The Contribution of Mast Cells to Antiviral Immune Responses: Characterization and Functional Definition of Receptor Transporter Protein 4 (RTP4)

Total Page:16

File Type:pdf, Size:1020Kb

The Contribution of Mast Cells to Antiviral Immune Responses: Characterization and Functional Definition of Receptor Transporter Protein 4 (RTP4) Aus dem Institut für Geflügelkrankheiten des Fachbereichs Veterinärmedizin der Freien Universität Berlin in Kooperation mit dem Forschungszentrum Borstel Leibniz-Zentrum für Medizin und Biowissenschaften Laborgruppe Immunbiologie The contribution of mast cells to antiviral immune responses: Characterization and functional definition of receptor transporter protein 4 (RTP4) Inaugural-Dissertation zur Erlangung des Grades eines Doktors der Veterinärmedizin an der Freien Universität Berlin vorgelegt von Diego Andrés Goyeneche Patiño Tierarzt aus Bogotá, Kolumbien. Berlin, 2012 Journal-Nr.: 3608 Gedruckt mit Genehmigung des Fachbereichs Veterinärmedizin der Freien Universität Berlin Dekan: Univ.-Prof. Dr. Jürgen Zentek Erster Gutachter: Univ.-Prof. Dr. Hafez Mohamed Hafez Zweiter Gutachter: PD. Dr. Holger Heine Dritter Gutachter: Univ.-Prof. Dr. Susanne Hartmann Deskriptoren (nach CAB-Thesaurus): Mast cells, immune response, viral infections, interferon, G proteins Tag der Promotion: 19.03.2013 A mis madres y a mi Toto (R.I.P) V Table of contents Page. Table of contents ................................................................................................................. V List of figures ..................................................................................................................... IX List of Tables ...................................................................................................................... XI List of abbreviations ........................................................................................................ XII 1. Introduction .................................................................................................................. 1 2. Literature review .......................................................................................................... 2 2.1 Immunity ................................................................................................................. 2 2.1.1 Antiviral innate immune responses ..................................................................... 2 2.1.1.1 Molecular mechanisms for viral recognition ............................................... 2 2.1.1.2 Viral recognition through toll like receptors ................................................ 3 2.1.1.3 Viral recognition through RIG-I like receptors ........................................... 6 2.1.1.4 Viral recognition by other receptors ............................................................ 9 2.1.1.5 Interferons .................................................................................................. 10 2.1.1.6 Induction of type I interferons ................................................................... 11 2.1.1.7 Modulatory functions of type I interferons ................................................ 12 2.1.2 Antiviral adaptive immune responses ............................................................... 14 2.2 Mast cells ............................................................................................................... 15 2.2.1 Mast cell development and classification.......................................................... 15 2.2.2 Mast cells activation through the IgE high affinity receptor ............................. 16 2.2.3 Mast cells and their role in immunity................................................................ 17 2.2.4 Mast cells and their role in viral infections ....................................................... 18 2.3 G protein coupled receptors .................................................................................. 20 2.3.1 Receptor transporter protein 4 ........................................................................... 21 3. Materials and methods............................................................................................... 23 VI Table of contents 3.1 Materials ................................................................................................................ 23 3.1.1 Mice ................................................................................................................... 23 3.1.2 RTP4 Deficient Mice Generation ...................................................................... 23 3.1.3 Viruses ............................................................................................................... 24 3.1.3.1 Newcastle disease virus ............................................................................. 24 3.1.3.2 Influenza A virus ....................................................................................... 25 3.1.4 Chemicals and reagents ...................................................................................... 25 3.1.5 Lab Supplies ....................................................................................................... 27 3.1.6 Antibodies .......................................................................................................... 28 3.1.7 Primers ............................................................................................................... 29 3.1.8 Solutions ............................................................................................................ 29 3.1.8.1 Biochemistry and Molecular Biology Buffers........................................... 29 3.1.8.2 Cell Culture Medium ................................................................................. 31 3.1.8.3 Flow Cytometry (FCM) and Microscopy Buffers ..................................... 