Interactive University Press, 566-591. Atmosphere-Biome Model. Global Ecology and Franck, S., Bounama, C. 1997: Continental Growth and Biogeography Letters, 6, 369-377. Volatile Exchange During Earth's Evolution. Physics of Claussen, M., Brovkin, V., Ganopolski, A., Kubatzki, C., the Earth and Planetory Interiors, 100,189-196. Petoukhov, V. 1998: Modeling Global Terrestrial Ganopolski, A., Rahmstorf, S., Petoukhov, V., Claussen, M. Vegetation - Climate Interaction. Philosophical 1998: Simulation of modern and glacial climate with a Transaction of the Royal Society London (B) 353, 53-63. coupled global model of intermediate complexity. Nature, Cramer, W. 1997: Modeling the Possible Impact of Climate 391, 351-356. Change on Broad-scale Vegetation Structure: Examples Gerstengarbe, F.-W., Werner, PC. 1997: A Method to from Northern Europe. In: Oechel, W.C., Callaghan, T., Estimate the Statistical Confidence of Cluster Separation. Gilmanov, T., Molten, J.I., Maxwell, B., Molau, U., ‘ Theoretical Applied Climatology, 57 (1-2), 103-110. Sveinbjornsson, B. (eds.J: Global Change and Arctic Gerstengarbe, F.-W., Werner, PC. 1997: Terrestrial Ecosystems. New York: Springer, Ecological Waldbrandentwicklung im Land Brandenburg. AFZ - Der Studies, 124, 312-329. Wald, 7, 392-394. Cramer, W. 1997: Using Plant Functional Types in a Global Griffiths, R.B., Schellnhuber, H.J., Urbschat, H. 1997: The Vegetation Model. In: Smith, T.M., Shugart, H.H., Exact Ground State of the Frenkel-Kontorova Model with Woodward, F.l. (eds.J: Plant Functional Types: Their Repeated Parabolic Potential I. Basic Results. Phys. Relevance to Ecosystem Properties and Global Change. Rev., B56, 8623. Cambridge: Cambridge University Press. International Grotzner, A., Sausen, R., Claussen, M. 1996: On the Impact Geosphere-Biosphere Programme Book Series, 1,271- of Subgrid-scale Sea-ice Inhomogeneities on the 288. Performance of the Atmospheric General Circulation Cramer, W., Fischer, A. 1996: Data Requirements for Global Model ECHAM. Climate Dynamics, 12, 477-496. Terrestrial Ecosystem Modelling. In: Walker, B., Helm, C. 1996: Transboundary Environmental Problems and Steffen, W.: Global Change and Terrestrial Ecosystems, New Trade Rules. International Journal of Social Cambridge: Cambridge University Press, 530-565. Economics, 23, 29-45. Cramer, W., Steffen, W. 1997: Forecast Changes in the Helm, C. 1997: A Policy for trade and the Environment in a Global Environment: What They Mean in Terms of Global Economy. Economics, 55/56, 94-112. Ecosystem Responses on Different Time-scales. In: Huntley, B., Cramer, W. 1997: Arctic Ecosystems and Huntley, B., Cramer, W., Morgan, A.V., Prentice, H.C., Environmental Change: Perceptions from the Past and Allen, J.R.M. (eds.): Past and Future Rapid Predictions for the Future. In: Crawford, R.M.M. (ed.): Environmental Changes: The Spatial and Evolutionary Disturbance and Recovery in Arctic Lands: An Ecological Responses of Terrestrial Biota. Berlin: Springer. NATO Perspective. Dordrecht, The Netherlands: Kluwer ASl Series, Vol. 1,47,415-426. Academic Publishers. NATO ASl Series, 25,1 -24. Cramer, W., Kohlmaier, G. H. 1997: Modelle zur Simulation Huntley, B., Cramer, W., Morgan, A.V., Prentice, H.C., Allen, von Struktur und Dynamik der terrestrischen Biosphere. J.R.M. (ed.) 1996:. Past and Future Rapid Environmental In: Muller, F. (ed.): Handbuch der Umweltwissenschaften Changes: The Spatial and Evolutionary Responses of V-3.10.1., 15pp. Terrestrial Biota. Berlin: Springer-Verlag. NATO ASl Faivre, R., Fischer, A. 1997: Predicting Crop Reflectances Series, 47,1-8. Using Satellite Data Observing Mixed Pixels. Journal of Huntley, B., Cramer, W., Morgan, A.V., Prentice, H.C., Allen, Agricultural, Biological, and Environmental Statistics, J.R.M. 1997: The Likely Response of Terrestrial Biota to 2(1), 87-107. Future Environmental Changes (Conclusions). In: Fischer, A. 1997: Seasonal Features of Global Net Primary Huntley, B., Cramer, W., Morgan, A.V., Prentice, H.C., Productivity Models for the Terrestrial Biosphere, in Past Allen, J.R.M. (eds.): Past and Future Rapid and Future Rapid Environmental Changes: The Spatial Environmental Changes: The Spatial and Evolutionary and Evolutionary Responses of Terrestrial Biota. In:

124 Publications

Responses of Terrestrial Biota. Berlin: Springer-Verlag. Structures: From Individual to Collective Dynamics. NATO ASI Series, 47,487-504. London: Gordon & Breach Publ., 559 - 567. Huntley, B,, Cramer, W., Morgan, A.V., Prentice, H.C., Allen, Kropp, J., von Bloh, W., Klenke, T. 1996: Calcite Formation in J.R.M. 1997: Past and Future Rapid Environmental Microbial Mats: Modelling and Quantification of Changes: The Spatial and Evolutionary Responses of Inhomogeneous Distribution Patterns by a Cellular Terrestrial Biota - Introduction. In: Huntley, B., Cramer, Automaton Model and Multifractal Measures. W., Morgan, A.V., Prentice, H.C., Allen, J.R.M. (eds.): Geologische Rundschau, 85 (4), 857 - 863. Past and Future Rapid Environmental Changes: The Krysanova, V., Meiner, A., Roosaare, J., Vasilyev, A., 1996: Spatial and Evolutionary Responses of Terrestrial Biota. MATSALU - The System of Simulation Models for Berlin: Springer. NATO ASI Series, 47. Agricultural Watershed and Shallow Sea Bay. In: Jonas M., Fleischmann, K., Ganopolski, A., Krabec, J., Jorgensen, S.E., Halling-Sorensen, B., Nielsen, S.N. Sauer, U., Olendrzynski, K., Petoukhov, V., Shaw, R.W. (eds.): Handbook of Environmental and Ecological 1996: Grid Point Surface Air Temperature Calculations Models. CRC Lewis Publishers, 112-113. With A Fast Turnaround: Combining the Results of Krysanova, V., Muller-Wohlfeil, D.l. 1997: Modelling Water IMAGE and a GCM. Climate Change, 34, 479-512. Balance of the Elbe Basin - A Pilot Application of the HBV Kirschbaum, M.U.F., Bullock, P., Evans, J.R., et Bugmann, Model. Vannet i Norden, 1,6 -17. H.K.M., Cramer, W. etal. 1996: Ecophysiological, Kunkel, A., Schwab, H., Bruckner, T., Kummel, R. 1996: Ecological, and Soil Processes in Terrestrial Ecosystems: Kraft-Warme-Kopplung und innovative A Primer on General Concepts and Relationships. In: Energiespeicherkonzepte. Brennstoff-Warme-Kraft, 48, Watson, R.T., Zinyowera, M.C., Moss, R.H. (eds.): 54-60. Climate Change 1995 - Impacts, Adaptations and Leemans, R., Cramer, W., van Minnen, J.G. 1996: Prediction Mitigation of Climate Change: Scientific-Technical of Global Biome Distribution Using Bioclimatic Equilibrium Analyses. Cambridge, UK: Cambridge University Press, Models. In: Breymeyer, A.I., Hall, D.O., Melillo, J.M., 57-74. Agren, G.I. (eds.): Global Change: Effects on Coniferous Kirschbaum, M.U.F., Fischlin, A., Cannell, M.G.R., Cruz, Forests and Grasslands. Chichester, New York, Brisbane, R.V.O., Cramer, W., Alvarez, A., Austin, M.P., Bugmann, Toronto, Singapore: SCOPE, 56, John Wiley and Sons, H.K.M., et al. 1996: Climate Change Impacts on Forests. 413-450. In: Watson, R.T., Zinyowera, M.C., Moss, R.H. (eds.): Leimbach, M. 1996: Development of a Fuzzy-Optimization- Climate Change 1995 - Impacts, Adaptations and Model Supporting Global Warming Decision Making. Mitigation of Climate Change: Scientific-Technical Environmental and Resource Economics, 7,163-192. Analyses. Cambridge, UK: Cambridge University Press, Lindner, M., Bugmann, H., Lasch, P., Flechsig, M., Cramer, 95-129. W. 1997: Regional Impacts of Climate Change on Forests Kohlmaier, G. H., Badeck, F.-W., Otto, R. D., Hager, Ch., in the State of Brandenburg, Germany. Agricultural and Donges, S., Kindermann, J., Wurth, G., Lang, T., Jackel, Forest Meteorology, 84,123-135. U., Nadler, A., Klaudius, A., Ramge, P., Habermehl, S., Lindner, M., Lasch, P., Cramer, W. 1996: Application of a Ltideke, M. 1997: The Frankfurt Biosphere Model: A Forest Succession Model to a Continentality Gradient Global Process-oriented Model for the Seasonal and Through Central Europe. Climatic Change, 34,191-199. Long-term C02 Exchange Between Terrestrial Lindner, M., Sievaenen, R., Pretzsch, H.: Improving the Ecosystems and the Atmosphere. II. Global results. Simulation of Stand Structure in a Forest Gap Model. Climate Research, 8, 61-87. Forest Ecology and Management, 95,183-195 Kropp, J., Block, A., von Bloh, W., Klenke, T., Schellnhuber, Ltideke, M., Petschel-Held, G 1997: Syndromes of Global H.J. 1997: Multifractal Characterization of Microbially Change - An Information Structure for Sustainable Induced Magnesian Calcite Formation in Recent Tidal Development. In: Moldan, B., Billharz, S. (eds.): Flat Sediments. Sedimentary Geology, 109, 37-51. Sustainability Indicators - A Report of the Project on Kropp, J., Klenke, T. 1997: Phenomenological Pattern Indicators of Sustainable Development. Chichester: Recognition in the Dynamical Structures of Intertidal SCOPE, 58, John Wiley & Sons, 96-98. Sedimentary Systems from the German Wadden Sea. Ltideke, M., Ramge, P., Kohlmaier, G.H. 1996: The Use of Ecological Modelling, 103,151 -170. Satellite NDVI Data for the Validation of Global Vegetation Kropp, J„ Klenke, T., Block, A. 1997: Multifractal Fingerprints Phenology Models: Application to the Frankfurt Biosphere of Mineralization Processes in Recent Sediments. In: Model. Ecological Modelling, 91,255-270. Komorek, M., Schnegelberger, M„ Ditt, H. (Hrsg.): Mirschel, W., Poschenrieder, W„ Wenkel, K.O., Wechsung, Fraktale in der Schule: Didaktischer Stellenwert des F. 1997: Szenarioabschatzung der Auswirkungen Fraktalbegriffs. IPN, Universitat Kiel. moglicher Klimaanderungen auf landwirtschaftliche Kropp, J., Petschel-Held, G. 1997: Prototyping and Ertrage in Brandenburg. Zeitschrift furAgrarinformatik, 5, Topological Analysis of German City Classes by 50-59. Application of Self-Organized Feature Maps. In: F. Petschel-Held, G. and Schellnhuber, H.J. 1997: The tolerable Schweitzer (ed.): Self-Organization of Complex windows approach to climate control: Optimization, risks,

