Pro Ironpython (2009).Pdf
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Ironpython in Action
IronPytho IN ACTION Michael J. Foord Christian Muirhead FOREWORD BY JIM HUGUNIN MANNING IronPython in Action Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> IronPython in Action MICHAEL J. FOORD CHRISTIAN MUIRHEAD MANNING Greenwich (74° w. long.) Download at Boykma.Com Licensed to Deborah Christiansen <[email protected]> For online information and ordering of this and other Manning books, please visit www.manning.com. The publisher offers discounts on this book when ordered in quantity. For more information, please contact Special Sales Department Manning Publications Co. Sound View Court 3B fax: (609) 877-8256 Greenwich, CT 06830 email: [email protected] ©2009 by Manning Publications Co. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by means electronic, mechanical, photocopying, or otherwise, without prior written permission of the publisher. Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations appear in the book, and Manning Publications was aware of a trademark claim, the designations have been printed in initial caps or all caps. Recognizing the importance of preserving what has been written, it is Manning’s policy to have the books we publish printed on acid-free paper, and we exert our best efforts to that end. Recognizing also our responsibility to conserve the resources of our planet, Manning books are printed on paper that is at least 15% recycled and processed without the use of elemental chlorine. -
Thriving in a Crowded and Changing World: C++ 2006–2020
Thriving in a Crowded and Changing World: C++ 2006–2020 BJARNE STROUSTRUP, Morgan Stanley and Columbia University, USA Shepherd: Yannis Smaragdakis, University of Athens, Greece By 2006, C++ had been in widespread industrial use for 20 years. It contained parts that had survived unchanged since introduced into C in the early 1970s as well as features that were novel in the early 2000s. From 2006 to 2020, the C++ developer community grew from about 3 million to about 4.5 million. It was a period where new programming models emerged, hardware architectures evolved, new application domains gained massive importance, and quite a few well-financed and professionally marketed languages fought for dominance. How did C++ ś an older language without serious commercial backing ś manage to thrive in the face of all that? This paper focuses on the major changes to the ISO C++ standard for the 2011, 2014, 2017, and 2020 revisions. The standard library is about 3/4 of the C++20 standard, but this paper’s primary focus is on language features and the programming techniques they support. The paper contains long lists of features documenting the growth of C++. Significant technical points are discussed and illustrated with short code fragments. In addition, it presents some failed proposals and the discussions that led to their failure. It offers a perspective on the bewildering flow of facts and features across the years. The emphasis is on the ideas, people, and processes that shaped the language. Themes include efforts to preserve the essence of C++ through evolutionary changes, to simplify itsuse,to improve support for generic programming, to better support compile-time programming, to extend support for concurrency and parallel programming, and to maintain stable support for decades’ old code. -
Domain-Specific Programming Systems
Lecture 22: Domain-Specific Programming Systems Parallel Computer Architecture and Programming CMU 15-418/15-618, Spring 2020 Slide acknowledgments: Pat Hanrahan, Zach Devito (Stanford University) Jonathan Ragan-Kelley (MIT, Berkeley) Course themes: Designing computer systems that scale (running faster given more resources) Designing computer systems that are efficient (running faster under constraints on resources) Techniques discussed: Exploiting parallelism in applications Exploiting locality in applications Leveraging hardware specialization (earlier lecture) CMU 15-418/618, Spring 2020 Claim: most software uses modern hardware resources inefficiently ▪ Consider a piece of sequential C code - Call the performance of this code our “baseline performance” ▪ Well-written sequential C code: ~ 5-10x faster ▪ Assembly language program: maybe another small constant factor faster ▪ Java, Python, PHP, etc. ?? Credit: Pat Hanrahan CMU 15-418/618, Spring 2020 Code performance: relative to C (single core) GCC -O3 (no manual vector optimizations) 51 40/57/53 47 44/114x 40 = NBody 35 = Mandlebrot = Tree Alloc/Delloc 30 = Power method (compute eigenvalue) 25 20 15 10 5 Slowdown (Compared to C++) Slowdown (Compared no data no 0 data no Java Scala C# Haskell Go Javascript Lua PHP Python 3 Ruby (Mono) (V8) (JRuby) Data from: The Computer Language Benchmarks Game: CMU 15-418/618, http://shootout.alioth.debian.org Spring 2020 Even good C code is inefficient Recall Assignment 1’s Mandelbrot program Consider execution on a high-end laptop: quad-core, Intel Core i7, AVX instructions... Single core, with AVX vector instructions: 5.8x speedup over C implementation Multi-core + hyper-threading + AVX instructions: 21.7x speedup Conclusion: basic C implementation compiled with -O3 leaves a lot of performance on the table CMU 15-418/618, Spring 2020 Making efficient use of modern machines is challenging (proof by assignments 2, 3, and 4) In our assignments, you only programmed homogeneous parallel computers. -
