Quantum Circuit Based on Electron Spins in Semiconductor Quantum Dots

Total Page:16

File Type:pdf, Size:1020Kb

Quantum Circuit Based on Electron Spins in Semiconductor Quantum Dots Quantum Circuit based on Electron Spins in Semiconductor Quantum Dots Chang-Yu Hsieh Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Physics1 Department of Physics Faculty of Science University of Ottawa c Chang-Yu Hsieh, Ottawa, Canada, 2012 1The Ph.D. program is a joint program with Carleton University, administered by the Ottawa- Carleton Institute Of Physics Thesis advisor Author Dr. Pawel Hawrylak Chang-Yu Hsieh Quantum Circuit based on Electron Spins in Semiconductor Quantum Dots Abstract In this thesis, I present a microscopic theory of quantum circuits based on inter- acting electron spins in quantum dot molecules. We use the Linear Combination of Harmonic Orbitals-Configuration Interaction (LCHO-CI) formalism for microscopic calculations. We then derive effective Hubbard, t-J, and Heisenberg models. These models are used to predict the electronic, spin and transport properties of a triple quantum dot molecule (TQDM) as a function of topology, gate configuration, bias and magnetic field. With these theoretical tools and fully characterized TQDMs, we propose the fol- lowing applications: 1. Voltage tunable qubit encoded in the chiral states of a half-filled TQDM. We show how to perform single qubit operations by pulsing voltages. We propose the "chirality-to-charge" conversion as the measurement scheme and demon- strate the robustness of the chirality-encoded qubit due to charge fluctuations. We derive an effective qubit-qubit Hamiltonian and demonstrate the two-qubit gate. This provides all the necessary operations for a quantum computer built with chirality-encoded qubits. 2. Berry's phase. We explore the prospect of geometric quantum computing with chirality-encoded qubit. We construct a Herzberg circuit in the voltage space ii and show the accumulation of Berry's phase. 3. Macroscopic quantum states on a semiconductor chip. We consider a linear chain of TQDMs, each with 4 electrons, obtained by nanostructuring a metallic gate in a field effect transistor. We theoretically show that the low energy spectrum of the chain maps onto that of a spin-1 chain. Hence, we show that macroscopic quantum states, protected by a Haldane gap from the continuum, emerge. In order to minimize decoherence of electron spin qubits, we consider using electron spins in the p orbitals of the valence band (valence holes) as qubits. We develop a theory of valence hole qubit within the 4-band k.p model. We show that static magnetic fields can be used to perform single qubit operations. We also show that the qubit-qubit interactions are sensitive to the geometry of a quantum dot network. For vertical qubit arrays, we predict that there exists an optimal qubit separation suitable for the voltage control of qubit-qubit interactions. iii Contents Title Page . i Abstract . ii Table of Contents . iv List of Figures . vii Statement of Originality . ix Acknowledgments . xi 1 Introduction 1 1.1 Overview of Quantum Computation . 2 1.1.1 DiVincenzo's Criteria: Search for a Physical Qubit . 4 1.1.2 Semiconductor Qubits . 6 1.2 Quantum Dots . 9 1.2.1 Fabrication of Lateral Gated Quantum Dots . 11 1.2.2 Spectroscopic Tools for Lateral Gated Quantum Dots . 12 1.2.3 Fabrication of Self-Assembled Quantum Dots . 19 1.2.4 Photoluminescence Spectroscopy for Self-Assembled Quantum Dots . 21 1.3 Quantum Algorithm with Electron Spin-Based Qubits . 22 1.3.1 Single Qubit Operations . 23 1.3.2 Double Qubit Operations . 