125 Appendix

and perspectives. In: Toth, F. (ed.): Cost-Benefit (Szegi-) Toth, F. 1996: A globalis kornyezeti kockazatok Analyses of Climate Change: The Broader Perspectives. kommunikacioja: a savas eso a magyar sajtoban. Basel: Birkhauser. (Environmental Risk Communication: Acid Rain in the Plochl, M., Cramer, W. 1995: Coupling Global Models of Hungarian Press). Jel-kep, 3, 81-108. Vegetation Structure and Ecosystem Processes - An Toth, F.L. 1996: Communicating Global Environmental Example From Arctic and Boreal Ecosystems. Tellus B - Risks: Acid Rain in the Hungarian Press. Part 1: Chemical and Physical Meteorology, 47(1-2), 240-250. Theoretical Background and Social Context. Society and Plochl, M., Cramer, W. 1995: Possible Impacts of Global Economy in Central and Eastern Europe, 18(3), 36-55. Warming on Tundra and Boreal Forest Ecosystems - Toth, F.L. 1996: Communicating Global Environmental Comparison of Some Biogeochemical Models. Journal of Risks: Acid Rain in the Hungarian Press. Part 2: Analysis, Biogeography, 22(4-5), 775-784. Results, and Conclusions. Society and Economy in Rahmstorf, S. 1996: Comment on‘"Instability of the Central and Eastern Europe, 18(4). Thermohaline Circulation With Respect to Mixed von Salzen, K., Claussen, M., and Schlunzen, K.H. 1996: Boundary Conditions". Journal of Physical Application of the Concept of Blending Height to the Oceanography, 26,1099-1105. Calculation of Surface Fluxes in a Mesocale Model. Rahmstorf, S. 1996: On the Freshwater Forcing and Meteorologische Zeitschrift, N.F., 5, 60-66. Transport of the Atlantic Thermohaline Circulation. Watson, R.T., Zinyowera, M.C., Moss, Cramer, W. et al. Climate Dynamics, 12, 799-811. 1996: Technical Summary: Impacts, Adaptations and Rahmstorf, S., England, M.H. 1997: The Influence of Mitigation Options. In: Watson, R.T., Zinyowera, M.C., Southern Hemisphere Winds on North Atlantic Deep Moss, R.H. (eds.): Climate Change 1995 - Impacts, Water Flow. Journal of , 27,2040- Adaptations and Mitigation of Climate Change. Scientific- 2054. Technical Analyses. Cambridge, UK: Cambridge Reusswig, F. 1997: Syndrome und Nachhaltige Entwicklung. University Press, 19-53. In: Brand, K.-W. (Hrsg.): Nachhaltige Entwicklungen. Woodward, F.I., Cramer, W. (ed.) 1996: Plant Functional Herausforderungen an die Umweltsoziologie. Verlag Types and Climatic Change. Uppsala, Sweden: Opulus Opladen, 35-76. Press. Scheidsteger, T., Urbschat, H., Griffith, R.B., Schellnhuber, Woodward, F.L, Cramer, W. 1996: Plant Functional Types H.J. 1997: The Exact Ground State of the Frenkel- and Climatic Changes - Introduction. Journal of Konorova Model with Repeated Parabolic Potential II. Vegetation Science, 7(3), 306-308. Numerical Treatment. Phys RevB56, 8631. Schellnhuber, H.J., Block, A., Cassel-Gintz, M., Kropp, J., Accepted for Publication, peer-reviewed Lammel, G., Lass, W., Lienenkamp, R., Loose, C., Bauer, E., Staabs, C.: Statistical Properties of Global Ludeke, M., Moldenhauer, O., Petschel-Held, G., Plochl, Significant Wave Heights and TheirUse for Validation. M., Reusswig, F. 1997: Syndromes of Global Change. Journal of Geophysical Research. GAIA, 6 (1), 19-34. Becker, A.: Klima und Wasser. Schriftenreihe des Steffen, W.L., Cramer, W., Plochl, M., Bugmann, H. 1996: dsterreichischen Wasser- und Abfallwirtschaftsverbandes Global Vegetation Models: Incorporating Transient (OWAV). Sonderheft zum Seminar “Niederwasser" am Changes to Structure and Composition. Journal of 4.11.1996 in Graz. Vegetation Science, 7(3), 321-328. Becker, A., Bugmann, H. (eds.): Predicting Global Change Svirezhev, Y. 1997: On some general properties of trophic Impacts on Mountain Hydrology and Ecology: Integrated networks. Ecological Modelling, 99, 7-17. Catchment Hydrology/Altitudinal Gradient Studies. Report Svirezhev, Y., Svirejeva-Hopkins, A. 1997: Diversity of the from an International Workshop, Kathmandu, Nepal, 30 Biosphere. Ecological Modelling, 97,145-146. March - 2 April 1996. IGBP Report No. 43, Stockholm, Svirezhev, Y, von Bloh, W. 1997: Climate, Vegetation and Sweden. Global Carbon Cycle: The Simplest Zero-dimensional Bohm, U., Podzun, R., Jacob, D.: Surface Water Balance Model. Ecological Modelling, 101,79-95. Estimation for a Semi-arid Region Using a Regional Svirezhev, Y, von Bloh, W. 1996: A minimal model of Climate Model and Comparison of Water Balance interaction between climate and vegetation: Qualitative Components With Global Circulation Model Output and approach. Ecological Modelling, 92, 89-99. Analysis Data. Physics and Chemistry of the Earth. Svirezhev, Y, von Bloh, W. 1998: A zero-dimensional Bronstert, A., Savenije, H.H.G., Ulbrich, U. (eds.): Land Use climate-vegetation model containing global carbon and Change and Climate Feedback With Particular Reference hydrological cycle. Ecological Modelling, 106,119-127. to the Water Balance of Semi-arid Regions. Physics and Sykes, M.T., Prentice, I.C., Cramer, W. 1996: A Bioclimatic Chemistry of the Earth, 21. Model for the Potential Distributions of North European Bugmann, H., Cramer, W.: Improving the Behaviour of Forest Tree Species Under Present and Future Climates. Gap Models Along Drought Gradients. Forestand Journal of Biogeography, 23(2), 203-233. Ecology Management.

126 Publications

Bugmann, H., Grote, R., Lasch, P., Lindner, M., Suckow, E: Conditions. In: Bazzaz F.A., Grace, J. (eds.): A New Forest Gap Model to Study the Effects of Physiological Ecology Environmental Change on Forest Structure and Helm, C.: International Cooperation behind the Veil of Functioning. In: Mohren, G.M.J., Kramer, K. (eds.): Uncertainty - The Case of Transboundary Acidification. Proceedings of the Conference "Global Change Impacts Environmental and Resource Economics. on Tree Physiology and Forest Ecosystems”. Helm, C.: Applying Fairness Criteria to the Allocation of Wageningen, 26.-29. November 1996. IBN-DLO, Climate Protection Burdens. In: Toth, F. (ed.): Fairness Wageningen, The Netherlands. Concerns in Climate Change. London: Earthscan. Bunde, A., Havlin, S., Koscielny-Bunde, E., Roman, H.E., Klenke, T., Kropp, J.: From physical, geomicrobiological and Schellnhuber, H.J. 1997. Are Weather Fluctuations Long- geochemical data towards qualitative system analysis - Range Correlated? Physica A. An artificial neural network approach to prototypes of Andrade, R.F.S., Schellnhuber, H.J. and Claussen, M.: recent tidal sediments. Zb/. Geo/. Palaeont., I. Analysis of Rainfall Records: Possible Relation to Self- Krol, M., Alcamo, J., Leemans, R.: Global and Regional Organized Criticality. Physica A. Impacts of Stabilizing Atmospheric C02. In: Mitigation Claussen, M.: On Multiple Solutions of the Atmosphere- and Adaptation Strategies for Global Change. vegetation System in Present-day Climate. Global Kropp, J.: A neural network approach to the analysis of city Change Biology. systems. Journal of Applied Geography. Cramer, W., Leemans, R., Schulze, E.-D., Bondeau, A., Kropp, J.: Topology preserving neural networks for object Scholes, R.: Data needs and limitations for broad-scale character recognition of city systems. International ecosystem modelling. In: Walker, B. H., Steffen, W. L., Journal of Systems Research and Information Science. Canadell, J. & Ingram, J. S. I. (eds.): The Terrestrial Kropp, J., Ludeke M. K. B., Reusswig, F.: Global Analysis Biosphere and Global Change: Implications for Natural and Distribution of Unbalanced Urbanization Processes and Managed Ecosystems. Cambridge: Cambridge by Usage of the Fuzzy- Logic Concept: The Favela University Press. Syndrome. International Journal of of Systems Research Cramer, W., Shugart, H. H., Noble, I. R., Woodward, F. I., and Information Science. Bugmann, H., Bondeau, A., Foley, J. A., Gardner, R. H., Krysanova, V.: GRASS Application for Hydrological and Lauenroth, B., Pitelka, L. F., Sala, O. & Sutherst, R. W.: Water Quality Modelling. A Contribution for the Survey on Ecosystem composition and structure. In: Walker, B. H., Watershed Modelling with GIS. American Society of Civil Steffen, W. L., Canadell, J. & Ingram, J. S. I. (eds.): The Engineers (ASCE) Journal. Terrestrial Biosphere and Global Change: Implications for Krysanova, V., Muller-Wohlfeil, D.I., Becker, A.: Development Natural and Managed Ecosystems. Cambridge: and Test of a Spatially Distributed Hydrological /Water Cambridge University Press. Quality Model for Mesoscale Watersheds. Ecological Dehn, M., Burger, G., Buma, J. and Gasparetto, P.: Impact of Modelling. Climate Change on Slope Stability Using Expanded Krysanova, V., Muller-Wohlfeil, D.I., Cramer, W., Becker, A.: Downscaling. Engineering Geology. Spatial Analysis of Soil Moisture Deficit and Potential Erhard, M., Flechsig, M.: A Landscape Model for the Erosion in the Elbe Drainage Basin. In: J.Wilson, Investigation of Pollution Effects on the Dynamics of Pine J.Gallant (eds.): Terrain Analysis: Principles and Forest Ecosystems. Water, Air and Soil Pollution. Applications. Cambridge: Geoinformation International. Fraedrich, K., Jiang, J., Gerstengarbe, F.-W., Werner, P.C.: Kubatzki, C., Claussen, M.: Simulation of the global bio­ Multiscale Detection of Abrupt Climate Changes: geophysical interactions during the Last Glacial Application to Nile River Flood Levels. International Maximum. Climate Dynamics. Journal of Climatology. Lahmer, W., Muller-Wohlfeil, D.I., Krysanova, V., Becker, A.: Franck, S.: Evoljuzionnye model! sistema semli (Evolutionary Topography-based Modelling at Different Scales. Models of the Earth System). GeofizicheskiiZhurnal, UNESCO Technical Notes Conference on Kiev, Ukraine. Ecohydrological Processes in Small Basins, Strasbourg, Goudriaan, J., Shugart, H., Bugmann, H., Cramer, W., 24.-26. Sept. 1996. Bondeau, A., Gardner, B., Hunt, T., Lauenroth, B., Leimbach, M.: Modelling Climate Protection Expenditure. Landsberg, J., Linder, S., Noble, I., Parton, W., Pitelka, L., Global Environmental Change. Smith, M. S., Sutherst, B., Valentin, C. & Woodward, F. I.: Lindner, M.: Implementing Carbon Mitigation Measures in Use of models in global change studies. In: Walker, B. H., the Forestry Sector - A Review. In: Kohlmaier, G., Weber, Steffen, W. L., Canadell, J. & Ingram, J. S. I. (eds.): The M. and Houghton, R. A. (eds.): Carbon Mitigation Terrestrial Biosphere and Global Change: Implications for Potentials of Forests and Wood industry, Springer. Natural and Managed Ecosystems. Cambridge: (Preprint published as PIK-Report No. 28). Cambridge University Press. ■ Lischke, H., Fischlin, A., Bugmann, H.: The Dynamic Heilmeier H., Erhard M., Schulze E.-D.: Biomass Allocation Approach: Evaluating the Fate of Forests. In: Cebon, and Water Use of a Woody Plant Species Under Arid P.D., Dahinden, U., Davies, H., Jager, C., Imboden, D.

127 Appendix

(eds.): Climate and Environment in Alpine Regions. Publications, not peer-reviewed Cambridge, Massachusetts: MIT Press. Atmazidis, E, Behrendt, S., Helm, C„ Knoll, M., Kreibich, R., Moulin, S., Fischer, A., Delcolle, R.: Combining Agricultural Nolle, R. (author and ed.) 1996: Nachhaltige Entwicklung Crop Models and Satellite Observations: From Field to - Leitbild fur die Zukunft von Wirtschaft und Gesellschaft. Regional Scales. International Journal of Remote Weinheim und Basel: Beltz. Sensing. Bauer, E., Stolley, M., von Starch, H. 1996: On the Response Rahmstorf, S.: Decadal Variability of the Thermohaline of Surface Waves to Accelerating the Wind Forcing. Circulation. In: Navarra, A. (ed): Beyond ENSO: Decadal GKSS Report, 96/E/89, GKSS, Geesthacht. Variability in the Climate System. Springer. Bauer, E. 1997: Statistical comparison of winds from ERS-1 Sprinz, D.: The Interest-Based Explanation of International scatterometer and ECMWF model in time and Environmental Policy" (with Tapani Vaahtoranta). In: wavenumber domain. Proceedings of the Third ERS Underdal, A. (ed.): The International Politics of Scientific Symposium, Florence, Italy, 17-20 March 1997, Environmental Management. Dordrecht: Kluwer ESASP414, 1195-1200. Academic Publishers, 13-41. Bauer, E., Hasselmann, S., Lionello, P., Hasselmann, K. Staabs, C., Bauer, E.: Statistical Comparison of Global 1997: Comparison of assimilation results from an optimal Significant Wave Heights From Topex and ERS-1 interpolation and the Green's function method using ERS- Altimeter and From Operational Wave Model WAM, 1 SAR wave mode spectra. Proceedings of the Third Physics and Chemistry of the Earth. ERS Scientific Symposium, Florence, Italy, 17-20 March Svirezhev, Y., Svirejeva-Hopkins, A: Sustainable Biosphere: 1997, ESA SP-414,1195-1200. Critical Overview of Basic Concept of Sustainability. Becker, A. (ed.) 1997: Scaling Issues in the Coupling of Ecological Modelling, 27. Hydrological and Atmospheric Models. Programme and Svirezhev, Y., Venevsky, S.: Constraints on Information Abstracts. Vol. for Workshop W1 at the 5th Scientific Measures of Embodied Solar Energy Fluxes in the Assembly of the IAHS, Rabat/Morocco, 28/29 April 1997. Biosphere. Ecological Modelling, 6. Potsdam: BAHC/PIK. Svirezhev, Y, von Bloh, W.: Climate Change Problem and Becker, A. 1996: Verfugbarkeit von Wasser in einer sich Dynamical Systems: Virtual Biospheres Concept. In: andernden Welt. Dokumentation zum 2. Bad Pyrmonter Leitmann, G., Udwadia, F., Kryazhimskii, A. (eds.); Aqua-Forum. Bad Pyrmont: City of Bad Pyrmont. Stability and Control: Dynamics and Control. London: Becker, A., Lahmer, W., Muller-Wohlfeil, D.I., Pfutzner, B. Gordon and Breach, OPA Overseas Publishing 1996: Hydrologische Verhaltnisse und Verfugbarkeit der Associates (UK) Ltd.. Wasserressourcen. In: Stock, M., Toth, F. (Hrsg.): Svirezhev, Y: Exergy of the Biosphere. Ecological Modelling, Mogliche Auswirkungen von Klimaanderungen aufdas 4. Land Brandenburg - Pilotstudie. Potsdam: Potsdam- Svirezhev, Y: Globalises: A NewSynthesis. Philosophy of Institut fur Klimafolgenforschung e.V.. Global Modelling. Ecological Modelling, 25. Bellmann, K., Grate, R., Suckow, F. 1996: Untersuchung der Svirezhev, Y: Thermodynamic Orientors: How to Use immissionsbedingten Dynamik von Okosystemen unter Thermodynamic Concepts in Ecology. In: Eco Targets, dem EinfluB sich verandernder Schadstoffemissionen. Goal Functions, and Orientors. Springer. SANA-Bericht. Potsdam: Potsdam-lnstitut fur Svirezhev, Y: Thermodynamics and Ecology. Ecological Klimafolgenforschung e.V.. Modelling, 23. Biermann, F., Buttner, S., Helm, C. (Hrsg.) 1997: Toth, F.L.: Beyond Costs and Benefits of Climate Change: A Zukunftsfahige Entwicklung - Herausforderungen an Workshop Overview. In: Toth (ed.): Cost-Benefit Wissenschaft und Politik. Berlin: edition sigma. Analyses of Climate Change: The Broader Perspective. Biermann, F., Buttner, S., Helm, C. 1997: Elemente der Basel: Birkhauser. Zukunftsfahigkeit - Eine Einleitung. In: Biermann, F., (Szegi-) Toth, F.: A globalis szen-dioxid kibocsatas jovokepei Buttner, S., Helm, C. (Hrsg.): Zukunftsfahige Entwicklung (Future Scenarios of global coal-dioxide emissions). - Herausforderungen an Wissenschaft und Politik. Berlin: Magyar Tudomany. edition sigma, 15-28. Toth, F. and Hizsnyik, E.: Catching up with the International von Bloh, W., Block, A., Schellnhuber, H.J. 1996: Conceptual Bandwagon: The Management of Global Environmental Ecosphere Model Based on Lovelock/Watson Approach. Risks in Hungary. In: The Sustainable Social Learning In: The Royal Danish School of Pharmacy (ed.): Group (eds.): Learning to Manage Global Environmental Proceedings of the Ecological SUMMIT 96. August 1996, Risks. Cambridge, MA: MIT Press. 54(2). Weichert, A. and Burger, G.: Linear vs. Nonlinar Techniques Bohm, U., Jacob, D., Podzun, R. 1996: Application and in Downscaling. Climate Research Validation of the Regional Climate Model REMO for Werner, P.C., Gerstengarbe, F.-W.: A Proposal for the Northeast Brazil. Workshop on High Resolution Climate Development of Climate Scenarios. Climate Research. Modeling, Wengen, Switzerland. Wengen: ETH Zurich. Bohm, U., Jacob, D., Podzun, R. 1997: Sensitivitatsexperimente zur Nutzung des regionalen