Cornell CS6480 Lecture 3 Dafny Robbert Van Renesse Review All States
Cornell CS6480 Lecture 3 Dafny Robbert van Renesse Review All states Reachable Ini2al states states Target states Review • Behavior: infinite sequence of states • Specificaon: characterizes all possible/desired behaviors • Consists of conjunc2on of • State predicate for the inial states • Acon predicate characterizing steps • Fairness formula for liveness • TLA+ formulas are temporal formulas invariant to stuering • Allows TLA+ specs to be part of an overall system Introduction to Dafny What’s Dafny? • An imperave programming language • A (mostly funconal) specificaon language • A compiler • A verifier Dafny programs rule out • Run2me errors: • Divide by zero • Array index out of bounds • Null reference • Infinite loops or recursion • Implementa2ons that do not sa2sfy the specifica2ons • But it’s up to you to get the laFer correct Example 1a: Abs() method Abs(x: int) returns (x': int) ensures x' >= 0 { x' := if x < 0 then -x else x; } method Main() { var x := Abs(-3); assert x >= 0; print x, "\n"; } Example 1b: Abs() method Abs(x: int) returns (x': int) ensures x' >= 0 { x' := 10; } method Main() { var x := Abs(-3); assert x >= 0; print x, "\n"; } Example 1c: Abs() method Abs(x: int) returns (x': int) ensures x' >= 0 ensures if x < 0 then x' == -x else x' == x { x' := 10; } method Main() { var x := Abs(-3); print x, "\n"; } Example 1d: Abs() method Abs(x: int) returns (x': int) ensures x' >= 0 ensures if x < 0 then x' == -x else x' == x { if x < 0 { x' := -x; } else { x' := x; } } Example 1e: Abs() method Abs(x: int) returns (x': int) ensures -
Neufuzz: Efficient Fuzzing with Deep Neural Network
Received January 15, 2019, accepted February 6, 2019, date of current version April 2, 2019. Digital Object Identifier 10.1109/ACCESS.2019.2903291 NeuFuzz: Efficient Fuzzing With Deep Neural Network YUNCHAO WANG , ZEHUI WU, QIANG WEI, AND QINGXIAN WANG China National Digital Switching System Engineering and Technological Research Center, Zhengzhou 450000, China Corresponding author: Qiang Wei ([email protected]) This work was supported by National Key R&D Program of China under Grant 2017YFB0802901. ABSTRACT Coverage-guided graybox fuzzing is one of the most popular and effective techniques for discovering vulnerabilities due to its nature of high speed and scalability. However, the existing techniques generally focus on code coverage but not on vulnerable code. These techniques aim to cover as many paths as possible rather than to explore paths that are more likely to be vulnerable. When selecting the seeds to test, the existing fuzzers usually treat all seed inputs equally, ignoring the fact that paths exercised by different seed inputs are not equally vulnerable. This results in wasting time testing uninteresting paths rather than vulnerable paths, thus reducing the efficiency of vulnerability detection. In this paper, we present a solution, NeuFuzz, using the deep neural network to guide intelligent seed selection during graybox fuzzing to alleviate the aforementioned limitation. In particular, the deep neural network is used to learn the hidden vulnerability pattern from a large number of vulnerable and clean program paths to train a prediction model to classify whether paths are vulnerable. The fuzzer then prioritizes seed inputs that are capable of covering the likely to be vulnerable paths and assigns more mutation energy (i.e., the number of inputs to be generated) to these seeds. -
Eagle: Tcl Implementation in C
Eagle: Tcl Implementation in C# Joe Mistachkin <[email protected]> 1. Abstract Eagle [1], Extensible Adaptable Generalized Logic Engine, is an implementation of the Tcl [2] scripting language for the Microsoft Common Language Runtime (CLR) [3]. It is designed to be a universal scripting solution for any CLR based language, and is written completely in C# [4]. Su- perficially, it is similar to Jacl [5], but it was written from scratch based on the design and imple- mentation of Tcl 8.4 [6]. It provides most of the functionality of the Tcl 8.4 interpreter while bor- rowing selected features from Tcl 8.5 [7] and the upcoming Tcl 8.6 [8] in addition to adding en- tirely new features. This paper explains how Eagle adds value to both Tcl/Tk and CLR-based applications and how it differs from other “dynamic languages” hosted by the CLR and its cousin, the Microsoft Dy- namic Language Runtime (DLR) [9]. It then describes how to use, integrate with, and extend Ea- gle effectively. It also covers some important implementation details and the overall design phi- losophy behind them. 2. Introduction This paper presents Eagle, which is an open-source [10] implementation of Tcl for the Microsoft CLR written entirely in C#. The goal of this project was to create a dynamic scripting language that could be used to automate any host application running on the CLR. 3. Rationale and Motivation Tcl makes it relatively easy to script applications written in C [11] and/or C++ [12] and so can also script applications written in many other languages (e.g. -