24 1.3.3 Quantum Teleportation in a Linear Triple Quantum Dot . 27 2 Electronic and Spin Properties of a Triple Quantum Dot 30 2.1 Models . 30 2.1.1 Linear Combination of Harmonic Orbitals - Configuration In- teractions . 31 2.1.2 Hubbard Model . 39 2.1.3 Effective Models . 43 2.2 Electronic and Spin Properties as a Function of Number of Electrons, Topology and Biasing of Central Dot . 48 2.2.1 One-Electron and One-Hole Case . 49 iv 2.2.2 2-Electrons and 2-Holes Case . 52 2.2.3 Three-Electron Case . 57 2.2.4 Stability Diagrams . 62 2.3 Aharonov-Bohm Oscillations in a Triple Quantum Dot . 63 2.4 Conclusion . 69 3 Chirality-based Coded Qubits in Triple Quantum Dot Molecules 72 3.1 Introduction . 72 3.2 Models of Chirality-based Coded Qubits . 74 3.2.1 LCHO-CI Microscopic Model . 77 3.2.2 Effective Models . 81 3.2.3 Chiral States . 83 3.3 Quantum Information Processing with Coded Qubits . 85 3.3.1 Single coded qubit: preparation and initialization . 85 3.3.2 Coherent Operations: single qubit gates . 90 3.3.3 Coherent Operations: double qubit gates . 90 3.3.4 Measurement of a single coded qubit . 96 3.4 Decoherence due to Fluctuating Charged Impurities . 97 3.4.1 Triple Quantum Dot Molecule with Charged Impurity . 98 3.4.2 Effects of Impurity on the One-Electron Energy Spectrum . 100 3.4.3 Effects of an Impurity on the Coded Qubit Levels . 103 3.4.4 Mapping of Charge Fluctuation Induced Decoherence into Spin in a Random Magnetic Field Problem . 108 3.4.5 Conclusion . 112 4 Macroscopic Quantum States in a Chain of Linear TQDs 115 4.1 Introduction . 116 4.2 Theory and methods . 117 4.3 Results and discussion . 123 4.4 Conclusions . 128 5 Herzberg Circuit and Berry's Phase in a Chirality-based Coded Qubit in a Triangular Triple Quantum Dot 129 5.1 Introduction . 130 5.2 The model . 132 5.3 Generation and Detection of Berry's phase . 135 5.4 Conclusion . 144 6 Sequential Tunneling and Spin Blockade in a Linear Triple Quantum Dot 145 6.1 Introduction . 146 6.2 Model . 149 v 6.3 Theory of Sequential Tunneling . 154 6.4 Transport and Spin Blockade . 157 6.4.1 Quantum Interference-based Spin Blockade . 159 6.4.2 Symmetrical and Asymmetrical Spin Blockade . 169 6.5 Conclusion . 176 7 Valence Hole Qubit in Self-Assembled Quantum Dots 177 7.1 Motivation . 178 7.2 Model . 181 7.3 Hole states in single quantum dot . 184 7.3.1 Hole under Bz field . 184 7.3.2 Hole under Bx field . 187 7.4 Hole states in coupled quantum dots . 190 7.4.1 Hole states in vertically coupled quantum dots . 192 7.4.2 Hole states in laterally coupled quantum dots . 193 7.5 Conclusion . 194 8 Conclusion 195 A Linear Combination of Harmonic Oscillator - Configuration Interac- tion 207 A.1 Single Particle in a Parabolic Dot with Magnetic Field . 208 A.1.1 Fock-Darwin Orbitals . 209 A.1.2 Fock-Darwin Orbitals in terms of Harmonic Oscillator Orbitals 211 A.2 Single Particle in a Multi-Dot Device . 214 A.3 Many Electrons in a Multi-Dot Device . 223 B L¨owdinPerturbation Theory 226 B.1 Division of Hamiltonian and Hilbert Space . 226 B.2 Analytical Transformations . 227 B.2.1 First Order . 229 B.2.2 Second Order . 231 B.3 Iterative Approach to Numerical Transformation . 232 C Cotunneling Through a Triple Quantum Dot 236 vi List of Figures 1.1 Fabrication of lateral gated quantum dots . 11 1.2 Coulomb blockade in lateral gated quantum dots . 13 1.3 Quantum point contact and charge sensing . 15 1.4 Spin blockade in a linear triple quantum dot . 16 1.5 Characterization of a triple quantum dot . 18 1.6 Fabrication of self-assembled quantum dots . 20 1.7 quantum circuit diagram for quantum teleportation . 