128 Publications

Klimamodells REMO fur den semi-ariden Nordosten Claussen M., Ganopolski, A. 1997. Klimasystemmodelle. In: Brasiliens im Teilbereich Klima-Analyse und Umwelt- und Klimabeeinflussung durch den Menschen. -modellierung des Projektes WAVES. DKRZ VDI-Berichte 1330. Dilsseldorf: VDI Verlag GmbH, 69-86. Jahresbericht 1995,47-49. Claussen, M. 1996: Physikalische Klimatologie und Bronstert, A. (Hrsg.) 1996: Hochwasser in Deutschland unter Allgemeine Zirkulation. Vorlesungsskript Freie Universitat Aspekten globaler Veranderungen. Bericht fiber das Berlin. DFG-Rundgesprach am 9. Oktober 1995 in Potsdam. Claussen, M. 1997: Palaoklimatologie. Vorlesungsskript PIK-Report Nr.17. Potsdam: Potsdam-lnstitut fur Freie Universitat Berlin. Klimafolgenforschung e.V.,59. Claussen, M.: Der Mensch andert wahrscheinlich das Klima. Bronstert, A. 1996: Anderung der Tagesspiegel, 3.2.1997. Hochwassercharakteristiken - Stand der Forschung. In: Cramer, W. 1996: Workshop on Globally Gridded Historical Tagungsband des internationalen Symposiums Climate Data Sets for Biosphere Models. IGBP "Klimaanderung und Wasserwirtschaft" am 27. und 28. Newsletter, 1996 (27), 27. November 1995 im Europaischen Patentamt in Munchen. Cramer, W., Fischer, A. 1996: Data Requirements for Global Mitteilungen des Instituts fur Wasserwesen der Terrestrial Ecosystem Modelling. In: Walker, B., Steffen, Universitat der Bundeswehr Munchen, 56a, 185-201. W. (Eds.): Global Change and Terrestrial Ecosystems. Bronstert, A. 1996: Anderung von Cambridge: Cambridge University Press. IGBP Book Hochwassercharakteristiken im Zusammenhang mit Series, 2, 530-565. Klimaanderungen - Stand der Forschung. PIK-Report Nr. Cramer, W., Moore, B., Ill, Sahagian, D. 1996: Data Needs 15, Potsdam: Potsdam-lnstitut fur Klimafolgenforschung for Modelling Global Biospheric Carbon Fluxes - Lessons e.V.. From a Comparison of Models. IGBP Newsletter, 1996 Bronstert, A. 1996: Macropores, and Soil (27), 13-15. Moisture: Experimental Results and Modelling Study. Cramer, W., Moore, B., Ill, Sahagian, D. 1997: Global Net Annates Geophysicae, 14, Suppl. II, Springer Verlag, Primary Productivity: A Model Intercomparison. Research C318. GAIM, 1(1), 11-12. Bronstert, A. 1996: Wasserwesen I: Teilgebiet Grundlagen Durrenberger, G., Behringer, U. D., Gerger, A., Kasemir, B., der Hydrologie. Umdrucke zur Vorlesung an der TU Querol, C., Schule, R., Tabara, D., Toth, F., van Asselt, Berlin (Lehrauftrag am Fachbereich 9: M., Vassilarou, D., Willi, N. and Jaeger, C. C. 1997: Focus Bauingenieurwesen und Geowissenschaften). Groups in Integrated Assessment: A manual for a Brovkin, V., Claussen, M., Ganopolski, A., Svirezhev, Y., participatory tool. ULYSSES WP-97-2, Center for Retoukhov, V. 1997: Analytical Study of Climate- Interdisciplinary Studies in Technology, Darmstadt vegetation Interaction: Continuous Medium Approach. University of Technology, Darmstadt, Germany. Annates Geophysicae, 15, part II, C351. Erhard, M., Grote, R., Weber, E„ Wiegleb, G. 1997: Vom Bruckner, T. 1997: Dynamische Energie- und Punkt zur Flache: Theoretische und praktische Probleme Emissionsoptimierung regionaler Energiesysteme. bei derraumlichen Integration okologischer Daten. In: Dissertation, Institut fur Theoretische Physik, Universitat Tagungsband zum Arbeitskreistreffen “Theorie in der Wiirzburg. Okologie”, BTU Cottbus, Fakultat Umweltwissenschaften Bugmann, H., Grote, R., Lasch, P., Lindner, M., Suckow, F. und Verfahrenstechnik. Aktuelle Reihe 4/97, 65-85. 1996: Auswirkungen von Klimaanderungen auf die Flechsig, M., Erhard, M. 1996: Landschafts- und Walder in Brandenburg. In: Stock, M., Toth, F. (eds.): Regionalmodelle: Methodische Ansatze und die Mogliche Auswirkungen von Klimaveranderungen auf Fallstudie Dubener Heide. In: Mandl, P. (Hrsg.): das Land Brandenburg. Potsdam: Potsdam-lnstitut fur Modellierung und Simulation raumlicher Systems mit Klimafolgenforschung e.V., 56-79. Geographischen Informationssystemen. Wien, Munchen: Carius, A., Kemper, M., Oberthiir, S„ Sprinz, D. 1997: NATO/ Oldenbourg Verlag. Proceeding-Reihe der Tagung CCMS Pilot Study Environment and Security in an Informatik '96, 9. International Context: State of the Art and Perspectives, Flechsig, M., Erhard, M., Grote, R. 1996: Landscape Models Interim Report, October 1996. In: Environmental Change for the Evaluation of Ecosystem Stability Under and Security Project Report. Washington D.C., The Environmental Change: The Dubener Heide Case Study. Woodrow Wilson Center, 3, 55-65. In: Heit M., Parker H.D., Shortreid A. (eds.): GIS Cassel-Gintz, M. 1997: GIS-gestutzte Identifizierung und Applications in Natural Resources, Vol. 2, Fort Collins, Modellierung anthropogen verursachter, typischer CO, USA: GIS World Books, 493 - 500. Schadigungsmuster des Globalen Wandels. In: Dollinger, Fosberg, M.A., Framstad, E., Gottschalk, L., Hytteborn, H., F., Strobl, J. (ed.): Angewandte Geographische Skotvold, T., Ludwig, J. 1996: How Will Global Change Informationsverarbeitung IX - Salzburger Geographische Influence the Distribution of the Discontinous Permafrost Materialien, 26. Salzburg: Selbstverlag des Instituts fur and its Active Layer? Norwegian Initiatives within BAHC/ Geographie der Universitat Salzburg, 205-210. IGAC/GCTE. Workshop Report. Research Council of Norway, 15-16.

129 Appendix

Fosberg, M.A., Stocks, B.J., Lynham , T.J. 1996: Risk - Herausforderungen an Wissenschaft und Politik. Berlin: Analysis in Strategic Planning: Fire and Climate Change edition sigma, 205 - 220. in the Boreal Forest. In: Goldammer, J., Furyaev, G.V.V. Helm, C. 1997: Internationale Umweltabkommen und die (eds.): Fire in Ecosystems of Boreal Eurasia. Dordrecht: WTO - Balanceakt zwischen MiBtrauen und Kooperation. Kluwer Academic Publishers, 488-504. Okologisches Wirtschaften, 1,23-25. Franck, S. 1996: Die Erde als globales Okosystem. Helm, C. 1997: Neue Themen fur die WTO in der Sitzungsberichte derLeibniz-Sozietate.V., 7 (9), 63-83. Globalisierung - Umweltschutz, Sozialstandards und Ganopolski A., Brovkin, V., Claussen , M., Petoukhov, V., Wettbewerbsregeln. In: Fricke, W., Fricke, E. (Hrsg.): 1997. A study of bio-geophysical feedbacks with a Jahrbuch Arbeit und Technik 1997, Bonn: J.H.W. Dietz, coupled climate-biosphere model CLIMBER-2. Annales 275-285. Geophysicae, 15, part II, C352. IGBP-Sekretariat 1996: Bericht fiber den zweiten deutschen Gerstengarbe, F.-W., Werner, P.C. 1996: A Description of the LOICZ-Workshop, 16.-18. November 1995. Institut fur Variability of Spatial-temporal Structures by Means of a Ostseeforschung Warnemunde, November 1996. Specific Cluster Analysis Algorithm. AMS, 13th IGBP-Sekretariat 1996: Informationsbrief Nr. 24,1. Conference on Probability and Statistics in the September 1996. Atmospheric Sciences, San Francisco, CA. IGBP-Sekretariat 1996: Informationsbrief Nr. 25.1. Gerstengarbe, F.-W., Werner, P.C. 1996: A Method to Dezember 1996. Estimate the Statistical Security for Cluster Separation. IGBP-Sekretariat 1997: Bericht fiber das Arbeitstreffen PIK Report No. 23, Potsdam: Potsdam-lnstitut fur "Spurengase", 13.-14. November 1996. GKSS- Klimafolgenforschung e.V.. Forschungszentrum Geesthacht, April 1997. Groscurth, H.-M., Bruckner, T. 1996: Technical and IGBP-Sekretariat 1997: Informationsbrief Nr. 26.1. Marz Economic Competition of Advanced Energy 1997. Technologies. In: Lingeman, E.W.A. (ed.): Economy- IGBP-Sekretariat 1997: Informationsbrief Nr. 27.1. Juni Energy-Entropy, Proc. of the Europhysics Study 1997. Conference, European Physical Society, Geneva, May Krol, M., Bronstert, A. 1997: Final Report on the Pre-phase 10-13 1996, 137-149. and Interim Funding Period of WAVES, Sub-project Grate, R., Suckow, F., Bellmann, K. 1996: A Physiology- Integrated Modelling. Potsdam: Potsdam-lnstitut fur based Growth Model for Simulations Under Changing Klimafolgenforschung e.V.. Conditions of Climate, Nitrogen Availability, Air Pollution Krysanova V., Muller-Wohlfeil, D.I., Becker A. 1996: and Ground Cover competition. Conference on Effects of Mesoscale Integrated Modelling of Hydrology and Water Environmental Factors on Tree and Stand Growth. TU Quality with GIS Interface. In: Proceedings of the Third Dresden, BerggieBhubel, 68-77. International Conference and Workshop on Integrating Grate, R., Erhard, M. 1997: Simulation of tree and stand Geographical Information Systems and Environmental development under different environmental conditions Modeling, CD-ROM. Santa Barbara, CA: National Center with a physiologically based model. In: Grate, R., Erhard, for Geographical Information and Analysis. M., Suckow, F.: Evaluation of the phsysiologically-based Krysanova, V., 1997: The SWIM Model and Its Application in forest growth model FORSANA. PIK-Report No. 32, the Elbe Basin. Proceedings of the GCTE Conference Potsdam: Potsdam-lnstitut fur Klimafolgenforschung e.V.. "Global Change: Modelling Soil Erosion by Water at the Heilmeier, H., Erhard, M., Schulze, E.-D. 1997: Biomass Catchment Scale", Utrecht, 14-18 April 1997. allocation and water use of a woody plant species under Krysanova, V., Muller-Wohlfeil, D.I., Becker, A. 1996: arid conditions. In: Bazzaz, F.A., Grace, J. (eds.): Plant Entwicklung eines integrierten Modells zur Hydrologie Resource Allocation. Academic press, 93-111. und Gewassergute in mesoskaligen Einzugsgebieten und Helm, C. 1996: Umwelt- und Handelspolitik in einer dessen Anwendung in Teileinzugsgebieten der Elbe, globalisierten Wirtschaft. In: Simonis, U.E. (Hrsg.): "Okosystem Elbe - Zustand, Entwicklung und Nutzung", Weltumweltpolitik - GrundriB und Bausteine eines neuen 7. Magdeburger Gewasserschutzseminar, Budweis, Politikfeldes. Berlin: edition sigma, 219-242. Tschechische Republik, 483-485. Helm, C. 1996: Wege in eine bessere Zukunft - mdgliche Krysanova, V., Muller-Wohlfeil, D.I., Becker, A. 1997: Elemente einer dkologischen Reform des GATT/WTO- Integrated Modelling of Hydrology and Water Quality in Regimes. In: Politische Okologie, 14(45), 56-59. Mesoscale Watersheds. PIK-Report No. 18. Potsdam: Helm, C. 1996: Weltumweltpolitik und okonomische Theorie. Potsdam-lnstitut fur Klimafolgenforschung e.V.. In: Simonis, U. E. (Hrsg.): Weltumweltpolitik - GrundriB Krysanova, V., Muller-Wohlfeil, D.I., Cramer, W., Becker, A. und Bausteine eines neuen Politikfeldes. Berlin: edition 1996: Identification of Vulnerable Subregions in the Elbe sigma, 266-287. Drainage Basin Under Global Change Impact. PIK Report Helm, C. 1997: Fair Play im Treibhaus - Zur gerechten No. 19, Potsdam: Potsdam-lnstitut fur Klimafolgen­ Verteilung von Emissionsrechten. In: Biermann, F., forschung e.V.. Buttner, S., Helm, C. (Hrsg.): Zukunftsfahige Entwicklung Kucken, M., Schattler, U. 1996: REMO - Implementation of a parallel Version of a regional climate model, Seventh