32 3.1.9 Laboratory Equipment ....................................................................................... 33 3.1.10 Software ............................................................................................................. 35 3.2 Methods ................................................................................................................. 35 3.2.1 Cell counting ...................................................................................................... 35 3.2.2 Generation and culture of bone marrow derived mast cells (BMMC) .............. 35 3.2.3 Generation and culture of bone marrow derived dendritic cells (BMDC) ........ 36 3.2.4 Generation and culture of bone marrow derived macrophages (BMM) ............ 36 3.2.5 Culture of cell lines ............................................................................................ 37 3.2.6 Isolation of cells from primary and secondary immune organs ......................... 37 3.2.7 Detachment of adherent cells from cell culture flasks ....................................... 37 3.2.8 Purification of cell populations by magnetic associated cell sorting ................. 38 3.2.8.1 B cells separation ....................................................................................... 38 3.2.9 Stimulation of mast cells for experimental procedures ...................................... 39 3.2.10 Flow cytometry .................................................................................................. 40 3.2.10.1 Identification of cell subsets .................................................................. 41 3.2.10.2 Use of flow cytometry for assessment of mast cells degranulation ....... 42 3.2.11 Confocal microscopy ......................................................................................... 42 3.2.12 Cytokine quantification in culture supernatants by ELISA ............................... 43 3.2.13 RNA isolation .................................................................................................... 44 Table of contents VII 3.2.14 Complementary DNA (cDNA) synthesis .......................................................... 44 3.2.15 Analysis of gene expression by microarrays ..................................................... 45 3.2.16 Quantitative real-time polymerase chain reaction (qRT-PCR) ......................... 45 3.2.17 Protein extraction and sample preparation ........................................................ 46 3.2.18 SDS-polyacrylamide-gel electrophoresis (SDS-PAGE) ................................... 46 3.2.19 Western Blotting ............................................................................................... 47 3.2.20 Immunodetection of proteins ............................................................................ 47 3.2.21 Fractionation...................................................................................................... 48 3.2.22 Molecular cloning of RTP4 ............................................................................... 48 3.2.23 Cell transfection for expression of RTP4 .......................................................... 49 3.2.24 Immunoprecipitation ......................................................................................... 50 3.2.25 Induction and isolation of lipid bodies .............................................................. 51 3.2.26 Statistical analysis and data management ......................................................... 52 3.2.26.1 General data processing ......................................................................... 52 3.2.26.2 Quantification of the gene expression for qRT-PCR ............................. 52 3.2.26.3 Calculation of relative density for Western blot bands .......................... 52 3.2.26.4 Analysis of microarray data ................................................................... 53 4. Results ........................................................................................................................
Recommended publications
  • Supporting Information
    Supporting Information Celhar et al. 10.1073/pnas.1507052112 SI Materials and Methods using a Nanodrop spectrophotometer (Thermo Fisher Scien- Proteinuria. Proteinuria was assessed using Albustix (Bayer). Al- tific). A TaqMan RNA-to-CT 1-Step Kit (Applied Biosystems) bumin levels in urine were assayed using an Albumin Mouse was used to perform the reverse transcription and quantitative ELISA Kit (Abcam) according to the manufacturer’s instructions; PCR reactions according to the manufacturer’s instructions samples were assayed at a dilution of 1:400. Samples were nor- using TaqMan gene expression assays (Applied Biosystems) to malized for creatinine using a Creatinine (urinary) Colorimetric either Tlr7 (Mm00446590) or the B2m housekeeping gene Assay Kit (Cayman Chemical) according to the manufacturer’s (Mm00437762). Real-time PCR was performed on the 7900H instructions; initial sample dilution of 1:10. fast real-time PCR system and analyzed using SDS 2.4 (Applied Biosystems). Relative mRNA expression was calculated using the Cell Sorting, RNA Isolation, and RT-PCR. Splenic B cells were comparative C method. + − + + t sorted as live CD45 Gr1 B220 CD19 , splenic T cells as live + − + + CD45 Gr1 CD3 CD5 and peritoneal macrophages as live Imaging. Kidney sections from OCT embedded tissue were fixed + − CD45 Gr1 CD11bhiF4/80hi. Sorted cells were centrifuged, re- with 4% paraformaldehyde before permeabilization with acetone suspended in TRIzol (Life Technologies) and stored at −80°. RNA and stained with Phalloidin (AF647) and anti-CD3d (unlabeled was extracted by TRIzol/chloroform and purified with the Qiagen Ab followed by secondary staining with donkey anti-goat Dylight RNeasy Mini purification kit according to the manufacturer’s 550).