27 2.1 Model of triple quantum dots . 32 2.2 Single particle energy spectra of a triangular triple quantum dot as a function of complete shells of FD orbitals included in the basis for exact diagonalization. 36 2.3 single-particle spectrum calculated with LCHO . 37 2.4 Spatial representation of localized Hubbard orbitals. 41 2.5 2-electron energy spectra calculated from LCHO-CI, Hubbard, and t-J models . 47 2.6 Two-hole triplet-singlet transition . 58 2.7 Three-electron energy spectra calculated from LCHO-CI, Hubbard, and Heisenberg models . 60 2.8 Stability diagram of triple quantum dots . 63 2.9 AB oscillations in triple quantum dots . 65 2.10 AB oscillations in triple quantum dots 2 . 68 2.11 Stability diagram of a triple quantum dot in the presence of magnetic field . 70 3.1 Quasi-momentum-resolved subspaces of a half-filled triangular triple quantum dot . 76 3.2 Architectures of triple quantum dot network . 80 3.3 Preparation of a coded qubit . 86 3.4 Preparation of coded qubit 2 . 89 3.5 Energy spectrum of two coupled triple quantum dots . 95 vii 3.6 Effects of a charged impurity on single-particle states . 102 3.7 Effects of a charged impurity on single-particle energy spectrum . 104 3.8 Effects of a charged impurity on three-electron energy spectrum . 105 3.9 Simulation of random magnetic fields . 111 3.10 Charged impurity-induced decoherence of coded qubit . 113 4.1 Model of quantum dot network on a semiconductor chip . 118 4.2 Models of effective spin chain . 121 4.3 Comparison of Energy spectra of spin-1/2 chain and TQD chain . 124 4.4 Comparison of energy spectra of spin-1/2 and spin-1 chains . 126 5.1 Herzberg circuit . 136 5.2 Deviation from Heisenberg model . 139 5.3 Herzberg circuit 2 . 140 5.4 accumulation of Berry's phase . ..
Recommended publications
  • Further Quantum Physics
    Further Quantum Physics Concepts in quantum physics and the structure of hydrogen and helium atoms Prof Andrew Steane January 18, 2005 2 Contents 1 Introduction 7 1.1 Quantum physics and atoms . 7 1.1.1 The role of classical and quantum mechanics . 9 1.2 Atomic physics—some preliminaries . .... 9 1.2.1 Textbooks...................................... 10 2 The 1-dimensional projectile: an example for revision 11 2.1 Classicaltreatment................................. ..... 11 2.2 Quantum treatment . 13 2.2.1 Mainfeatures..................................... 13 2.2.2 Precise quantum analysis . 13 3 Hydrogen 17 3.1 Some semi-classical estimates . 17 3.2 2-body system: reduced mass . 18 3.2.1 Reduced mass in quantum 2-body problem . 19 3.3 Solution of Schr¨odinger equation for hydrogen . ..... 20 3.3.1 General features of the radial solution . 21 3.3.2 Precisesolution.................................. 21 3.3.3 Meanradius...................................... 25 3.3.4 How to remember hydrogen . 25 3.3.5 Mainpoints.................................... 25 3.3.6 Appendix on series solution of hydrogen equation, off syllabus . 26 3 4 CONTENTS 4 Hydrogen-like systems and spectra 27 4.1 Hydrogen-like systems . 27 4.2 Spectroscopy ........................................ 29 4.2.1 Main points for use of grating spectrograph . ...... 29 4.2.2 Resolution...................................... 30 4.2.3 Usefulness of both emission and absorption methods . 30 4.3 The spectrum for hydrogen . 31 5 Introduction to fine structure and spin 33 5.1 Experimental observation of fine structure . ..... 33 5.2 TheDiracresult ..................................... 34 5.3 Schr¨odinger method to account for fine structure . 35 5.4 Physical nature of orbital and spin angular momenta .