130 Publications

ECMWF Workshop on the Use of Parallel Processors in Rahmstorf, S. 1996: Multiple Climate States, Variability, Drift: Meteorology, Reading, UK. Results From a Hybrid model. In: Kinter, J.L., Schneider, Kiicken, M. Schattler, U. 1997: Implementation of a parallel E.K. (eds.): Proceedings of the Workshop on Dynamics Version of a regional climate model, PIK-Report Nr. 29, and Statistics of Secular Climate Variations. Calverton: Potsdam, Potsdam-lnstitut fur Klimafolgenforschung e.V.. COLA, 89. Kiicken, M., Hauffe, D. 1997: Implementierung und Rahmstorf, S. 1997: Ice-cold in Paris. New Scientist, 8. Parallelisierung der vom Max-Planck-lnstitut Hamburg Februar, 26-30. und vom Deutschen Klimarechenzentrum Hamburg Rahmstorf, S. 1997: Risk of sea-change in the Atlantic. entwickelten CRAY-Version des regionalen Klimamodells Nature 388, 825-826. REMO auf dem Parallelrechnersystem IBM RS/6000 SP Rahmstorf, S., Marotzke, J., Willebrand, J. 1996: Stability of des Potsdam-lnstitut fur Klimafolgenforschung e.V., the Thermohaline Circulation. In: Krauss, W. (ed.): The Arbeitsbericht, Potsdam, Potsdam-lnstitut fur Warm Water Sphere of the North Atlantic Ocean. Klimafolgenforschung e.V.. Stuttgart: Borntrager, 129-158. Liberatore, A., Venance, J., Kasemir, B., Fellous, J.L., Skea, Reusswig, F. 1996: Bericht liber die Tagung J., Toth, F.L 1997: Learning About Integrated "Umweltgerechtes Handeln: Motivation und Barrieren" Environmental Assessment: An Introductory Polylogue. am 29.2. und 1.3.1996 in Potsdam. In: Berliner Journal In: Sors, A., Liberatore, A., Funtowicz, S., Hourcade, J.C. fur Soziologie, Jg. 6, Nr. 2,1996, 278-280. and Fellous, J.L. (eds.): Prospects for Integrated Reusswig, F. 1996: Konsumdynamik, Okologie und Environmental Assessments: Lessons learnt from the Lebensstilentwicklung in OECD-Landern. In: Barz, W., Case of Climate Change. MeteoFrance, Toulouse. Brinkmann, B., Furger, F. (Hrsg .): Globale Lindner, M., Bugmann, H., Lasch, P., Suckow, F. 1997: Wie Umweltveranderungen. Symposium am 17. und 18. Juni sind Ergebnisse der Klimawirkungsforschung zu 1996 in Munster. Landsberg: ecomed-Verlag, 107-119. interpretieren? AFZ/Der Wald, 52(11), 587-589. Reusswig, F. 1996: Lebensstile und Okologie. Die Moldenhauer, O., Steyn-Ross, M.L., Steyn-Ross, D.A. 1996: okologische Bedeutung der Lebensstilforschung. In: Chlorophyll Retrieval from CZCS: Influence of Perspektiven - Analysen - Trends 2, 3-9. Atmospheric Aerosols. IGARSS 96 - International Roeckner, E., Arpe, K., Bengtsson, L., Christoph, M., Geoscience and Remote Sensing Symposium 27-31 Claussen, M., Dumenil, L., Esch, M., Giorgetta, M., May, Lincoln, Nebraska. Schlese. U., Schulzweida, U. 1996: TheAtmospheric Muller-Wohlfeil, D.I., Lahmer, W., Cramer, W., Krysanova, V. General Circulation Model ECHAM-4: Model Description 1996: Simulation of Soil Moisture Patterns Using a and Simulation of Present-day Climate. Hamburg: MPI- Topography-based Model at Different Scales. PIK Report Report218. No. 20, 1996. Potsdam: Potsdam-lnstitut fur Schellnhuber, H.J. 1996: Die Internationale Klimafolgenforschung e.V. Klimawirkungsforschung auf ihrem langen Marsch zur Muller-Wohlfeil, D.I., Lahmer, W., Krysanova, V., Becker, A. Integrierten Modellierung. In: Hennicke, P. (Hrsg.): 1996: Topography-based Hydrological Modelling in the Globale Kosten-Nutzen-Analysen von Klimaanderungen. Elbe Drainage Basin. In: Proceedings of the Third Basel: Birkhauser, 52. International Conference and Workshop on Integrating Schellnhuber, H.J. 1996: Towards an Integrated Model of the Geographical Information Systems and Environmental Earth System. EGS Newsletter 59, 8. Modeling, CD-ROM. Publisher: Santa Barbara, CA: Schellnhuber, H.J. 1997: Now Pending: The Regenerative National Center for Geographical Information and Energy Revolution. Common Ground, 2/97, 3. Analysis. Schellnhuber, H.J., Reusswig, F. 1997. Krankheitsbilder. Muller-Wohlfeil, D.I., Pfutzner B., Lahmer, W., Becker, A. Sieg Tech, 13/97, 34-36. 1996: Flachendeckende Modellierung des Schellnhuber, H.J., Reusswig, F. 1996: Vom Winde verweht: Wasserhaushaltes fur das Land Brandenburg mit Hilfe Bodenzerstorung - Die zwolf Syndrome einer globalen des mathematischen Simulationsmodells ARC/EGMO. Krise. Bild der Wissenschaft, Februar 1996, 52-58. Proceedings of the 3. Magdeburger Gewassergute- Schellnhuber, H.J. et al 1997: Targets for Climate Protection. semlnar - Okosystem Elbe - Zustand, Entwicklung und Bremerhaven: WBGU. Nutzung. Schellnhuber, H.J. und Fuentes, U. 1997: Globaler Nakicenovic, N., Nordhaus, W.D., Richels, R., Toth, F.L. Klimaschutz: Ziele, Hemmnisse und Chancen fur ein (eds.) 1996: Climate Change: Integrating Science, Steuerungsproblem vom Multiakteur-Langfrist-Typus. In: Economics, and Policy. CP-96-1. Laxenburg, Austria: Erbguth, W., Haber, W., Klemmer, P., Schultz, R. und International Institute for Applied Systems Analysis Thoenes, W. (Hrsg.): Zeitschrift fur angewandte (I I ASA). Umweltforschung. ZAU Jg.10 H.4, 441-456, Analytics Olson, R.J., Scurlock, J.M.O., Cramer, W., Prince, S.D., Verlag. Parton, W.J. 1997: Global Primary Production Data Shvidenko, A., Samarskaia, E., Venevsky, S., Nilsson, S. Initiative Workshop: From Sparse Field Observations to a 1996: Models for Growth of Pine Stands in Territories of Consistent Global Dataset on Net Primary Production. Northern Eurasia. WP-96-164. Laxenburg, Austria: IGBP-DIS. Toulouse, France: IGBP-DIS Working Paper.

131 Appendix

International Institute for Applied Systems Analysis (World Economy Weekly), 18 (33), 17. August 1996, 49- (IIASA). SI. Shvidenko, A., Venevsky, S., Nilsson, S. 1996: Increment (Szegi-)Toth, F. 1996: Zdld technologiak osszehasonlftasa - and Mortality for Major Forest Species of Northern Sok szem sokat lat (Comparing green technologies - A Eurasia with Variable Growing Stock. WP-96-111. diversity of views). Heti Vilaggazdasag (World Economy Laxenburg, Austria: International Institute for Applied Weekly), 19 (17), 26. April 1996, 67-69. Systems Analysis (NASA). Toth, F.L. 1996: A globalis kornyezeti kockazatok Shvidenko, A., Venevsky, S., Raile, G., Nilsson, S. 1996: kommunikacioja: a savas esb a magyar sajtoban Dynamics of Fully Stocked Stands in the Territory of the (Communicating Global Environmental Risks: Acid Rain Former Soviet Union. WP-96-19. Laxenburg, Austria: in the Hungarian Press). Research report RR96-3H. International Institute for Applied Systems Analysis Budapest: BKKI. (IIASA). Toth, F.L. 1996: Communicating Global Environmental Shvidenko, A.Z, Venevsky, S.V., Nilsson, S. 1996: Increment Risks: Acid Rain in the Hungarian Press. Research report and Mortality in Forests of Russia - An Attempt of RR96-2E. Budapest: BKKI. Aggregated Analyses. In: Short Reports of the VII Toth, F.L. 1996: Social Dimensions of Environmental Conference of the IBFRA. 19-23 August 1996, St. Management in Hungary between 1956 and 1993. Petersburg, VNIIZIesresurs, Moscow, 56-57. Research report RR96-1E. Budapest: BKKI. Sprinz, D. 1996: Klimapolitik und Internationale Sicherheit: Toth, F.L. 1996: Social Dimensions of Resource Use: A Eine interdisciplinare Konzeption. In: Brauch, Hans Prototype Model for Water Management. In: Human Gunter (ed.): Klimapolitik. Berlin: Springer, 141-150. Dimensions of Global Environmental Change Programme Sprinz, D. 1996: International Negotiations Related to Global (ed.;.- Global Change, Local Challenge - HDP Third Climate Change. In: Human Dimensions of Global Scientific Symposium. 20-22 September 1995. Geneva: Environmental Change Programme (ed.): Global Change, Human Dimensions of Global Environmental Change Local Challenge - HDP Third Scientific Symposium. 20- Programme, 2,107-119. 22 September 1995. Geneva: Human Dimensions of Toth, F.L., Frohlich, A., Hizsnyik, E., Stock, M. 1996: Global Environmental Change Programme, 1,40-41. Auswirkungen auf die menschliche Gesundheit. In: Stock, Sprinz, D., Luterbacher, U. (eds.) 1996: International M., Toth, F.L. (eds.): Mogliche Auswirkungen von Relations and Global Climate Change. PIK-Report, No. Klimaanderungen auf das Land Brandenburg. Potsdam: 21, Potsdam, Germany: Potsdam Institute for Climate Potsdam Institut fur Klimafolgenforschung e.V., 92-117. Impact Research. Toth, F.L. (ed.) 1997: Cost-Benefit Analyses of Climate Sprinz, D. 1997: Environmental Security and Instrument Change: The Broader Perspective. Basel: Birkhauser. Choice. In: Gleditsch, N.P. (ed.): Conflict and the Toth, F.L. 1997: Die Rolle des Zeitfaktors im Management Environment. Dordrecht: Kluwer, 483-502. globaler Umweltveranderungen. In: WBL (Hrsg.): Stock, M., Toth, F.L. (eds.) 1996: Mogliche Auswirkungen Globalisierung und Forschung. WBL, Koln, 77-98. von Klimaanderungen auf das Land Brandenburg. (Szegi-)Toth, F. 1998: Kli'ma - Politika (Climate - Politics). Potsdam: Potsdam-lnstitut fur Klimafolgenforschung e.V.. Heti Vilaggazdasag (World Economy Weekly), 19 (17), Stock, M., Toth, F.L. 1996: Einleitung: Klimafolgenforschung 67-69. fur Brandenburg: In: Stock, M., Toth, F.L. (Hrsg.): Venevsky, S.V., Shvidenko, A.Z. 1996: Modelling of Stand Mogliche Auswirkungen von Klimaanderungen auf das Growth Dynamics with a Destructive Stage. In: Short Land Brandenburg. Potsdam: Potsdam-lnstitut fur reports of the VII. Conference of the IBFRA. 19.-23. Klimafolgenforschung e.V., 11-27. August, 1996, St. Petersburg, VNIIZIesresurs, Moscow, Stock, M. 1996: Klimawirkungsforschung: Mogliche Folgen 56-57. des Klimawandels fur Europa. In: Hans Gunter Brauch Wenzel, V. 1996: Blueprint for a Regional Assessment Model (Hrsg.): Klimapolitik - Naturwissenschaftliche of Land Use Change. Proceedings of the NATUR-EXPO Grundlagen, internationale Regimebildung und Konflikte, '96 Conference, Budapest, Aug. 1996. okonomische Analysen sowie nationale Werner, P.C., Gerstengarbe, F.-W. 1997: The Development Problemerkennung und Politikumsetzung. Berlin: of Climate Scenarios. PIK Report No. 25, Potsdam: Springer Verlag, 33-45. Potsdam-lnstitut fur Klimafolgenforschung e.V.. Stock, M., Schellnhuber, H.J. 1998: Klimawirkungs ­ Zimmermann, H., Schellnhuber, H.J. etal. 1997: World in forschung: Ein Schritt auf dem Weg zur Transition: The Research Challenge. In: WBGU Annual Erdsystemanalyse. Physik in unsererZeit 1/98, 30-37. Report 1996. Heidelberg: Springer. (Szegi-) Toth, F. 1996: A piac korlatai (The limits to market) Zimmermann, H., Schellnhuber, H.J. etal. 1996: Welt im Heti Vilaggazdasag. (World Economy Weekly), 18 (33), Wandel: Herausforderung fur die deutsche Wissenschaft. 17. August 1996, 54-55. In: WBGU-Jahresgutachten 1996. Springer: Heidelberg. (Szegi-) Toth, F. 1996: Fenntartassal el az ember - Zimmermann, H., Schellnhuber, H.J. et al. 1996: World in Jovofeltes egykor es ma (Sustainable fears - Future Transition: Ways Towards Global Environmental scarce in the past and present). Heti Vilaggazdasag