    [Show full text]
  • Mechanism of Action Through an IFN Type I-Independent Responses To
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 is online at: average * The Journal of Immunology , 12 of which you can access for free at: 2012; 188:3088-3098; Prepublished online 20 from submission to initial decision 4 weeks from acceptance to publication February 2012; doi: 10.4049/jimmunol.1101764 http://www.jimmunol.org/content/188/7/3088 MF59 and Pam3CSK4 Boost Adaptive Responses to Influenza Subunit Vaccine through an IFN Type I-Independent Mechanism of Action Elena Caproni, Elaine Tritto, Mario Cortese, Alessandro Muzzi, Flaviana Mosca, Elisabetta Monaci, Barbara Baudner, Anja Seubert and Ennio De Gregorio J Immunol cites 33 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription http://www.jimmunol.org/content/suppl/2012/02/21/jimmunol.110176 4.DC1 This article http://www.jimmunol.org/content/188/7/3088.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2012 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767
    [Show full text]
  • Supplementary Table S1. Control Capsules (CC) and Study Capsules (CR) Composition
    Supplementary Table S1. Control Capsules (CC) and Study Capsules (CR) composition CC Capsules Composition mg Bioactive compound Sunflower oil 1.100 Gelatin 318,019 Glycerin 118,750 Clorophill E-140 1,923 CAPSULE TOTAL WEIGHT 1.538,692 CR Capsules Composition mg Bioactive compound Shark liver oil 20% 750 150 mg alkylglycerols alkylglycerols (Gustav Heess) Rosemary Antioxidant 11,25 mg Diterpene Phenols extract, 25 % Diterpene 45 Phenols, Type Nº 027.020 (Rosmarinus officinalis L.) Glyceril-monoestearate 30 Sunflower oil 263 Soy lecithin VEROLEC 56 12 Gelatin 318,019 Glycerin 118,750 Clorophill E-140 1,923 CAPSULE TOTAL WEIGHT 1.538,692 Supplementary Table S2. Table of the selected genes and pathways analyzed in the study Pathway Gen Gene name Inflammation, IL1B Interleukin 1, Beta Immunomodulation TNF (TNFA) Tumor Necrosis Factor MAPK1 Mitogen-Activated Protein Kinase 1 PTK2B Protein Tyrosine Kinase 2 Beta STAT3 Signal Transducer Activator Of Transcription 3 JAK1 Janus Kinase 1 JAK3 Janus Kinase 3 NFKB Nuclear Factor Of Kappa Light Polypeptide Gene Enhancer In B-Cells 1 NLRP3 NLR Family, Pyrin Domain Containing 3 CCL2 (MCP-1) Chemokine (C-C Motif) Ligand 2 CXCR1 Chemokine (C-X-C Motif) Receptor 1 CSF2 Colony Stimulating Factor 2 (Granulocyte-Macrophage) CCL5(RANTES) Chemokine (C-C Motif) Ligand 5 CCR5 Chemokine (C-C Motif) Receptor 5 (Gene/Pseudogene) PLCG1 Phospholipase C, Gamma 1 PRKCD Protein Kinase C, Delta ADIPOQ Adiponectin, C1Q And Collagen Domain Containing BMP2 Bone Morphogenetic Protein 2 LIF Leukemia Inhibitory Factor TGFB2
    [Show full text]
  • The 'C3ar Antagonist' SB290157 Is a Partial C5ar2 Agonist
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.01.232090; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The ‘C3aR antagonist’ SB290157 is a partial C5aR2 agonist Xaria X. Li1, Vinod Kumar1, John D. Lee1, Trent M. Woodruff1* 1School of Biomedical Sciences, The University of Queensland, St Lucia, 4072 Australia. * Correspondence: Prof. Trent M. Woodruff School of Biomedical Sciences, The University of Queensland, St Lucia, 4072 Australia. Ph: +61 7 3365 2924; Fax: +61 7 3365 1766; E-mail: [email protected] Keywords: Complement C3a, C3aR, SB290157, C5aR1, C5aR2 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.01.232090; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abbreviations used in this article: BRET, bioluminescence resonance energy transfer; BSA, bovine serum albumin; C3aR, C3a receptor C5aR1, C5a receptor 1; CHO-C3aR, Chinese hamster ovary cells stably expressing C3aR; CHO-C5aR1, Chinese hamster ovary cells stably expressing C5aR1; DMEM, Dulbecco's Modified Eagle's Medium; ERK1/2, extracellular signal-regulated kinase 1/2; FBS, foetal bovine serum; HEK293, human embryonic kidney 293 cells; HMDM, human monocyte-derived macrophage; i.p., intraperitoneal; i.v., intravenous; rhC5a, recombinant human C5a; RT, room temperature; S.E.M.