    [Show full text]
  • BCG) Is a Global Management Consulting Firm and the World’S Leading Advisor on Business Strategy
    The Next Decade in Quantum Computing— and How to Play Boston Consulting Group (BCG) is a global management consulting firm and the world’s leading advisor on business strategy. We partner with clients from the private, public, and not-for-profit sectors in all regions to identify their highest-value opportunities, address their most critical challenges, and transform their enterprises. Our customized approach combines deep insight into the dynamics of companies and markets with close collaboration at all levels of the client organization. This ensures that our clients achieve sustainable competitive advantage, build more capable organizations, and secure lasting results. Founded in 1963, BCG is a private company with offices in more than 90 cities in 50 countries. For more information, please visit bcg.com. THE NEXT DECADE IN QUANTUM COMPUTING— AND HOW TO PLAY PHILIPP GERBERT FRANK RUESS November 2018 | Boston Consulting Group CONTENTS 3 INTRODUCTION 4 HOW QUANTUM COMPUTERS ARE DIFFERENT, AND WHY IT MATTERS 6 THE EMERGING QUANTUM COMPUTING ECOSYSTEM Tech Companies Applications and Users 10 INVESTMENTS, PUBLICATIONS, AND INTELLECTUAL PROPERTY 13 A BRIEF TOUR OF QUANTUM COMPUTING TECHNOLOGIES Criteria for Assessment Current Technologies Other Promising Technologies Odd Man Out 18 SIMPLIFYING THE QUANTUM ALGORITHM ZOO 21 HOW TO PLAY THE NEXT FIVE YEARS AND BEYOND Determining Timing and Engagement The Current State of Play 24 A POTENTIAL QUANTUM WINTER, AND THE OPPORTUNITY THEREIN 25 FOR FURTHER READING 26 NOTE TO THE READER 2 | The Next Decade in Quantum Computing—and How to Play INTRODUCTION he experts are convinced that in time they can build a Thigh-performance quantum computer.
    [Show full text]
  • Chapter 3 Quantum Circuit Model of Computation
    Chapter 3 Quantum Circuit Model of Computation 3.1 Introduction In the previous chapter we saw that any Boolean function can be computed from a reversible circuit. In particular, in principle at least, this can be done from a small set of universal logical gates which do not dissipate heat dissi- pation (so we have logical reversibility as well as physical reversibility. We also saw that quantum evolution of the states of a system (e.g. a collection of quantum bits) is unitary (ignoring the reading or measurement process of the bits). A unitary matrix is of course invertible, but also conserves entropy (at the present level you can think of this as a conservation of scalar prod- uct which implies conservation of probabilities and entropies). So quantum evolution is also both \logically" and physically reversible. The next natural question is then to ask if we can use quantum operations to perform computational tasks, such as computing a Boolean function? Do the principles of quantum mechanics bring in new limitations with respect to classical computations? Or do they on the contrary bring in new ressources and advantages? These issues were raised and discussed by Feynman, Benioff and Manin in the early 1980's. In principle QM does not bring any new limitations, but on the contrary the superposition principle applied to many particle systems (many qubits) enables us to perform parallel computations, thereby speed- ing up classical computations. This was recognized very early by Feynman who argued that classical computers cannot simulate efficiently quantum me- chanical processes. The basic reason is that general quantum states involve 1 2 CHAPTER 3.