132 Publications

Solutions. In: WBGU Annual Report 1995. Springer: Krysanova, V., Bronstert, A., Fleckenstein, J.: Anwendung Heidelberg. des HBV-Modells fur das Elbe-Einzugsgebiet: Ein Ansatz zur groBskaligen hydrologischen Modellierung. Accepted for Publication, not peer-reviewed Tagungsband: Modellierung in der Hydrologie, TU Bauer, E., Heimbach, P.: Comparison of ERS-1 SAR and Dresden, 22. - 24. 9.1997. altimeter wave heights. Proceedings of the WAVES 97 Krysanova, V., Muller-Wohlfeil, D.I., Becker, A.: "SWIM" - Conference, Virginia, USA, 3-7 November 1997. Beschreibung des Modells". In: H.-G. Starck, B. Goebel, Becker, A., Lahmer, W.: Disaggregierung und Skalierung bei E-W. Reiche, P. Widmoser (eds.): Darstellung und Parameterermittlungen fur die hydrologische Bewertung von mesoskaligen Stickstoffmodellen. Modellierung und Regionalisierung. Proceedings zur Lahmer, W., Muller-Wohlfeil, D.-l., Pfutzner, B., Becker, A.: Fachiagung "Modellierung in der Hydrologie". TU GIS-based Hydrological Modelling with the Integrated Dresden, September 1997. Modelling System ARC/EGMO. International Conference Block, A., Petschel, G., von Bloh, W., Schellnhuber, H.J.: on Regionalization in Hydrology, Braunschweig, March Klimawirkungsforschung im Rahmen des Globalen 1997. Wandels - Beschreibungsweisen auf virtuellen Buhnen. Ludeke, M.: Archetypical Patterns of Non-sustainable In: Much, M., Warnecke, G. und Germann, K. (Hrsg.): Development on the Global Scale: The Syndrome Archiv Erde - Klimazeugnisse der Erdgeschichte. concept. Erscheint in: Proceedings of the 14th Heidelberg: Springer. International Conference of WACRA-Europe On Bohm, U.: The Influence of Large-scale Cloud Sustainable Development: Towards Measuring the Parametrization on Near-surface Climate Parameters. Performance of Integrated Socioeconomic and Proceedings of the Third RACCS Project Meeting Zurich, Environmental Systems, Madrid, September (1997). Switzerland. Osterle, H.: Struktur und Aufbau des meteorologischen Bronstert, A.: Physikalisch begrundete und prozeBorientierte Datenbanksystems am Potsdam-lnstitut fur Modellierung von Hangen und kleinen Einzugsgebieten: Klimafolgenforschung e.V.. Annalen der Meteorologie. Moglichkeiten und Grenzen. Tagungsband: Modellierung Rahmstorf, S.: North Atlantic: Risking the Chill? Nature. in der Hydrologie, TU Dresden, 22. - 24 .9.1997. Reusswig, F.: Konsumdynamik und Lebensstilentwicklung. Bugmann, H.: Regionale Auswirkungen von moglichen Mull und Abfall, 10. Klimaanderungen: Eine Herausforderung fiir die Reusswig, F.: Social Monitoring of Global Change: The Klimafolgenforschung. Naturschutz und Syndrome Approach. First Lessons from a New Landschaftsplanung, 29. Transdisciplinary Research Project. MAB-Mitteilungen Claussen, M.: Grenzen des okologischen Systems. In: J. 1997. Scheelhaase (Hrsg.): 1st die Vorstellung einer Reusswig, F., Schellnhuber, H.J.: Die globale Umwelt als dauerhaften und durchhaltbaren Entwicklung Illusion? Wille und Vorstellung. Zur transdisziplinaren Erforschung Erhard, M., Flechsig, M.: A landscape model for the des Globalen Wandels. In: Daschkeit, A., Schroder, W. investigation of pollution effects on the dynamics of pine (Hrsg): Umweltforschung quergedacht. Perspektiven forest ecosystems (Pinus sylvestris L). PIK-Report No. integrierter Umweltforschung und -lehre. Festschrift fur 32, Potsdam: Potsdam-lnstitut fur Klimafolgenforschung Prof. Dr. 0. Franzle. Berlin: Springer. e.V., 47-62. Reusswig, F.: Wieweit reicht sinnliche Wahmehmung. Fussel, H.-M., Toth, F.: LUCC Data Needs for Integrated Problems sinnlicher Kontrollierbarkeit globaler Assessment Models of Climate Change. Proceedings of Umweltveranderungen. In: Fiebig, W., Gasch, T. (Hrsg.): the LUCC Data Requirements Workshop, November 11- Sinn & Sinnlichkeit. Asthetik-Symposium der Frankfurter 14 1997, Barcelona, Spain. Akademie fur Kommunikation und Design. Grate, R., Burger, G. and Suckow, P: Simulated Impacts of Schellnhuber, H.J. et al.: Weltim Wandel: Wegezu einem Mean vs. Intra-Annual Climate Changes on Forests. nachhaltigen Umgang mit SuBwasser. In: WBGU- Workshop Report, Wengen 1997. Jahresgutachten 1997. Heidelberg: Springer. Helm, C: Comment: Criteria for an Equitable Distribution of Schellnhuber, H.-J., Wenzel, V.: Earth System Analysis: Internationally Tradeable Emission Certificates. In: Integrating Science for Sustainability. Heidelberg: Schellnhuber, H.J. and Wenzel, V. (eds.): Earth System Springer Verlag. Analysis: Integrating Science for Sustainability. Sprinz, D.: Domestic Politics and European Acid Rain Heidelberg: Springer Verlag. Regulation. In: Underdal, A. (ed.): The International Helm, C. und Schellnhuber, H.J.:Wissenschaftliche Politics of Environmental Management. Dordrecht: Aussagen zum Klimawandel - Zum politischen Umgang Kluwer Academic Publishers. mit objektiv unsicheren Ergebnissen der Klimaforschung. Toth, F.L., Bruckner, T., Fussel, H.-M., Leimbach, M., In: Lozan, L, GraBI, H., Hupfer, P. and Stem, H. (eds.): Petschel-Held, G., Schellnhuber, H.J.: The Tolerable Warnsignale aus der Klimaentwicklung - Windows Approach to Integrated Assessments. Wissenschaftliche Fakten. Berlin: Parey Buchverlag. Proceedings of the IPCC Asia-Pacific Workshop on

133 Appendix

Integrated Assessment Models, Tokyo, Japan, 10-12 Toth, F., Petschel-Held, G. and Bruckner, T.: Climate Change March 1997. and Integrated Assessment: TheTolerable Windows (Szegi-) Toth, F.: A szen-dioxid kibocsatas forgatokonyvei a Approach. In: Hacker, J. (ed.): Goals and Economic XXI. szazadra (Scenarios of C02 emissions for the 21st Instruments for Achievement of Global Warming century). In: Proceedings of the Conference “Atmospheric Mitigation in Europe. Dordrecht: Kluwer. Coal-Dioxide in the Next Century", November 1998, Wenzel, V.: Sustainable Development - Teleology and Hungarian Academy of Sciences. Ambiguity. In: Schellnhuber, H.-J., Wenzel, V.(eds.): Earth (Szegi-) Toth, F.: Integral! klfmaertekelesi modellek a System Analysis: Integrating Science for Sustainability. tudomany es a politika szolgalataban (Integrated Climate Heidelberg: Springer. Assessment Models in Science and Policy). In: Proceedings of the Meteorological Scientific Days ’97, Miscellaneous Hungarian Academy of Sciences. Frohlich, A., Erhard, M., Gah, E., Cramer, W. 1996: Toth, F.: Modeling Land Use and Land Cover Change in Assessment of Climate Change Threats on Protected Africa: The Global Context. In: Proceedings of the Areas in Germany. Study for the WWF-Germany. 44. Conference “Sustainable Agriculture and their Interaction Wenzel, V. 1996: IMAGE for ULYSSES-citizen Groups. with Global Change", 28 - 30 July, 1997, Maputo. ULYSSES-project working paper. Toth, F.: Applicability of Techniques of Cost-Benefit Analyses Wenzel, V. 1997: IMAGE and Uncertainty. ULYSSES-project to Climate Change: A Commentary. In: Nordhaus, W.D.: working paper. Economics and Policy Issues in Global Warming: An Assessment of the Intergovernamental Panel Report, Resources for the Future. Cambridge, MA: MIT Press.

134 PIK in the Media

Broadcasts about PIK Research

Broadcasts Date Topic

NTV Newspunkt 21.02.96 Entwicklungspolitische Aspekte des Wassermangels SAT 1 „Vera am Mittag" 16.03.96 Talkshow (Lahmer) RTL Punkt 12 13.06.96 Weltwiistentag (Becker) BB-Radio 18.06.96 Brandenburg-Studie (Stock) RTL Nachtjournal 18.06.96 Uberschwemmungen und Klimaanderung 05.07.96 UN-Klimakonferenz, weltweite Klimaveranderungen (Stock) Antenne Brandenburg 08.07.96 Klimagipfel und C02-Reduzierung (Stock)

ORB Brandenburg Aktuell 08.07.96 AnlaBlich der UN-Klimakonferenz Bericht uber die Arbeit des PIK (Schellnhuber) ZDF Apropos Film 08.07.96 Extremwetterverhalten und Analogien mit dem Film,,Twister" (Gerstengarbe) ZDF Heute Nacht 09.07.96 Das Wetter und sein Wandel NTV, Newspunkt 10.07.96 UN - Klimagipfel (Sprinz) ORB Dossier 13.07.96 Was bringen Konferenzen? (Schellnhuber) ORB 13.07.96 UN-Klimagipfel Spiegel - TV 14.07.96 Klima & Globaler Wandel (Schellnhuber) MDR-Dresden 08.08.96 Unwetter Spanien MDR 08.08.96 mehrere Telefoninterviews, Wirbelsturme, Uberschwemmungen u.a N3 Prisma 27.09.96 Bericht uber Ozeanzirkulation (Rahmstorf) ZDF Abendjournal 07.10.96 Die 15 wichtigsten Erkrankungen des Systems Erde - Katastrophenforschung und Losungsvorschlage Deutsche Welle (North America 16.12.96 The Mission of the Potsdam Institute for Climate Impact Program) Research (Sprinz) Bayrischer Rundfunk - Morgenmagazin 10.04.97 Klimaanderungen (Gerstengarbe) HR 3 - Morgenmagazin 15.04.97 Orkane (Werner) NTV Ende Juni 97 Oderhochwasser (Bronstert)

ORB 10.07.97 Wetterextreme (Hochwasser in Polen und Tschechien) (Claussen) Antenne Thuringen, Infotainment am 30.07.97 Oderhochwasser (Kropp) Nachmittag RTL Nachtjournal 05.08.97 Oderhochwasser und moglicher Zusammenhang mit dem Treibhauseffekt bzw. dem El Nino (Petschel-Held) Osterreichischer Rundfunk 06.08.97 Diskussion um den Treibhauseffekt (Claussen) MDR 12.08.97 Horfunkinterview zum Oderhochwasser (Stock) MDR 12.08.97 Horer-Expertengesprach zum Oderhochwasser (Stock)

135 -S

Appendix

Broadcasts Date Topic

SFB /B1 - Nach der Flut - Fakten, 18.08.97 Oderhochwasser (Werner) Analysen, Handlungen Norddeutscher Rundfunk 19.08.97 Globale SuBwasserkrise (Reusswig) Suddeutscher Rundfunk 27.08.97 El Nino (Claussen) BBC World Service - News Hour 27.08.97 Thermohaline Zirkulation im Treibhaus (Rahmstorf) Hessischer Rundfunk 02.09.97 Thermohaline Zirkulation im Treibhaus (Rahmstorf) Landeswelle Thuringen 02.09.97 Treibhausklima (Claussen)