    [Show full text]
  • BD Biosciences New RUO Reagents - November 2020
    BD Biosciences New RUO reagents - November 2020 Reactivity Description Format Clone Size Cat. number Hu CD133 FITC W6B3C1 100µg 567029 Hu CD133 FITC W6B3C1 25µg 567033 Hu CD39 PE A1/CD39 100Tst 567156 Hu CD39 PE A1/CD39 25Tst 567157 Hu KIR2DL1/S1/S3/S5 PE HP-MA4 100Tst 567158 Hu KIR2DL1/S1/S3/S5 PE HP-MA4 25Tst 567159 Hu IL-22 Alexa Fluor® 647 MH22B2 100µg 567160 Hu IL-22 Alexa Fluor® 647 MH22B2 25µg 567161 Hu CD99 R718 TU12 50µg 751651 Hu CD161 R718 DX12 50µg 751652 Hu CD116 R718 HGMCSFR-M1 50µg 751653 Hu HLA-G R718 87G 50µg 751670 Hu CD27 R718 O323 50µg 751686 Hu CD80 (B7-1) R718 2D10.4 50µg 751737 Hu Integrin αvβ5 R718 ALULA 50µg 751738 Hu CD266 (Tweak-R) R718 ITEM-4 50µg 751739 Hu ErbB3 (HER-3) R718 SGP1 50µg 751799 Hu TCR Vβ5.1 R718 LC4 50µg 751816 Hu CD123 (IL-3Ra) R718 6H6 50µg 751844 Hu CD1a R718 SK9 50µg 751847 Hu CD20 R718 L27 50µg 751849 Hu Disial GD2 R718 14.G2A 50µg 751851 Reactivity Description Format Clone Size Cat. number Hu CD71 R718 L01.1 50µg 751853 Hu CD278 (ICOS) R718 DX29 50µg 751854 Hu B7-H4 R718 MIH43 50µg 751857 Hu CD53 R718 HI29 50µg 751858 Hu CD197 (CCR7) R718 2-L1-A 50µg 751859 Hu CD197 (CCR7) R718 3D12 50µg 751861 Hu CD31 R718 L133.1 50µg 751863 Hu EGF Receptor R718 EMAB-134 50µg 751864 Hu CD8b R718 2ST8.5H7 50µg 751867 Hu CD31 R718 MBC 78.2 50µg 751869 Hu CD162 R718 KPL-1 50µg 751873 Hu CD24 R718 ML5 50µg 751874 Hu CD159C (NKG2C) R718 134591 50µg 751876 Hu CD169 (Siglec-1) R718 7-239 50µg 751877 Hu CD16b R718 CLB-GRAN11.5 50µg 751880 Hu IgM R718 UCH-B1 50µg 751881 Hu CD275 R718 2D3/B7-H2 50µg 751883 Hu CD307e
    [Show full text]
  • November 19, 1987 in Troy, OH Hobart Arena Drawing ??? 1. NWA
    November 19, 1987 in Troy, OH Hobart Arena drawing ??? 1. NWA U.S. Tag Champs The Midnight Express (Eaton & Lane) vs. The Rock-n-Roll Express. November 5, 1988 in Dayton, OH UD Arena drawing ??? ($20,000) 1. The Sheepherders vs. ???. 2. Al Perez & Larry Zbyszko vs. Ron Simmons & The Italian Stallion. 3. Rick Steiner vs. Russian Assassin #2. 4. Bam Bam Bigelow & Jimmy Garvin vs. Mike Rotunda & Kevin Sullivan. 5. Ivan Koloff vs. Russian Assassin #1. 6. NWA U.S. Champ Barry Windham vs. Nikita Koloff. 7. The Midnight Express (Eaton & Lane) Vs. The Fantastics (Fulton & Rogers). 8. Lex Luger beat NWA World Champ Ric Flair via DQ. February 22, 1989 in Centerville, OH Centerville High school drawing 600 1. Match results unavailable. April 24, 1989 in Dayton, OH UD Arena drawing ??? 1. Shane Douglas beat Doug Gilbert. 2. The Great Muta beat George South. 3. The Samoan Swat Team beat Bob Emory & Mike Justice. 4. Ranger Ross beat The Iron Sheik. 5. NWA TV Champ Sting beat Mike Rotunda. 6. Ricky Steamboat & Lex Luger beat Ric Flair & Michael Hayes. Great American Bash 1989 July 21, 1989 in Dayton, OH UD Arena drawing ??? 1. Brian Pillman beat Bill Irwin. 2. Sid Vicious & Dan Spivey beat Johnny & Davey Rich. 3. Norman beat Scott Casey. 4. Scott Steiner beat Mike Rotunda via DQ. 5. Steve Williams beat ???. 6. Sid Vicious and Dan Spivey won a “two ring battle royal.” 7. The Midnight Express (Eaton & Lane) beat Rip Morgan & Jack Victory. 8. The Road Warriors beat The Samoan Swat Team. 9. NWA TV Champ Sting beat Norman.