    [Show full text]
  • Luigi Frunzio
    THESE DE DOCTORAT DE L’UNIVERSITE PARIS-SUD XI spécialité: Physique des solides présentée par: Luigi Frunzio pour obtenir le grade de DOCTEUR de l’UNIVERSITE PARIS-SUD XI Sujet de la thèse: Conception et fabrication de circuits supraconducteurs pour l'amplification et le traitement de signaux quantiques soutenue le 18 mai 2006, devant le jury composé de MM.: Michel Devoret Daniel Esteve, President Marc Gabay Robert Schoelkopf Rapporteurs scientifiques MM.: Antonio Barone Carlo Cosmelli ii Table of content List of Figures vii List of Symbols ix Acknowledgements xvii 1. Outline of this work 1 2. Motivation: two breakthroughs of quantum physics 5 2.1. Quantum computation is possible 5 2.1.1. Classical information 6 2.1.2. Quantum information unit: the qubit 7 2.1.3. Two new properties of qubits 8 2.1.4. Unique property of quantum information 10 2.1.5. Quantum algorithms 10 2.1.6. Quantum gates 11 2.1.7. Basic requirements for a quantum computer 12 2.1.8. Qubit decoherence 15 2.1.9. Quantum error correction codes 16 2.2. Macroscopic quantum mechanics: a quantum theory of electrical circuits 17 2.2.1. A natural test bed: superconducting electronics 18 2.2.2. Operational criteria for quantum circuits 19 iii 2.2.3. Quantum harmonic LC oscillator 19 2.2.4. Limits of circuits with lumped elements: need for transmission line resonators 22 2.2.5. Hamiltonian of a classical electrical circuit 24 2.2.6. Quantum description of an electric circuit 27 2.2.7. Caldeira-Leggett model for dissipative elements 27 2.2.8.
    [Show full text]
  • Optimization of Reversible Circuits Using Toffoli Decompositions with Negative Controls
    S S symmetry Article Optimization of Reversible Circuits Using Toffoli Decompositions with Negative Controls Mariam Gado 1,2,* and Ahmed Younes 1,2,3 1 Department of Mathematics and Computer Science, Faculty of Science, Alexandria University, Alexandria 21568, Egypt; [email protected] 2 Academy of Scientific Research and Technology(ASRT), Cairo 11516, Egypt 3 School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK * Correspondence: [email protected]; Tel.: +203-39-21595; Fax: +203-39-11794 Abstract: The synthesis and optimization of quantum circuits are essential for the construction of quantum computers. This paper proposes two methods to reduce the quantum cost of 3-bit reversible circuits. The first method utilizes basic building blocks of gate pairs using different Toffoli decompositions. These gate pairs are used to reconstruct the quantum circuits where further optimization rules will be applied to synthesize the optimized circuit. The second method suggests using a new universal library, which provides better quantum cost when compared with previous work in both cost015 and cost115 metrics; this proposed new universal library “Negative NCT” uses gates that operate on the target qubit only when the control qubit’s state is zero. A combination of the proposed basic building blocks of pairs of gates and the proposed Negative NCT library is used in this work for synthesis and optimization, where the Negative NCT library showed better quantum cost after optimization compared with the NCT library despite having the same circuit size. The reversible circuits over three bits form a permutation group of size 40,320 (23!), which Citation: Gado, M.; Younes, A.