NewsTalk Radio Berlin 17.09.97 Waldbrande in Indonesien, Klima und El Nino (Plochl) National Public Radio, Boston — Living Sept. 97 Thermohaline Zirkulation im Treibhaus (Rahmstorf) on Earth English Language Austria Pro ­ Sept. 97 Thermohaline Zirkulation im Treibhaus (Rahmstorf) grammes NTV Nachrichten 24.09.97 Waldbrande in Indonesien, Klima und El Nino (Plochl) Deutschlandradio Berlin - OrtsZeit 24.09.97 Waldbrande in Indonesien, Klima und El Nino (Plochl) Akzent RTL Nachtjournal 25.09.97 Waldbrande in Indonesien, Klima und El Nino (Plochl) ORB Radio Eins 26.09.97 El Nino (Claussen) WDR Koln 26.09.97 Waldbrande - Auswirkungen auf das Klima (Claussen) Hessischer Rundfunk 01.10.97 Pressekonferenz im Rahmen der 4. Deutschen Klima- konferenz in Frankfurt - Thema: Klimawandel, El Nino, Waldbrande - Auswirkungen auf Europa (Claussen) Deutschland Radio Berlin 10.10.97 El Nino - Wetterextrema (Claussen) SAT1 Nachrichten 10.10.97 El Nino und Hurrikan Pauline (Claussen) MDR 12.10.97 Horfunkinterview zum globalen Smog / El Nino (Stock) Mitte Oktober Ursachen der Waldbrande in indonesischen Waldern 97 (Cramer) Antenne Bayern - Mittagsmagazin 18.10.97 El Nino (Gerstengarbe) SFB Inforadio 22.10.97 Die Verhandlungen eines Protokolls uber Klimaschutz- maBnahmen (Helm) Suddeutscher Rundfunk, S2 Forum 25.10.97 Studiodiskussion zum Klima allgemein, El Nino, Treibhaus­ klima (Claussen) ORB, Ozon-Magazin 25.11.97 Interview zum Kyoto Klimagipfel, Treibhauseffekt (Stock) RTL Nachtjournal 01.12.97 Interview zum Kyoto Klimagipfel (Stock) ORB Horfunk 02.12.97 Interview zur Naturkatastrophen (Stock) NTV 06.12.97 Interview zum Thema “Klima und Klimamodellierung" (Claussen) NTV 06.12.97 Interview zu Kyoto Klimagipfel (Stock) Radio 100,6 11.12.97 Interview zur “Bewertung der Verhandlungsergebnisse von Kyoto” (Helm) ORB, Sendung Ozon 16.12.97 Klimadaten (Gerstengarbe)

136 PIK Research in Newspapers and Magazines

Newspaper/Magazine Date Topic

Kolnische Rundschau Anfang Jan. Erderwarmung 96 Berliner Morgenpost 15.01.96 Verdden die Walder zur Steppe - sechs Klima-Szenarien des PIK Die Welt 31.01.96 Mehr Durre und Regen in einer warmeren Welt Vital Heft 1/96 Umwelt-Report: Interview zum Thema Klima-Veranderung Bild der Wissenschaft Heft 2/96 Die Weltgefahren des 21. Jahrhunderts PUTZ Heft 2/96 Vier Jahre Arbeit auf dem Neuland Klimafolgenforschung IGBP-Informationsbrief 01.03.96 German IGBP-Secretariat moves to PIK-Potsdam IBM Magazin Markische Allgemeine 08.03.96 Geschenkpapier und Schleife - ein alter Zopf? Mull ver- Zeitung meiden, Energie sparen: Expertentagung am PIK FOCUS Mai 96 Klimaanderungen / Brandenburgstudie Die Welt 14.06.96 Forscher befurchten Wetterextreme Europa Magazin Nr. 449/96 Das PIK-Potsdam und seine Arbeit BZ 22.05.96 Es wird heiBer TAZ 19.06.96 Vom Winde verweht

TAZ 27.06.96 Nachhaltige Forschung Frankfurter Rundschau 27.06.96 Deutschland tragt uberproportional zu Umweltproblemen bei — Krankheitsbilder der Erde Berliner Morgenpost 09.07.96 UN-Klimagipfel Deutscher Forschungsdienst 08.08.96/ Steppe von der Elbe bis zur Oder? Heft 16 Bildwoche 02.10.96/ Steppe von der Elbe bis zur Oder? Nr. 44 Frankfurter Rundschau 08.10.96 Wissenschaftler sagen Zeitalter der Katastrophen voraus Forschungszentrum Karlsruhe Okt. 96/ Klimaforschung und Internationale Klimapolitik Nr. 3,5

Markische Allgemeine 17.12.96 Hoherer Seegang durch Treibhauseffekt? Die Welt 15.01.97 Zur Person — Portrat zum Vortrag an der Urania Tagesspiegel 03.02.97 Der Mensch andert wahrscheinlich das Klima Das Sonntagsblatt 21.02.97 Die Menschheit steht vor einer Existenzkrise Sparkassenmagazin Heft 3/97 Eine Frage der Folgen - Expertengesprach TAZ April 97 Wenn der Atlantik die Heizung abstellt: Thermohaline Zirkulation im Treibhaus Suddeutsche Zeitung 19.06.97 Springende Wirbel im Atlantik: Nordatlantische Oszillation Potsdamer Neueste Nachrichten 17.07.97 Wohin fuhrt uns der Treibhauseffekt? - Reportage uber das PIK FOCUS Juli 97 "Deutschland unter" - Oberschwemmungen in Deutschland

137 Appendix

Newspaper/Magazine Date Topic Freitag 08.08.97 Die Oder als Modell fur den Klimawandel TAZ 19.08. 97 Kohlefloze als Klimakiller-Treibhausgasquellen fur Methan und Stickoxide, bzw. andere Quellen von C02 als Ver- brennung fossiler Brennstoffe BZ an Sonntag 17.08.97 Report zur Naturkatastrophen, Hochwasser und Klima- anderung

Munchner Abendblatt 28.08.97 El Nino Tagesspiegel 28.08.97 Schon eine Verlangsamung des C02-Ausstosses hulfe: Thermohaline Zirkulation im Treibhaus Tages-Anzeiger Zurich 05.09.97 Damoklesschwert fiber dem Atlantik: Thermohaline Zirkula­ tion im Treibhaus (Rahmstorf) Bild 25.09.97 El Nino Spiegel 26.09.97 Waldbrande - Auswirkungen auf Europa Augsburger Allgemeine 26.09.97 Waldbrande - Auswirkungen auf Europa Bild 26.09.97 Waldbrande - Auswirkungen auf Europa Frankfurter Rundschau, u.a. 01.10.97 Pressekonferenz im Rahmen der 4. Deutschen Klima- konferenz in Frankfurt zu Klimawandel, El Nino, Waldbrande - Auswirkungen auf Europa Berliner Morgenpost 29.10.97 El Nino Tagesspiegel 30.10.97 Die ganze Erde in einem Modell (Symposium der Wiss. Aka- demien in Berlin) Tagesspiegel 02.11.97 "Dann wird der Wald nicht uberleben kdnnen" - Interview zur Klimaanderung Neues Deutschland 04.11.97 Der Klimawandel 1st langst im Gange (Kyoto Klimagipfel)

Berliner Zeitung 05.11.97 Schlechte Zeiten fur Propheten Focus 17.11.97 "Malaria in Europa" - Folgen der globalen Erwarmung Hamburger Abendblatt 22723.11.97 Journal Wissen - zum Klimawandel (Schellnhuber) Hamburger Abendblatt 29.11.97 Brandenburgstudie, Infektionskrankheiten Frankfurter Rundschau 29.11.97 Zu bremsen wird immer schwieriger - Interview zur Welt im Treibhausjahrhundert (Schellnhuber) Neue Ruhr Zeitung 29.11.97 Kyoto Klimagipfel Berliner Zeitung 01.12.97 Interview zum Kyoto Klimagipfel Tagesspiegel 03.12.97 Baume haben keine Seine - Kyoto Klimagipfel BZ 11.12.97 Bewertung der Verhandlungsergebnisse von Kyoto

138 r

External Funding

Project Name Acronym Reference No. Sponsor Total Funding Funding Project Leader

Nationale Koordinierungsstelle des deutschen IGBP IGBP 01LG9503/9 BMBF/DLR PT-USF DM 2.361.378 01.01.96- Schellnhuber + Workshops SI.12.98 Lutkemeier

Integrierte Abschatzung von Klimaschutzstrategen: ICLIPS (1) 01LK9605/0 BMBF/DLR PT-USF DM 2.056.579 01.07.96- T6th Methodisch-naturwissenschaftliche Aspekte 30.06.99

Integrierte Abschatzung von Klimaschutzstrategen: ICLIPS (2) 10402815 BMU-UBA DM 1.020.640 01.07.96- T6th Sozio-dkonomische Aspekte 30.06.99

Globaler Wandel: GIS-gestutzte Erfassung und QUESTIONS 01LG9401/5 BMBF/DLR PT-USF DM 1.726.091 01.10.94- Petschel-Held Modellierung der Syndromdynamik 31.12.97 Block

BAHC/IGBP ..Internationales Kernprojektburo: BANG 01LG9501/3 BMBF/DLR PT-USF DM 968.780 01.03.95- Schellnhuber Biospharenaspekte des Wasserkreislaufs 28.02.97

Auswirkungen der Landnutzung auf den Wasser ELBEOEKO 0339577 BMBF/PT BEO DM 963.698 01.01.97- Becker und Stoffhaushalt der Elbe und ihres Einzugs- 30.06.99 gebietes

Wasserverfugbarkeit im semiariden NO-Brasiliens - WAVES-K 01LK9712/1 BMBF DM 753.400 01.08.97- Bronstert Klimaanalysemodellierung und groBskaliges hydro- PTDLR 31.07.2000 Gerstengarbe logisches Modell

Wirkung von Klimaanderungen auf Vegetation: VEGEKLIM 01LK9408/2 BMBF/DLR PT-AUG DM 709.057 01.07.95- Cramer Entwicklung eines allgemeinen Modells fUr die 30.06.98 Klimafolgenforschung

Wasserverfugbarkeit im semiariden NO-Brasiliens - WAVES-I 01LK9713/4 BMBF DM 652.450 01.08.97- Bronstert Integrierte Modellierung PTDLR 31.07.2000 Krol

Untersuchung der Auswirkungen erhohter atmo- FACE 0339626 BMBF/KfA PT-BEO DM 456.100 01.11.93- Kartschall spharischer C02-Konzentrationen auf Weizen- SI.12.96 bestande innerhalb des Free Air Carbon Dioxide Enrichment-Experimentes Maricopa (USA)

Untersuchung der Auswirkung erhohter atmosphari- FACE2U 01LK9535/5 BMBF/DLR PT-USF DM 444.243 01.04.96- Kartschall scher C02-Konzentrationen innerhalb des Free-Air 31.05.98 Carbon Dioxide Enrichment-Experiments: Ableitung allgemeiner Modellosungen

Klimatologie und Prognose klimainduzierter Ande- KLINO 03F0185A4 BMBF/PT-BEO DM 401.541 01.11.96- Claussen rungen hydrographischer GroBen in Nord- und Ost- 31.10.99 see; Teilprojekt A\ Seegangsberechnungen zur Gewinnung einer spektralen Seegangsklimatologie

j Ap p e n d ix Leader

Project Becker Bronstert Block Reusswig Franck Cramer Lahmer Becker Franck Becker Werner Schellnhuber/ Gerstengarbe Suckow Schellnhuber Schellnhuber Schellnhuber Schellnhuber

of

.98- .98- 12.1998 Funding Period 15.09.93- 01.10.97- 30.09.2000 01.07.97- 30.06.2000 01.09.95- 01.10.97- 31.03.99 01.10.97- 30.09.2000 28.02.98 01.08.94- 31.12.96 01.07.93- 31.3.97 01.01 SI. 01.01.97- 31.12.1997 30.06.96 31.12.97 01.01.97- 31.12.1997 01.12.92- 29.02.96 01.09.93- Funding

359.741 193.800 140.100 140.100 312.225 310.200 275.953 209.720 96.900 97.000 293.407 211.162 83.575 68.605 75.000

Total DM DM DM DM DM DM DM DM DM DM DM DM DM DM DM

GmbH

PT-USF PT-USF PT-USF

PT-BEO

NRW Brandenburg Brandenburg Sponsor

ZALF)

Deutschland Hannover

BMBF/KfA BMBF PTDLR Umweltbundesamt BMBF/DLR (uber (UBA) BMBF/DLR MURL, PTGSF BMBF/PT-FIZ DFG MWFK BMBF Uni IBM BMBF/DLR MWFK 3 4

1,2

No.