Working with Ironpython and WPF
Working with IronPython and WPF Douglas Blank Bryn Mawr College Programming Paradigms Spring 2010 With thanks to: http://www.ironpython.info/ http://devhawk.net/ IronPython Demo with WPF >>> import clr >>> clr.AddReference("PresentationFramework") >>> from System.Windows import * >>> window = Window() >>> window.Title = "Hello" >>> window.Show() >>> button = Controls.Button() >>> button.Content = "Push Me" >>> panel = Controls.StackPanel() >>> window.Content = panel >>> panel.Children.Add(button) 0 >>> app = System.Windows.Application() >>> app.Run(window) XAML Example: Main.xaml <Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" xmlns: x="http://schemas.microsoft.com/winfx/2006/xaml" Title="TestApp" Width="640" Height="480"> <StackPanel> <Label>Iron Python and WPF</Label> <ListBox Grid.Column="0" x:Name="listbox1" > <ListBox.ItemTemplate> <DataTemplate> <TextBlock Text="{Binding Path=title}" /> </DataTemplate> </ListBox.ItemTemplate> </ListBox> </StackPanel> </Window> IronPython + XAML import sys if 'win' in sys.platform: import pythoncom pythoncom.CoInitialize() import clr clr.AddReference("System.Xml") clr.AddReference("PresentationFramework") clr.AddReference("PresentationCore") from System.IO import StringReader from System.Xml import XmlReader from System.Windows.Markup import XamlReader, XamlWriter from System.Windows import Window, Application xaml = """<Window xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation" Title="XamlReader Example" Width="300" Height="200"> <StackPanel Margin="5"> <Button -
Intel® Software Guard Extensions: Data Center Attestation Primitives
Intel® Software Guard Extensions Data Center Attestation Primitives Installation Guide For Windows* OS Revision <1.0> <3/10/2020> Table of Contents Introduction .......................................................................................................................... 3 Components – Detailed Description ....................................................................................... 4 Platform Configuration .......................................................................................................... 6 Windows* Server OS Support ................................................................................................. 7 Installation Instructions ......................................................................................................... 8 Windows* Server 2016 LTSC ................................................................................................................. 8 Downloading the Software ........................................................................................................................... 8 Installation .................................................................................................................................................... 8 Windows* Server 2019 Installation ....................................................................................................... 9 Downloading the Software ........................................................................................................................... 9 Installation -
Fine-Grained Energy Profiling for Power-Aware Application Design
Fine-Grained Energy Profiling for Power-Aware Application Design Aman Kansal Feng Zhao Microsoft Research Microsoft Research One Microsoft Way, Redmond, WA One Microsoft Way, Redmond, WA [email protected] [email protected] ABSTRACT changing from double precision to single), or quality of service pro- Significant opportunities for power optimization exist at applica- vided [10]. Third, energy usage at the application layer may be tion design stage and are not yet fully exploited by system and ap- made dynamic [8]. For instance, an application hosted in a data plication designers. We describe the challenges developers face in center may decide to turn off certain low utility features if the en- optimizing software for energy efficiency by exploiting application- ergy budget is being exceeded, and an application on a mobile de- level knowledge. To address these challenges, we propose the de- vice may reduce its display quality [11] when battery is low. This velopment of automated tools that profile the energy usage of vari- is different from system layer techniques that may have to throttle ous resource components used by an application and guide the de- the throughput resulting in users being denied service. sign choices accordingly. We use a preliminary version of a tool While many application specific energy optimizations have been we have developed to demonstrate how automated energy profiling researched, there is a lack of generic tools that a developer may use helps a developer choose between alternative designs in the energy- at design time. Application specific optimizations require signif- performance trade-off space. icant development effort and are often only applicable to specific scenarios. -
