Long-Term Follow-Up of Taiwanese Chinese Patients Treated Early for 6-Pyruvoyl-Tetrahydropterin Synthase Deficiency

Total Page:16

File Type:pdf, Size:1020Kb

Long-Term Follow-Up of Taiwanese Chinese Patients Treated Early for 6-Pyruvoyl-Tetrahydropterin Synthase Deficiency ORIGINAL CONTRIBUTION Long-term Follow-up of Taiwanese Chinese Patients Treated Early for 6-Pyruvoyl-Tetrahydropterin Synthase Deficiency Kai-Ming Liu, MS; Tze-Tze Liu, PhD; Ni-Chung Lee, MD; Ling-Yee Cheng, MS; Kwang-Jen Hsiao, PhD; Dau-Ming Niu, MD, PhD Objective: To report the long-term results of early ini- Interventions: Treatment with tetrahydrobiopterin, le- tiation of treatment of 6-pyruvoyl-tetrahydropterin syn- vodopa, and 5-hydroxytryptophan. thase (PTPS) deficiency. Main Outcome Measure: IQ score. Design: Between 1988 and 2000, 12 newborns with PTPS deficiency who underwent early treatment at our hospi- Results: The mean (SD) IQ score of our PTPS-deficient tal were identified. All patients received tetrahydrobiop- patients was 96.7 (9.7; range 86-119), which is consid- terin replacement in a daily dosage between approxi- erably higher than previous reports of other popula- mately 2 and 4 mg/kg. The dosages of levodopa tions of PTPS-deficient patients. All patients reached a replacement were 10 to 15 mg/kg/d, which is consider- normal IQ on high daily dosages of levodopa replace- ably higher than the typically recommended dosages of ment, without developing apparent long-term levodopa- less than 7 mg/kg/d for patients aged younger than 2 years induced adverse effects. We also observed a correlation and 8 to 10 mg/kg/d for patients aged 2 years or older. between long-term IQ score and genotype, birth weight, Replacement with 5-hydroxytryptophan varied widely and age at initiation of treatment. among patients. Conclusions: An effective newborn screening referral program and early initiation of appropriate therapy pre- Setting: Taipei Veterans General Hospital. served the IQ scores of PTPS-deficient patients. Patients: Twelve newborns. Arch Neurol. 2008;65(3):387-392 YPERPHENYLALANINEMIA IS 6-Pyruvoyl-tetrahydropterin synthase the most common inher- deficiency in humans may not only pro- ited disorder of amino duce the typical phenylketonuric phe- acid metabolism. It may notype but may also be the source of be caused by a defi- neurological signs and symptoms due to ciency of phenylalanine hydroxylase or tet- impaired syntheses of levodopa and H 5,6 rahydrobiopterin, an important cofactor serotonin. 6-Pyruvoyl-tetrahydropterin involved in the biogenic syntheses of ty- synthase deficiency’s extrapyramidal rosine, levodopa, 5-hydroxytryptophan, ni- manifestations, including, among others, tric oxide, and glycerol (Figure).1 Tetra- truncal hypotonia, increased limb tone, Author Affiliations: Institute of hydrobiopterin deficiency may be caused postural instability, hypokinesia, choreic Clinical Medicine, School of by defects in the enzymes involved in its or dystonic limb movements, gait abnor- Medicine (Mr K.-M. Liu and biosynthesis or in its regeneration. In white malities, hypersalivation, and dysphagia, Dr Niu) and Taipei Veterans individuals, the overall prevalence of may resemble the signs of Parkinson General Hospital and hyperphenylalaninemia attributable to disease.7,8 The disease is treated by tetra- Yang-Ming University Genome tetrahydrobiopterin deficiency is only 1% hydrobiopterin, levodopa, and 5-hy- Research Center (Drs T.-T. Liu to 2% of all cases.2,3 According to the droxytryptophan replacement. How- and Hsiao), National Yang-Ming International Database of Tetrahydrobi- ever, choosing the proper amounts of University; Department of opterin Deficiencies database, which precursors of neurotransmitters for Pediatrics, Taipei Veterans General Hospital (Drs Lee and includes patients of various races, replacement is challenging. While lum- Niu); and Department of 6-pyruvoyl-tetrahydropterin synthase bar puncture is key in the diagnosis and Rehabilitation, Taipei Veterans (PTPS) deficiency (OMIM 261640) rep- monitoring of pediatric neurotransmitter General Hospital (Ms Cheng), resents approximately 60% of all tetrahy- disease,9 the choice of dosages of these Taipei, Taiwan. drobiopterin deficiencies.4 precursors based on the concentrations (REPRINTED) ARCH NEUROL / VOL 65 (NO. 3), MAR 2008 WWW.ARCHNEUROL.COM 387 ©2008 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/26/2021 GTP GTPCH Neopterin H2NTP PTPS 6PTP SR Phenylalanine Tyrosine Tryptophan Arginine DHPR BH4 Biopterin qBH2 PAH TH TPH NOS PCD 4 α -OHBH4 Tyrosine Levodopa 5-Hydroxytryptophan