24/2599-04/

575/2/ LK9528/2 Reference 0339585 01 01LK9325/8 1998 20204508 01LK9312/9 08NDF13 BE1 24-04/035- MWFK 07VWK01/6 9200 WVB5-8818.3.11 MWFK 01LG9201 035-1997 PIK

Acronym FLOOD KLIMOKO WALD-STUDIE RANK EMSE WaStor IBM WAVES-PIAUI SPP EMSE WTI WKL WBGU

­

Die

-

auf

Bei- und

Bedin-

Daten- mogli- beding-

Integra

den

Elbe-

im

am in

der

des

einen

Planung bei

Elbe

zwischen

fur

Modellierung /

Erde Erde

verschiedener klimatischen

anthropogen Bundesrepublik

Tiefland Deutschlands Modellierung Name

der im Weser

der des

Probleme Klima

Nordrhein-Westfalen

Systems Systems integrierte

Umweltveranderungen" in

Einflusses Okosystemmodellen FluBgebiete Beirat

des des

Wasserkreislauf;

Project 300)

Hochwasserereignissen des und

Renaturierungs-MaBnahmen) globalem

Wechselwirkungen spezieller

Forschungseinrichtungen

Stoffruckhalt Modellierung „Globale hydrologische

Forstwirtschaft

von Nordrhein-Westfalens

Datenzentrum

der

Auswirkungen und

und

Wandel 700) und naturwissenschaftlich-technischer und Klima-

(Teilproj. durch

und

Bundeslandern

Klimawandel ausgewahlter Projektverlangerungen)

Verlauf von

Treibhauseffektes

Untersuchung Regionale (Teilproj. (baulicher einzugsgebiets Walder globalen Wasser- Evolutionsmodelle (und Nutzung banken gungen tion Quantifizierung den Biosphare Evolutionsmodelle GroBskalige ten Anfalligkeit chen neuen Analyse spiel Deutschland Simulation Verbundvorhaben Akquisition Wissenschaftlicher

140 Project Name Acronym Reference No. Sponsor Total Funding funding* Pr°ject Leader

Kurzstudie und Workshop C02 Senken SENKE 0339687 BMBF/KfA PT-BEO DM41.600 1.10.96- Cramer (uber MPI HH) 31.3.97

IGFA IPO Officers Meeting OFFICE IGBP 648 A Royal Swedish Academy DM 18.247 18.08.97- Lutkemeier of Sciences Stockholm 22.08.97

Einbindung der Katastrophenanfalligkeit IDNDR-GSF V-14-2-97 BMBF-GSF DM 12.000 per Reusswig 31.12.97

Gestaltung regionaltypischer Agrariandschaften GRAND Unterauftrag BMBF-BEO DM 8.119,20 01.11.96- Wechsung Nordostdeutschlands 0339694A fiber ZALF SI.12.97

VENICE VENICE INTAS 93- INTAS DM 4.155,75 01.05.93- Svirezhev 1918 31.04.96

MAB-Workshop MAB NUDP6/96 Nationalkomitee fur das DM 2.206,14 13./15.6.96 Linneweber UNESCO Programm der Mensch und die Biosphare

Workshop San Diego MEDECOS III 28-3881-1/91(97) MWFK/HSP III DM 1.985 25.09.97- Thonicke 31.10.97

European Terrestrial Ecosystem Modelling Activity ETEMA ENV4-CT95-0052 EU Environment and Cli­ ECU 291.000 01.05.96- Cramer mate Programme 30.04.99

Dynamic Response of the Forest-Tundra Ecotone to DART ENV4-CT97-0586 EU Environment and Cli­ ECU 189.984 48 months Cramer Environmental Change mate Programme

New Version of the Moscow Global Biosphere MGBM INTAS-94-1154 INTAS ECU 121.400 01.05.95- Schellnhuber Model 31.04.97

Numerical Simulation and Analysis of Climate Varia­ MILLENNIA ENV4-CT95-0101 EU Environment and Cli­ ECU 120.000 01.03.96- Rahmstorf bility on Decadal and Centennial Time Scales mate Programme 28.02.98

Urban Lifestyles, Sustainability, and Integrated ULYSSES ENV4-CT96-0212 EU Environment and Cli­ ECU 110.000 01.05.96- T6th Environmental Assessment mate Programme 30.04.99

International Governmental Organizations and IGR EV5V-CT94-0390 EU SEER II Programme ECU 80.120 01.04.94- Sprinz National Participation in Environmental Regimes: 31.10.96 "E

The Organizational Competents of the Acidification l a n r e t x Regime

International Governmental Organizations and IGR EV5V-CT92-01 85 EU SEER II Programme ECU 36.720 01.04.94- Sprinz

National Participation in Environmental Regimes: 31.03.96 F The Organizational Competents of the Acidification g in d n u Regime A ix d n e p p Period of Project Name Acronym Reference No. Sponsor Total Funding Project Leader Funding

Modelling and Parameterization of the “Air-Vegeta ­ AVSS INTAS-96-1935 INTAS ECU 31.500 36 Monate ClauiBen tion-Snow-Soil ”

River Basin Modelling and Flood Mitigation Inte­ RIBAMOD EV4V-CT96-0263 EU Environment and Cli­ ECU 25.000 01.06.96- Bronstert grated Environmental Assessment mate Programme 31.05.98

Baltic Basin Case Study BBCS EV4V-CT96-0269 EU Environment and Cli­ ECU 5.000 01.07.96- Cramer mate Programme 30.06.99

An Analysis of Interregional and International Water CONFLICT 1214-047068.96/1 Schweizerischer Natio- Sfr. 101.668 01.10.96- Schellnhuber Distribution and Conflict Problems The River Jordan nalfonds zur Forderung 31.09.97 System der wissenschaftlichen Forschung

The Role of Environmental Thresholds ROLE CRG#97035 NATO BEF 210.000 noch nicht Sprinz festgelegt

New EU-Projects with External Funding in 1997

Period of Project Name Acronym Reference No Sponsor Total Funding Project Leader Funding

European Forum on Integrated Environmental EFIEA ENV4-CT98-1 216 EU Environment and Cli­ noch nicht festge- 36 Monate Toth Assessment mate Programme legt

European River Flood Occurrence and Total Risk EUROTAS ENV4-CT97-1091 EU Environment and Cli­ ECU 174.980 36 Monate Bronstert Assessment System mate Programme

Modelling the Effect of Land Degradation on Climate OLD ENV4-CT97-00696 EU Environment and Cli­ ECU 120.000 36 Monate Claussen mate Programme

European Climate Support Environment: Network ECLAT 2 EN V 4-CT97-0256 EU Environment and Cli­ noch nicht festge- 36 Monate Burger for the Co-ordinated Provision of Scientific and Tech­ mate Programme legt nical Advice for Applying Climate Change Data

Long-term Regional Effects of Climate Change on LTEEF-II ENV4-CT97-1175 EU Environment and Cli­ ECU 97.625 30 Monate Cramer European Forest: Impact Assessment and Conse ­ mate Programme quences for Carbon Budget

A Concerted Action Towards a Comprehensive ACACIA ENV4-CT98-0119 EU Environment and Cli­ noch nicht festge- noch nicht fest­ Schellnhuber Climate Impacts and Adaptation Assessment for the mate Programme legt gelegt European Union

Weather Impacts on Natural, Social and Economic WISE ENV4-CT97-0448 EU Environment and Cli­ ECU 195.564 11.97-31.10.99 Schellnhuber Systems mate Programme Ex t e r n a lF u n d in g Leader

Project Grate Grossman Becker Cramer Cramer

of

Monate Monate Funding

Period 15.01.96- 15.07.96 01.08.93- 10 1998-2000 31.07.96 36

festge- festge-

Funding

49.548 nicht nicht 214.000

54.000 25.800

DM

Total DM DM + ECU noch noch legt legt ­

­ ­ Cli Cli der

Foun ­

and

.Leo

Science Akademie

Sponsor Programme Programme

Environment Environment and Environment

DBU Deutsche Naturforscher poldina" EU EU European dation mate mate No

Reference 1000/177 334-3740-096-1 ENV4-CT97-0233 ENV4-CT98 ENV4-CT97-0693 Acronym FACE- Balance BARMOD MOUNTAIN CLIMPACT MAGEC CHANGES

­

­

on

and

Global

Environ

Arctic Extension

Leopoldina

Mountain the

Atmospheric Balance

Global in

den of for

Integrated

ftir European

Environment-depend

under and Energy

Name the Barley Change

the

the in

Model

PIK Enrichment

on

(nominiert Social

at Modelling

the Project

of Studies

of and Regarding

Agro-ecosystems Climate

Impact

Change Impacts

1995) Agro-ecosystem

Concentrations Architecture 2

an Direct Evapotranspiration Preis Investigations CO ent of Scholarships Environmental Change Regions Regional Modelling mental

143 Appendix

Cooperations

Institution/Location Institution/Location

Australia Danish Hydraulic Institute (DHI), Water Resources Division, Horsholm Australian National University, Centre for Resources and Environmental Studies (ANU-CRES), Canberra Danish Meteorological Institute (DMI), Copenhagen

Global Change and Terrestrial Ecosystems (GCTE- National Environmental Research Institute CPO), CSIRO Division of Wildlife and Ecology, Lyneham, Canberra Nils Bohr Institute (NBI), Copenhagen

Commonwealth Scientific and Industrial Research Finland Organisation (CSIRO), Division of Wildlife and European Forest Institute, Joensuu Ecology, Lyneham, Canberra Finnish Forest Research Institute, Vantaa Climatic Impacts Centre, Macquarie University, North Ryde University of Helsinki, Dept, of Forest Ecology, Helsinki National Resources Information Centre Australia (NRIC), Kingston France

University of New South Wales, Sydney Ecole Normals Superieure (ENS), Laboratoire d'Ecologie, Paris Austria Centre d’Etudes Spatiales de la Biosphere International Institute for Applied System Analysis (CESBIO), Toulouse (I I AS A), Laxenburg Laboratoire de Meteorologie Dynamique (LMD) du Brazil CNRS (Centre National de la Recherche Scientifi- Center for and Climate que), Paris Studies (CPTEC-INPE), Cachoeira Laboratoire d'Oceanographie Dynamique et de Fundagao Cearense de Meteorologia e Recursos Climatologie (LODYC), Paris Hfdricos (FUNCEME), Fortaleza Meteo-France, Toulouse

Universidade Federal da Bahia, Salvador de Bahia MEDIAS France, Toulouse

Universidade Federal Do Ceara, Fortaleza, Ceara UNESCO-IHP (International Hydrological China Programme), Paris

Chinese Academy of Sciences, Dept, of Hydrology, Germany Beijing Akademie fur Technikfolgenabschatzung, Baden- Czech Republic Wurttemberg

Institute of Atmospheric Physics, Dept, of Clima­ Albrecht-Ludwigs-Universitat Freiburg, Institut fur tology, Prague Kulturgeographie, Freiburg

Department of Geography, Masaryk University, Alfred-Wegener-lnstitut fur Polar und Meeres- Brno forschung (AWI), Bremerhaven and Potsdam

Denmark Bayreuther Institut fur Terrestrische Okosystem- forschung (BITOK), Bayreuth Danmark Farmaceutiske Hojskole (DFH), Institute for Environmental Chemistry Bayrisches Landesamt fur Wasserwirtschaft, Miin- chen

144 C ooperations

Institution/Location Institution/Location

Geodatenintegration und Analyse, Berlin Fernuniversitat GH Hagen, FB ESGW / okologische Psychologie, Berlin-Brandenburgische Akademie der Wissen- schaften, Berlin Forschungszentrum Julich, Programmgruppe Systemforschung Brandenburgische Technische Universitat Cottbus, Fakultat Umweltwissenschaften Forschungsstatte der Ev. Studiengemeinschaft, Hei­ delberg Bundesanstalt fur Geowissenschaften und Roh- stoffe, Berlin und Hannover Friedrich-Schiller-Universitat, Arbeitsgruppe Meteorologie, Jena Bundesforschungsanstalt fGr Forst und Holzwirt- schaft, Institut fur Forstokologie und Walderfassung, Freie Universitat Berlin Eberswalde GeoForschungsZentrum (GFZ), Potsdam Bundesforschungsanstalt fur Forst und Holzwirt- schaft, Institut fur Forstgenetik, GroBhansdorf Georg-August-Universitat Gottingen, Institut fur Bodenkunde und Waldernahrung, Gottingen Burn fur Angewandte Hydrologie (BAH), Berlin Gesellschaft fur Technische Zusammenarbeit Carl von Ossietzky Universitat, Oldenburg (GTZ), Berlin

Institut fur Chemie und Biologie des Meeres (ICBM) Gesellschaft fur Wasserwirtschaftliche Planung und an der Carl von Ossietzky Universitat, Oldenburg Systemforschung mbH (WASY), Berlin-Bohnsdorf

Institut fur Weltwirtschaft an der Christian-Albrechts- GKSS-Forschungszentrum Geesthacht GmbH Universitat Kiel Hochschule fur Film und Fernsehen, Potsdam Christian-Albrechts-Universitat Kiel, Projekt- zentrum Okosystemforschung, Kiel Humboldt-Universitat zu Berlin

Deutsche Akademie der Naturforscher Leopoldina, IBM Deutschland Informationssysteme GmbH, Halle Stuttgart

Deutscher Wetterdienst (DWD), Offenbach a. M. Institut fur Agrartechnik Bormin e.V. Institut fur Gewasserdkologie und Binnenfischerei Deutsches Elektronen-Synchrotron - Institute for High Energy Physics (DESY-lfH), Zeuthen (IGB), Berlin Deutsches Institut fur Ernahrungsforschung, Institut fur Meereskunde, Kiel Potsdam Institut fur Okologische Wirtschaftsforschung (IOW), Deutsches Institut fur Wirtschaftsforschung (DIW), Berlin Berlin Institut fur Okologische Wirtschaftsforschung, Deutsches Klimarechenzentrum GmbH (DKRZ) Wuppertal Hamburg Institut fur Regionalentwicklung und Struktur- Deutscher Verband fur Wasserwirtschaft und planung (IRS), Berlin Kulturbau (DVWK) Institut fur Sozial-Okologische Forschung GmbH, Fachhochschule Brandenburg Frankfurt/M.

Fachhochschule Potsdam Johann Wolfgang Goethe-Universitat, Frankfurt/M.