    [Show full text]
  • Supplementary Material
    Supplementary Material Table S1: Significant downregulated KEGGs pathways identified by DAVID following exposure to five cinnamon- based phenylpropanoids (p < 0.05). p-value Term: Genes (Benjamini) Cytokine-cytokine receptor interaction: FASLG, TNFSF14, CXCL11, IL11, FLT3LG, CCL3L1, CCL3L3, CXCR6, XCR1, 2.43 × 105 RTEL1, CSF2RA, TNFRSF17, TNFRSF14, CCNL2, VEGFB, AMH, TNFRSF10B, INHBE, IFNB1, CCR3, VEGFA, CCR2, IL12A, CCL1, CCL3, CXCL5, TNFRSF25, CCR1, CSF1, CX3CL1, CCL7, CCL24, TNFRSF1B, IL12RB1, CCL21, FIGF, EPO, IL4, IL18R1, FLT1, TGFBR1, EDA2R, HGF, TNFSF8, KDR, LEP, GH2, CCL13, EPOR, XCL1, IFNA16, XCL2 Neuroactive ligand-receptor interaction: OPRM1, THRA, GRIK1, DRD2, GRIK2, TACR2, TACR1, GABRB1, LPAR4, 9.68 × 105 GRIK5, FPR1, PRSS1, GNRHR, FPR2, EDNRA, AGTR2, LTB4R, PRSS2, CNR1, S1PR4, CALCRL, TAAR5, GABRE, PTGER1, GABRG3, C5AR1, PTGER3, PTGER4, GABRA6, GABRA5, GRM1, PLG, LEP, CRHR1, GH2, GRM3, SSTR2, Chlorogenic acid Chlorogenic CHRM3, GRIA1, MC2R, P2RX2, TBXA2R, GHSR, HTR2C, TSHR, LHB, GLP1R, OPRD1 Hematopoietic cell lineage: IL4, CR1, CD8B, CSF1, FCER2, GYPA, ITGA2, IL11, GP9, FLT3LG, CD38, CD19, DNTT, 9.29 × 104 GP1BB, CD22, EPOR, CSF2RA, CD14, THPO, EPO, HLA-DRA, ITGA2B Cytokine-cytokine receptor interaction: IL6ST, IL21R, IL19, TNFSF15, CXCR3, IL15, CXCL11, TGFB1, IL11, FLT3LG, CXCL10, CCR10, XCR1, RTEL1, CSF2RA, IL21, CCNL2, VEGFB, CCR8, AMH, TNFRSF10C, IFNB1, PDGFRA, EDA, CXCL5, TNFRSF25, CSF1, IFNW1, CNTFR, CX3CL1, CCL5, TNFRSF4, CCL4, CCL27, CCL24, CCL25, CCL23, IFNA6, IFNA5, FIGF, EPO, AMHR2, IL2RA, FLT4, TGFBR2, EDA2R,
    [Show full text]
  • Diverse Functional Autoantibodies in Patients with COVID-19
    medRxiv preprint doi: https://doi.org/10.1101/2020.12.10.20247205; this version posted December 11, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license . Diverse Functional Autoantibodies in Patients with COVID-19 Eric Y. Wang1,*, Tianyang Mao1,*, Jon Klein1,*, Yile Dai1,*, John D. Huck1, Feimei Liu1, Neil S. Zheng1, Ting Zhou1, Benjamin Israelow1, Patrick Wong1, Carolina Lucas1, Julio Silva1, Ji Eun Oh1, Eric Song1, Emily S. Perotti1, Suzanne Fischer1, Melissa Campbell5, John B. Fournier5, Anne L. Wyllie3, Chantal B. F. Vogels3, Isabel M. Ott3, Chaney C. Kalinich3, Mary E. Petrone3, Anne E. Watkins3, Yale IMPACT Team¶, Charles Dela Cruz4, Shelli F. Farhadian5, Wade L. Schulz6,7, Nathan D. Grubaugh3, Albert I. Ko3,5, Akiko Iwasaki1,3,8,#, Aaron M. Ring1,2,# 1 Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA 2 Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA 3 Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA 4 Department of Medicine, Section of Pulmonary and Critical Care Medicine, Yale School of Medicine, New Haven, CT, USA 5 Department of Internal Medicine (Infectious Diseases), Yale School of Medicine, New Haven, CT, USA 6 Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA 7 Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, USA 8 Howard Hughes Medical Institute, Chevy Chase, MD, USA * These authors contributed equally to this work ¶ A list of authors and their affiliations appears at the end of the paper # Correspondence: [email protected] (A.M.R.); [email protected] (A.I.) 1 NOTE: This preprint reports new research that has not been certified by peer review and should not be used to guide clinical practice.
    [Show full text]
  • Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association Between BMI and Adult-Onset Non- Atopic
    Supplementary Material DNA Methylation in Inflammatory Pathways Modifies the Association between BMI and Adult-Onset Non- Atopic Asthma Ayoung Jeong 1,2, Medea Imboden 1,2, Akram Ghantous 3, Alexei Novoloaca 3, Anne-Elie Carsin 4,5,6, Manolis Kogevinas 4,5,6, Christian Schindler 1,2, Gianfranco Lovison 7, Zdenko Herceg 3, Cyrille Cuenin 3, Roel Vermeulen 8, Deborah Jarvis 9, André F. S. Amaral 9, Florian Kronenberg 10, Paolo Vineis 11,12 and Nicole Probst-Hensch 1,2,* 1 Swiss Tropical and Public Health Institute, 4051 Basel, Switzerland; [email protected] (A.J.); [email protected] (M.I.); [email protected] (C.S.) 2 Department of Public Health, University of Basel, 4001 Basel, Switzerland 3 International Agency for Research on Cancer, 69372 Lyon, France; [email protected] (A.G.); [email protected] (A.N.); [email protected] (Z.H.); [email protected] (C.C.) 4 ISGlobal, Barcelona Institute for Global Health, 08003 Barcelona, Spain; [email protected] (A.-E.C.); [email protected] (M.K.) 5 Universitat Pompeu Fabra (UPF), 08002 Barcelona, Spain 6 CIBER Epidemiología y Salud Pública (CIBERESP), 08005 Barcelona, Spain 7 Department of Economics, Business and Statistics, University of Palermo, 90128 Palermo, Italy; [email protected] 8 Environmental Epidemiology Division, Utrecht University, Institute for Risk Assessment Sciences, 3584CM Utrecht, Netherlands; [email protected] 9 Population Health and Occupational Disease, National Heart and Lung Institute, Imperial College, SW3 6LR London, UK; [email protected] (D.J.); [email protected] (A.F.S.A.) 10 Division of Genetic Epidemiology, Medical University of Innsbruck, 6020 Innsbruck, Austria; [email protected] 11 MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, W2 1PG London, UK; [email protected] 12 Italian Institute for Genomic Medicine (IIGM), 10126 Turin, Italy * Correspondence: [email protected]; Tel.: +41-61-284-8378 Int.