    [Show full text]
  • Multi-Mode Ultra-Strong Coupling in Circuit Quantum Electrodynamics
    www.nature.com/npjqi ARTICLE OPEN Multi-mode ultra-strong coupling in circuit quantum electrodynamics Sal J. Bosman1, Mario F. Gely1, Vibhor Singh2, Alessandro Bruno3, Daniel Bothner1 and Gary A. Steele1 With the introduction of superconducting circuits into the field of quantum optics, many experimental demonstrations of the quantum physics of an artificial atom coupled to a single-mode light field have been realized. Engineering such quantum systems offers the opportunity to explore extreme regimes of light-matter interaction that are inaccessible with natural systems. For instance the coupling strength g can be increased until it is comparable with the atomic or mode frequency ωa,m and the atom can be coupled to multiple modes which has always challenged our understanding of light-matter interaction. Here, we experimentally realize a transmon qubit in the ultra-strong coupling regime, reaching coupling ratios of g/ωm = 0.19 and we measure multi-mode interactions through a hybridization of the qubit up to the fifth mode of the resonator. This is enabled by a qubit with 88% of its capacitance formed by a vacuum-gap capacitance with the center conductor of a coplanar waveguide resonator. In addition to potential applications in quantum information technologies due to its small size, this architecture offers the potential to further explore the regime of multi-mode ultra-strong coupling. npj Quantum Information (2017) 3:46 ; doi:10.1038/s41534-017-0046-y INTRODUCTION decreasing gate times20 as well as the performance of quantum 21 Superconducting circuits such as microwave cavities and Joseph- memories. With very strong coupling rates, the additional modes son junction based artificial atoms1 have opened up a wealth of of an electromagnetic resonator become increasingly relevant, new experimental possibilities by enabling much stronger light- and U/DSC can only be understood in these systems if the multi- matter coupling than in analog experiments with natural atoms2 mode effects are correctly modeled.
    [Show full text]
  • Concentric Transmon Qubit Featuring Fast Tunability and an Anisotropic Magnetic Dipole Moment
    Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment Cite as: Appl. Phys. Lett. 108, 032601 (2016); https://doi.org/10.1063/1.4940230 Submitted: 13 October 2015 . Accepted: 07 January 2016 . Published Online: 21 January 2016 Jochen Braumüller, Martin Sandberg, Michael R. Vissers, Andre Schneider, Steffen Schlör, Lukas Grünhaupt, Hannes Rotzinger, Michael Marthaler, Alexander Lukashenko, Amadeus Dieter, Alexey V. Ustinov, Martin Weides, and David P. Pappas ARTICLES YOU MAY BE INTERESTED IN A quantum engineer's guide to superconducting qubits Applied Physics Reviews 6, 021318 (2019); https://doi.org/10.1063/1.5089550 Planar superconducting resonators with internal quality factors above one million Applied Physics Letters 100, 113510 (2012); https://doi.org/10.1063/1.3693409 An argon ion beam milling process for native AlOx layers enabling coherent superconducting contacts Applied Physics Letters 111, 072601 (2017); https://doi.org/10.1063/1.4990491 Appl. Phys. Lett. 108, 032601 (2016); https://doi.org/10.1063/1.4940230 108, 032601 © 2016 AIP Publishing LLC. APPLIED PHYSICS LETTERS 108, 032601 (2016) Concentric transmon qubit featuring fast tunability and an anisotropic magnetic dipole moment Jochen Braumuller,€ 1,a) Martin Sandberg,2 Michael R. Vissers,2 Andre Schneider,1 Steffen Schlor,€ 1 Lukas Grunhaupt,€ 1 Hannes Rotzinger,1 Michael Marthaler,3 Alexander Lukashenko,1 Amadeus Dieter,1 Alexey V. Ustinov,1,4 Martin Weides,1,5 and David P. Pappas2 1Physikalisches Institut, Karlsruhe Institute of Technology,
    [Show full text]
  • Quantum Computational Complexity Theory Is to Un- Derstand the Implications of Quantum Physics to Computational Complexity Theory
    Quantum Computational Complexity John Watrous Institute for Quantum Computing and School of Computer Science University of Waterloo, Waterloo, Ontario, Canada. Article outline I. Definition of the subject and its importance II. Introduction III. The quantum circuit model IV. Polynomial-time quantum computations V. Quantum proofs VI. Quantum interactive proof systems VII. Other selected notions in quantum complexity VIII. Future directions IX. References Glossary Quantum circuit. A quantum circuit is an acyclic network of quantum gates connected by wires: the gates represent quantum operations and the wires represent the qubits on which these operations are performed. The quantum circuit model is the most commonly studied model of quantum computation. Quantum complexity class. A quantum complexity class is a collection of computational problems that are solvable by a cho- sen quantum computational model that obeys certain resource constraints. For example, BQP is the quantum complexity class of all decision problems that can be solved in polynomial time by a arXiv:0804.3401v1 [quant-ph] 21 Apr 2008 quantum computer. Quantum proof. A quantum proof is a quantum state that plays the role of a witness or certificate to a quan- tum computer that runs a verification procedure. The quantum complexity class QMA is defined by this notion: it includes all decision problems whose yes-instances are efficiently verifiable by means of quantum proofs. Quantum interactive proof system. A quantum interactive proof system is an interaction between a verifier and one or more provers, involving the processing and exchange of quantum information, whereby the provers attempt to convince the verifier of the answer to some computational problem.