Fa. Hydroisotop GmbH, Schweitenkirchen J ustus-Liebig-U niversitat GieBen

Fa. Hydromod, Wedel/Hamburg

145 Appendix

Institution/Location Institution/Location

Konrad-Zuse-Zentrum fur Informationstechnik, Thuringer Landesanstalt fur Umwelt, Jena Berlin Umweltbundesamt (UBA), Berlin Landesanstalt fur Forstplanung Brandenburg, Potsdam Umweltforschungszentrum Leipzig- Halle GmbH (UFZ), Sektion Agrarlandschaften und Abt. Ange- Landesumweltamt Brandenburg (LUA), Potsdam wandte Landschaftsokologie, Leipzig

Martin-Luther Universitat Halle, Institut fur Acker- Universitat Bayreuth, Institut fur Pflanzenokologie und Pflanzenbau, Halle Universitat Bremen, Fachbereich Geowissen ­ Max-Planck-lnstitut fur Meteorologie, Hamburg schaften, Bremen

Max-Planck-lnstitut fur Physik, Werner-Heisenberg- Universitat der Bundeswehr, Institut fur Wasserwe- Institut, Munchen sen, Munchen

Munchner Projektgruppe fur Sozialforschung, Universitat Dortmund, FB Raumplanung, Dortmund Miinchen Universitat Dusseldorf, Juristische Fakultat Munchener Ruckversicherung, Forschungsgruppe "Geowissenschaften", Munchen Universitat Gesamthochschule Kassel

Niedersachsische Energieagentur, Hannover Universitat Hamburg, Meteorologisches Institut, Hamburg Niedersachsische Forstliche Versuchsanstalt, Gottingen Universitat Hannover

Otto-von-Guericke-Universitat Magdeburg, Institut Universitat Hohenheim, Institut fur Bodenkunde und fiir Psychologie Standortlehre

Philipps-Ludwigs-Maximilians-Universitat Marburg, Universitat Fridericiana, Institut fiir Hydrologie und FB Wirtschaftswissenschaften, Marburg Wasserwirtschaft, Karlsruhe Hellriegel-lnstitut e.V., Fachhochschule Anhalt, Universitat Leipzig Bernburg Universitat Kdln

Rheinische Friedrich-Wilhelms-Universitat Bonn Universitat Munchen, Forstwissenschaftliche Rheinisch-Westfalisches Institut fur Wirtschafts- Fakultat, Lehrstuhl fur Waldwachstumskunde und forschung (RWI), Essen Lehrstuhl fur Forstpolitik und Forstgeschichte, Freising-Weihenstephan Statistisches Bundesamt Universitat Osnabruck, Fachbereich Sozialwissen- Technische Fachhochschule Wildau schaften, Osnabruck

Technische Hochschule Darmstadt Universitat Potsdam

Technische Universitat Berlin Universitat des Saarlandes, FB Sozial- und Umwelt- wissenschaften, Saarbrucken Technische Universitat Braunschweig, Institut fur Geographic und Geodkologie (IfGG), Braunschweig Universitat Stuttgart

Technische Universitat Dresden, Westfalische Wilhelms-Universitat Munster Institut fur Hydrologie und Meteorologie, Dresden Wissenschaftlicher Beirat der Bundesregierung Technische Universitat Munchen-Weihenstephan, Globaler Umweltveranderung (WGBU), Geschafts- Institut fur Landespflege und Botanik, Munchen stelle am Alfred-Wegener-lnstitut fur Polar- und Meeresforschung, Bremerhaven

146 C ooperations

Institution/Location Institution/Location

Wissenschaftszentrum Berlin (WZB), Berlin Hungary Wuppertal Institut fur Klima-Umwelt-Energie, Budapest University of Economics Wuppertal Central European University (CEU), Budapest Zentrum fur Agrarlandschafts- und Land- nutzungsforschung (ZALF), Milncheberg Israel

Great Britain Ministry of Science and Technology (MOST)

ADAS, Wolverhampton Blaustein Institute for Desert Research, Sede Boker

Cranfield University, International Ecotechnology University of Haifa Research Centre University of Tel Aviv

University of East Anglia, Climate Research Unit, Italy Norwich Centro Interuniversitario dell'ltalia Nord Orientale University of Essex, Dept, of Biology, Colchester per il Calcolo Automatico (CINECA), Bologna

European Centre for Medium Range Weather Fondazione Eni Enrico Mattel, Milano Forecasts (ECMWF), Berkshire Institute per lo Studio delle Metodologie Geofisiche Hadley Centre, Meteorological Office, Bracknell Ambientali (IMGA), Modena

National Environmental Research Council (NERC), Joint Research Centre, Inst, for Remote Sensing Institute of Terrestrial Ecology, Penicuik Applications, Ispra Institute of Hydrology (IH), Wallingford Joint Research Centre (JRC), Inst, for Systems Engineering and Informatics, Ispra University of Durham, Department of Biological Sciences Universita di Padua

University of Lancaster, Centre for the Study of Universita di Venezia, Dept, of Environmental Sci­ Environmental Change, Lancaster ences

Jackson Environment Institute, University College, Universita di Viterbo, Dept, of Forest Sciences London Japan University of Oxford, Environmental Change Unit, Oxford National Institute for Environmental Studies, Water and Soil Environment Division, Tsukuba University of Reading, Dept, of Meteorology, Read­ ing Netherlands

Research Methods Consultancy (RMC), London Delft University of Technology, Department of Systems Engineering, Policy Planning and Manage ­ Rothamsted Experimental Station, Hertfordshire ment, Delft

University of Sheffield, School of Biological Sci­ Delft Hydraulics ences, Sheffield Erasmus University, Rotterdam Greece Institute for Forestry and Nature Research, National Technical University of Athens, Depart­ Wageningen ment of Geography and Regional Planning National Institute of Public Health and Environmen ­ National Technical University, Athens tal Protection (RIVM), Bilthoven

147 Appendix

I nstitution/Location Institution/Location

Research Institute for Agrobiology and Soil Fertility, International Geosphere-Biosphere Programme Karen (IGBP), Stockholm

Winand Staring Center, Wageningen Stockholm Environment Institute

Wageningen Agricultural University, Department of Stockholm University, Department of System Ecol ­ Theoretical Production Ecology, Wageningen ogy

Vrije Universiteit Amsterdam, Institute for Environ ­ Switzerland mental Studies Eidgenossiche Anstalt fur Wasserversorgung, Nigeria Abwasserreinigung und Gewasserschutz (EAWAG), Dubendorf University of Lagos, Faculty of Environmental Sci­ ences, Lagos Eidgenossische Technische Hochschule Zurich (ETHZ) Norway Eidgenossiche Forschungsanstalt fur Wald, Schnee Norsk Institutt for Naturforskning, Trondheim und Landschaft, Birmensdorf

Poland Graduate Institute of International Studies, Geneva

Warsaw Agricultural University, Dept, of Silviculture Universitat Bern, Institut fur Geographie, Bern

Russia USA

All-Russia Research Institute of Hydrometeorologi ­ Battelle Pacific Northwest National Laboratories, cal Information, World Data Centre, Obninsk Washington Russian Academy of Sciences, Moscow Brookhaven National Laboratory Biosystems Divi­ Russian Academy of Sciences Computer Centre, sion, Upton, Long Island Nowosibirsk Center for Environmental and Estuarine Studies, Russian Academy of Sciences, Institute of Forest University of Maryland Sciences, St. Petersburg Center for Political Studies, Institute for Social Moscow State University Research, University of Michigan, Ann Arbor

Russian Hydrometeorological Service, St. Peters­ Electric Power Research Institute, Palo Alto, CA burg Geophysical Fluid Dynamics Laboratory (GFDL), Spain Princeton

Consejo Superior de Investigaciones Cientificas, Georgia State University, Athens, Georgia Instituto de Estodios Sociales Avanzados, Barce­ Goddard Space Flight Center, NASA, Greenbelt, lona Maryland

Universidad de Castilla-LaMancha, Instituto Desa- International Global Atmospheric Chemistry (IGAC- rrollo Regional CPO), Cambridge, MA

Universidad de Complutense de Madrid, Dept. International Geosphere-Biosphere Programme Geofisica y Meteorologia IGBP-START, Washington

Sweden State University of New York, College of Environ ­ Lund University mental Sciences and Forestry, Syracuse

148 Institution/Location

Lawrence Livermore National Laboratory, Global Climate Research Division, Livermore

United States Environmental Protection Agency (US-EPA), Environmental Research Laboratory, Corvallis

University of Durham, Environmental Research Center, Durham

University of Maryland, Geography Department, College Park

The University of Montana, School of Forestry, Numerical Terradynamics Systems Group, Missoula, Montana

University of New Hampshire, Complex Systems Research Center, Durham, New Hampshire

United States Department of Agriculture (USDA), Agriculture Research Service, U.S. Water Conser ­ vation Lab., Phoenix, Arizona

United States Department of Agriculture (USDA), Agricultural Research Service, Grassland, Soil and Water Research Lab., Temple, Texas

US Dept, of Energy, Oak Ridge National Laboratory, Tennessee Usbekistan

Central Asian Hydrometeorological Research Insti­ tute, Glavgidromet Sanigmi, Tashkent Appendix

Acronyms

AABW AntArctic Bottom Water ECLAT-2 European Climate Projects Support ACACIA A Concerted Action Towards a Environment: Network for Coordi ­ Comprehensive Climate Impacts nated Provision of Scientific & and Adaptation Assessment for the Technical Advice for Applying EU Climate Data in European Climate AGREC Assessment of Agro-Economic Im­ Change Research Projects pacts of Climate Change on Central ECMWF European Centre for Medium- and Western Europe Range Weather Forecasts B-WIN Breitband-Wissenschaftsnetz EFIEA European Forum on Integrated BAHC Biospheric Aspects of the Hydro- Environmental Assessment logical Cycle EGMO Einzugsgebietsmodell BMBF Bundesministerium fur Bildung, ETEMA European Terrestrial Ecosystem Wissenschaft, Forschung und Modelling Activity • Technologie / Federal Ministry for EUROPA European Network Activities on Education, Science, Research and Global Change Technology EUROTAS European River Flood Occurrence BMU Bundesministerium fur Umwelt, and Total Risk Assessment System Naturschutz und Reaktorsicherheit FACE Free-Air Carbon Dioxide Enrich­ / Federal Ministry for Environment, ment Experiment Nature Protection and Reactor FCCC Framework Convention on Climate Safety Change CERA 2.3 Climate and Environmental Data FEWS Famine Early Warning System Retrieval and Archiving System FORESEE Forest Ecosystem in a Changing CHIEF Global Change Impacts on Euro ­ Environment pean Forests GAIM Global Analysis, Interpretation and CLD Modelling the Effect of Land Degra ­ Modelling dation on Climate GCM Global Circulation Model CLIMAGHS Climate and Global Change Impact GCTE Global Change and Terrestrial on the Environment and Society of Ecosystems the Mediterranean and the GEM General Equilibrium Model Maghreb States GFDL Geophysical Fluid Dynamics CLIMBER Climate and Biosphere Model Laboratory CLIMPACT Regional Climate Modelling and GIS Geographisches Informationssys- Integrated Global Change Impact tem / Geographic Information Sys­ Studies in the European Arctic tem CNPq Conselho National de Desenvolvi- GNP Gross National Product mento Cientiffco e Tecnologico GRASS Geographic Resource Analysis COEM Long-Term Co-Evolutionary Bio ­ Support System sphere and Geosphere Models GUI Graphical User Interface CRU Climate Research Unit, University HTML Hypertext Markup Language of East Anglia ICLIPS Integrated Assessment of Climate DART Dynamic Response of the Forest- Protection Strategies Tundra Ecotone to Environmental ICM ICLIPS Climate Model Change IEA Integrated Environmental DFG Deutsche Forschungsgemein- Assessment schaft IGBP The International Geosphere-Bio ­ DGVM Dynamic Global Vegetation Model sphere Programme

150 Acronyms

IPCC Intergovernmental Panel on REMO Regional Model Climate Change RESOURCE Social Dimensions of Resource KLINO Klimatologie und Prognose klimain- Use: Water Related Problems in duzierter Anderungen hydrogra- the Mediterranean phischer GroBen in Nord- und RICC Regional Integrated Climate Ostsee / Climatological Change of Change Assessment Hydrographic Parameters in the SANA Special and Temporal Dynamics of North Sea and the Baltic Sea Ecosystems under Changing Emis­ LTEEF-II Long-Term Regional Effects of sion Conditions -Dubener Heide Climate Change on European SDM Scientific Data Management Forests: Impact Assessment and SLR Restriction Effects on Temperature Consequences of the Carbon and Sea Level Rise Budget SOM Soil Organic Matter LUCC Land Use and Land Cover Change SWIM Soil and Water Integrated Model MAG EC Modelling Agroecosystems under TWA Tolerable Windows Approach Global Environmental Change ULYSSES Urban Lifestyle, Sustainability and MGBM The New Version of the Moscow Integrated Environmental Assess­ Global Biosphere Model ment MILLENNIA Numerical Simulation and Analysis UNEP United Nations Environment of Climate Variability on Decadal Programme and Centennial Time Scales UNFCCC United Nations Framework Con ­ MOUNTAIN Environmental and Societal vention on Climate Change Changes in Mountain Regions USAID U.S. Agency for International De­ MWFK Ministerium fur Wissenschaft, velopment Forschung und Kultur des Landes USGS U.S. Geological Survey Brandenburg / Ministry for Science, USWCL US Water Conservation Laboratory Research and Culture of the State WAVES Water Availability, Vulnerability of of Brandenburg Ecosystems and Society in the NADW North Atlantic Deep Water Northeast of Brazil NCAR The National Center for Atmos ­ WBGU Wissenschaftlicher Beirat der Bun- pheric Research desregierung “Globale Umweltver- NOAA The National Oceanic and anderungen” / German Advisory Atmospheric Administration Council on Global Change NPP Net Primary Productivity WCRP World Climate Research P-MAN Potsdam Metropolitan Area Programme Network WFP United Nations World Food Pro ­ PFT Plant Functional Type gramme POEM Potsdam Earth System Modelling WISE Weather Impacts on Natural, Social QDE Qualitative Differential Equation and Economic Systems QUESTIONS Global Change: Qualitative Dyna­ ZALF Zentrum fur Agrarlandschafts- und mics of Syndromes and Transition Landnutzungsforschung / Center to Sustainability for Agricultural Landscape and RAGTIME Regional Assessment of Global Land Use Research Change Impacts Through Integ ­ 4C is equal to FORESEE rated Modelling in the Elbe River Basin

151 Appendix

152