    [Show full text]
  • An Overview on G Protein-Coupled Receptor-Induced Signal Transduction in Acute Myeloid Leukemia
    An overview on G protein-coupled receptor-induced signal transduction in Acute Myeloid Leukemia 1* 1,3 4,5,6 2* Frode Selheim , Elise Aasebø , Catalina Ribas and Anna M. Aragay 1The Proteomics Unit at the University of Bergen, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, 5020 Bergen, Norway; 3 Department of Clinical Science, University of Bergen, Jonas Lies vei 87, 5021 Bergen, Norway; [email protected]. 2Departamento de Biologia Celular. Instituto de Biología Molecular de Barcelona (IBMB-CSIC), Spanish National Research Council (CSIC), Baldiri i Reixac, 15, 08028 Barcelona, Spain; [email protected]. 4Departamento de Biología Molecular and Centro de Biología Molecular “Severo Ochoa” (UAM-CSIC), 28049 Madrid, Spain; 5Instituto de Investigación Sanitaria La Princesa, 28006 Madrid, Spain; 6CIBER de Enfermedades Cardiovasculares, ISCIII (CIBERCV), 28029 Madrid, Spain, [email protected] * Corresponding authors: Frode Selheim Adr: Jonas Lies vei 91, 5020 Bergen, Norway Email: [email protected], Tel:+4755586091 Anna M. Aragay Adr: Baldiri i Reixac, 15, 08028 Barcelona. Spain. E-mail: [email protected]; Tel.: +934098671 1 Abstract Background: Acute myeloid leukemia (AML) is a genetically heterogeneous disease characterized by uncontrolled proliferation of precursor myeloid-lineage cells in the bone marrow. AML is also characterized with patients with poor long-term survival outcomes due to relapse. Many efforts have been made to understand the biological heterogeneity of AML and the challenges to develop new therapies are therefore enormous. G protein-coupled receptors (GPCRs) are a large attractive drug targeted family of transmembrane proteins, and aberrant GPCR expression and GPCR-mediated signaling have been implicated in leukemogenesis of AML.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • State of the (Student) Union Address
    12 smallTALK w March 7, 2011 Volume 50, Issue 10 TNA Q & A with ONARCH iMPACT President COREBOARD hits Hancock M Fayetteville ...page 3 S ...page 6 GAME RESULTS small ALK Baseball March 7, 2011 The sTudenT voice of MeThodisT universiTy Methodist University Date Opponent Result Volume 50, Issue 10 Fayetteville, NC 2/23 Hampden-Sydney College W 7-4 T 2/26 LaGrange College W 8-1 www.sMallTalkMu.coM 2/27 LaGrange College W 8-3 3/1 Immaculata University W 14-1 3/2 Lynchburg College W 12-0 Softball Date Opponent Result State of the (Student) Union Address 2/25 Piedmont College L 1-3 2/25 Lynchburg College L 4-7 2/26 Salisbury University L 2-9 President Hancock answers students’ questions at Town Hall Meeting 2/26 Eastern Mennonite University W 2-0 2/27 Roanoke College L 1-13, L 5-13 of a university,” Hancock said to the crowd. “I think I have the best job in America, and I Men’s Tennis want each and every one of you to feel like you are at the best school in America.” Date Opponent Result “I’ve been waiting 27 years for Dr. Hendricks to retire,” joked Hancock. “And now, 2/23 Barton College L 4-5 just a little older than 52, I am here doing exactly what I set my sight on so long ago.” 2/26 Benedict College W 9-0 Hancock explained to the crowd that he would attempt to answer every question to the 2/26 Guilford College W 8-1 3/3 Mount Olive College L 1-8 best of his ability, but asked students to be patient with him if he did not know the answer and promised that he would do his best to answer questions as he learned more about Women’s Tennis Methodist University.
    [Show full text]