    [Show full text]
  • General-Purpose Quantum Circuit Simulator with Projected Entangled-Pair States and the Quantum Supremacy Frontier
    PHYSICAL REVIEW LETTERS 123, 190501 (2019) General-Purpose Quantum Circuit Simulator with Projected Entangled-Pair States and the Quantum Supremacy Frontier Chu Guo,1,* Yong Liu ,2,* Min Xiong,2 Shichuan Xue,2 Xiang Fu ,2 Anqi Huang,2 Xiaogang Qiang ,2 Ping Xu,2 Junhua Liu,3,4 Shenggen Zheng,5 He-Liang Huang,1,6,7 Mingtang Deng,2 † ‡ Dario Poletti,8, Wan-Su Bao,1,7, and Junjie Wu 2,§ 1Henan Key Laboratory of Quantum Information and Cryptography, IEU, Zhengzhou 450001, China 2Institute for Quantum Information & State Key Laboratory of High Performance Computing, College of Computer, National University of Defense Technology, Changsha 410073, China 3Information Systems Technology and Design, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore 4Quantum Intelligence Lab (QI-Lab), Supremacy Future Technologies (SFT), Guangzhou 511340, China 5Center for Quantum Computing, Peng Cheng Laboratory, Shenzhen 518055, China 6Hefei National Laboratory for Physical Sciences at Microscale and Department of Modern Physics, University of Science and Technology of China, Hefei, Anhui 230026, China 7CAS Centre for Excellence and Synergetic Innovation Centre in Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui 230026, China 8Science and Math Cluster and EPD Pillar, Singapore University of Technology and Design, 8 Somapah Road, 487372 Singapore (Received 30 July 2019; published 4 November 2019) Recent advances on quantum computing hardware have pushed quantum computing to the verge of quantum supremacy. Here, we bring together many-body quantum physics and quantum computing by using a method for strongly interacting two-dimensional systems, the projected entangled-pair states, to realize an effective general-purpose simulator of quantum algorithms.
    [Show full text]
  • Topological Quantum Computation Zhenghan Wang
    Topological Quantum Computation Zhenghan Wang Microsoft Research Station Q, CNSI Bldg Rm 2237, University of California, Santa Barbara, CA 93106-6105, U.S.A. E-mail address: [email protected] 2010 Mathematics Subject Classification. Primary 57-02, 18-02; Secondary 68-02, 81-02 Key words and phrases. Temperley-Lieb category, Jones polynomial, quantum circuit model, modular tensor category, topological quantum field theory, fractional quantum Hall effect, anyonic system, topological phases of matter To my parents, who gave me life. To my teachers, who changed my life. To my family and Station Q, where I belong. Contents Preface xi Acknowledgments xv Chapter 1. Temperley-Lieb-Jones Theories 1 1.1. Generic Temperley-Lieb-Jones algebroids 1 1.2. Jones algebroids 13 1.3. Yang-Lee theory 16 1.4. Unitarity 17 1.5. Ising and Fibonacci theory 19 1.6. Yamada and chromatic polynomials 22 1.7. Yang-Baxter equation 22 Chapter 2. Quantum Circuit Model 25 2.1. Quantum framework 26 2.2. Qubits 27 2.3. n-qubits and computing problems 29 2.4. Universal gate set 29 2.5. Quantum circuit model 31 2.6. Simulating quantum physics 32 Chapter 3. Approximation of the Jones Polynomial 35 3.1. Jones evaluation as a computing problem 35 3.2. FP#P-completeness of Jones evaluation 36 3.3. Quantum approximation 37 3.4. Distribution of Jones evaluations 39 Chapter 4. Ribbon Fusion Categories 41 4.1. Fusion rules and fusion categories 41 4.2. Graphical calculus of RFCs 44 4.3. Unitary fusion categories 48 4.4. Link and 3-manifold invariants 49 4.5.