Starting up an Application Domain
04_596985 ch01.qxp 12/14/05 7:46 PM Page 1 Initial Phases of a Web Request Before the first line of code you write for an .aspx page executes, both Internet Information Services (IIS) and ASP.NET have performed a fair amount of logic to establish the execution context for a HyperText Transfer Protocol (HTTP) request. IIS may have negotiated security credentials with your browser. IIS will have determined that ASP.NET should process the request and will perform a hand- off of the request to ASP.NET. At that point, ASP.NET performs various one-time initializations as well as per-request initializations. This chapter will describe the initial phases of a Web request and will drill into the various security operations that occur during these phases. In this chapter, you will learn about the following steps that IIS carries out for a request: ❑ The initial request handling and processing performed both by the operating system layer and the ASP.NET Internet Server Application Programming Interface (ISAPI) filter ❑ How IIS handles static content requests versus dynamic ASP.NET content requests ❑ How the ASP.NET ISAPI filter transitions the request from the world of IIS into the ASP.NET world Having an understandingCOPYRIGHTED of the more granular portions MATERIAL of request processing also sets the stage for future chapters that expand on some of the more important security processing that occurs during an ASP.NET request as well as the extensibility points available to you for modifying ASP.NET’s security behavior. This book describes security behavior primarily for Windows Server 2003 running IIS6 and ASP.NET. -
Visual Studio 2010 Tools for Sharepoint Development
Visual Studio 2010 for SharePoint Open XML and Content Controls COLUMNS Toolbox Visual Studio 2010 Tools for User Interfaces, Podcasts, Object-Relational Mappings SharePoint Development and More Steve Fox page 44 Scott Mitchell page 9 CLR Inside Out Profi ling the .NET Garbage- Collected Heap Subramanian Ramaswamy & Vance Morrison page 13 Event Tracing Event Tracing for Windows Basic Instincts Collection and Array Initializers in Visual Basic 2010 Generating Documents from SharePoint Using Open XML Adrian Spotty Bowles page 20 Content Controls Data Points Eric White page 52 Data Validation with Silverlight 3 and the DataForm John Papa page 30 Cutting Edge Data Binding in ASP.NET AJAX 4.0 Dino Esposito page 36 Patterns in Practice Functional Programming Core Instrumentation Events in Windows 7, Part 2 for Everyday .NET Developers MSDN Magazine Dr. Insung Park & Alex Bendetov page 60 Jeremy Miller page 68 Service Station Building RESTful Clients THIS MONTH at msdn.microsoft.com/magazine: Jon Flanders page 76 CONTRACT-FIRST WEB SERVICES: Schema-Based Development Foundations with Windows Communication Foundation Routers in the Service Bus Christian Weyer & Buddihke de Silva Juval Lowy page 82 TEST RUN: Partial Anitrandom String Testing Concurrent Affairs James McCaffrey Four Ways to Use the Concurrency TEAM SYSTEM: Customizing Work Items Runtime in Your C++ Projects Rick Molloy page 90 OCTOBER Brian A. Randell USABILITY IN PRACTICE: Getting Inside Your Users’ Heads 2009 Charles B. Kreitzberg & Ambrose Little Vol 24 No 10 Vol OCTOBER 2009 VOL 24 NO 10 OCTOBER 2009 VOLUME 24 NUMBER 10 LUCINDA ROWLEY Director EDITORIAL: [email protected] HOWARD DIERKING Editor-in-Chief WEB SITE MICHAEL RICHTER Webmaster CONTRIBUTING EDITORS Don Box, Keith Brown, Dino Esposito, Juval Lowy, Dr. -
Pyrevit Documentation Release 4.7.0-Beta
pyRevit Documentation Release 4.7.0-beta eirannejad May 15, 2019 Getting Started 1 How To Use This Documents3 2 Create Your First Command5 3 Anatomy of a pyRevit Script 7 3.1 Script Metadata Variables........................................7 3.2 pyrevit.script Module...........................................9 3.3 Appendix A: Builtin Parameters Provided by pyRevit Engine..................... 12 3.4 Appendix B: System Category Names.................................. 13 4 Effective Output/Input 19 4.1 Clickable Element Links......................................... 19 4.2 Tables................................................... 20 4.3 Code Output............................................... 21 4.4 Progress bars............................................... 21 4.5 Standard Prompts............................................. 22 4.6 Standard Dialogs............................................. 26 4.7 Base Forms................................................ 35 4.8 Graphs.................................................. 37 5 Keyboard Shortcuts 45 5.1 Shift-Click: Alternate/Config Script................................... 45 5.2 Ctrl-Click: Debug Mode......................................... 45 5.3 Alt-Click: Show Script file in Explorer................................. 46 5.4 Ctrl-Shift-Alt-Click: Reload Engine................................... 46 5.5 Shift-Win-Click: pyRevit Button Context Menu............................. 46 6 Extensions and Commmands 47 6.1 Why do I need an Extension....................................... 47 6.2 Extensions...............................................