    [Show full text]
  • Total Angular Momentum
    Total Angular momentum Dipanjan Mazumdar Sept 2019 1 Motivation So far, somewhat deliberately, in our prior examples we have worked exclusively with the spin angular momentum and ignored the orbital component. This is acceptable for L = 0 systems such as filled shell atoms, but properties of partially filled atoms will depend both on the orbital and the spin part of the angular momentum. Also, when we include relativistic corrections to atomic Hamiltonian, both spin and orbital angular momentum enter directly through terms like L:~ S~ called the spin-orbit coupling. So instead of focusing only on the spin or orbital angular momentum, we have to develop an understanding as to how they couple together. One of the ways is through the total angular momentum defined as J~ = L~ + S~ (1) We will see that this will be very useful in many cases such as the real hydrogen atom where the eigenstates after including the fine structure effects such as spin-orbit interaction are eigenstates of the total angular momentum operator. 2 Vector model of angular momentum Let us first develop an intuitive understanding of the total angular momentum through the vector model which is a semi-classical approach to \add" angular momenta using vector algebra. We shall first ask, knowing L~ and S~, what are the maxmimum and minimum values of J^. This is simple to answer us- ing the vector model since vectors can be added or subtracted. Therefore, the extreme values are L~ + S~ and L~ − S~ as seen in figure 1.1 Therefore, the total angular momentum will take up values between l+s Figure 1: Maximum and minimum values of angular and jl − sj.
    [Show full text]
  • 1. the Hamiltonian, H = Α Ipi + Βm, Must Be Her- Mitian to Give Real
    1. The hamiltonian, H = αipi + βm, must be her- yields mitian to give real eigenvalues. Thus, H = H† = † † † pi αi +β m. From non-relativistic quantum mechanics † † † αi pi + β m = aipi + βm (2) we know that pi = pi . In addition, [αi,pj ] = 0 because we impose that the α, β operators act on the spinor in- † † αi = αi, β = β. Thus α, β are hermitian operators. dices while pi act on the coordinates of the wave function itself. With these conditions we may proceed: To verify the other properties of the α, and β operators † † piαi + β m = αipi + βm (1) we compute 2 H = (αipi + βm) (αj pj + βm) 2 2 1 2 2 = αi pi + (αiαj + αj αi) pipj + (αiβ + βαi) m + β m , (3) 2 2 where for the second term i = j. Then imposing the Finally, making use of bi = 1 we can find the 26 2 2 2 relativistic energy relation, E = p + m , we obtain eigenvalues: biu = λu and bibiu = λbiu, hence u = λ u the anti-commutation relation | | and λ = 1. ± b ,b =2δ 1, (4) i j ij 2. We need to find the λ = +1/2 helicity eigenspinor { } ′ for an electron with momentum ~p = (p sin θ, 0, p cos θ). where b0 = β, bi = αi, and 1 n n idenitity matrix. ≡ × 1 Using the anti-commutation relation and the fact that The helicity operator is given by 2 σ pˆ, and the posi- 2 1 · bi = 1 we are able to find the trace of any bi tive eigenvalue 2 corresponds to u1 Dirac solution [see (1.5.98) in http://arXiv.org/abs/0906.1271].
    [Show full text]