NO + Dopamine Serotonin Citrulline Figure. The biochemical pathway of tetrahydrobiopterin (BH4) metabolism (http://www.bh4.org/). Tetrahydrobiopterin is synthesized from guanosine triphosphate by the enzymes guanosine triphosphate cyclohydrolase I (GTPCH), 6-pyruvoyl-tetrahydropterin synthase (PTPS), and sepiapterin reductase (SR) in a 3-step pathway. After reacting with the aromatic amino acid hydroxylase as an active cofactor, BH4 is oxidized to pterin-4␣-carbinolamine (4␣-OHBH4). It is then regenerated by pterin-4␣-carbinolamine dehydratase (PCD) and dihydropteridine reductase (DHPR) to BH4. H2NTP indicates dihydroneopterin triphosphate; GTP, guanosine triphosphate; NO, nitric oxide; NOS, nitric oxide synthase; PAH, phenylalanine hydroxylase; qBH2, quinonoid dihydrobiopterin; TH, tyrosine hydroxylase; TPH, tryptophan hydroxylase; and 6-PTP, 6-pyruvoyl-tetrahydropterin. of neurotransmitter metabolites in the cerebrospinal deficiency. A prenatal diagnosis was made in 2 other fetuses fluid might not always be optimal, as the patient’s whose siblings were known to be PTPS deficient. The diagno- metabolism might not systematically reflect the clinical sis of all patients identified by newborn screening was con- 8 10-12 firmed by (1) a tetrahydrobiopterin loading test, (2) analysis status of PTPS-deficient patients. In addition, the 15 invasiveness of lumbar puncture limits its serial use in of urinary pterins, (3) enzyme assay of dihydropteridine re- ductase,16 and (4) mutational analysis of the PTS gene.17,18 routine clinical practice. There are few outcome studies of patients undergoing early treatment for PTPS defi- ciency, particularly over long periods of observation. TREATMENT Several reports have described adverse outcomes in a large percentage of patients with PTPS deficiency, Treatment with (1) tetrahydrobiopterin, (2) levodopa with a de- despite its detection by newborn screening and the carboxylase inhibitor, and (3) 5-hydroxytryptophan was initi- institution of early treatment.13,14 ated after confirmation of the diagnosis of PTPS deficiency. The administration of each neurotransmitter was based on the clini- In Taiwan, where the disease’s prevalence (1 in 132 000) cal response and the development of adverse effects observed dur- is considerably higher than in white individuals (1 in ing ambulatory follow-up. The initial dosage of tetrahydrobiop- 14,15 1 000 000), PTPS deficiency is the cause of approxi- terin was approximately 3 to 4 mg/kg/d and was subsequently mately one-third of all cases of hyperphenylalaninemia. adjusted to keep serum phenylalanine concentrations below 120 A recent study at another Taiwanese medical center re- µM. The initial dosage of levodopa with a decarboxylase inhibi- ported a mean (SD) IQ score of 76 (14) in 10 patients tor was 2 mg/kg/d, then increased every 2 to 5 days in 1-mg in- with PTPS deficiency detected by newborn screening.14 crements to a target dosage of 10 to 15 mg/kg/d. Beginning in In contrast, we found a significantly higher (PϽ.001) 1996, serum prolactin concentration was measured at 1-month mean (SD) IQ score (96.7 ([9.7]) in 12 patients whose intervals in patients younger than 6 months and at 3-month in- disease was detected by similar screening. Because these tervals in older patients to guide the dosage of levodopa. When the concentration of serum prolactin exceeded 888 µg/L, the le- 2 groups of patients were from similar genetic back- vodopa dosage was gradually increased until prolactin returned grounds, we hypothesized that different treatments were to less than 888 µg/L. However, in the absence of clinical mani- major determinants of their different outcomes. Our ar- festations of levodopa insufficiency, a dosage greater than 15 mg/ ticle describes the main characteristics of the early treat- kg/d was never administered, even in the presence of a persis- ment administered to our PTPS-deficient patients and ex- tently elevated prolactin. In the event of irritability or dyskinesia, amines the putative factors related to their outcomes the dosage of levodopa was lowered for several days, then in- ascertained by IQ scores. creased again more slowly to the target dosage. 5-Hydroxytryp- tophan was initially administered in a dosage of 1 mg/kg/d, then increased every 2 to 5 days in 1-mg increments to a 5 mg/kg/d METHODS target dosage. As with levodopa, the dosage of 5-hydroxytryp- tophan was lowered when nausea, vomiting, diarrhea, or ab- Between 1988 and 2001, 10 screened newborns found to have dominal pain developed, then was slowly increased to the tar- elevated serum phenylalanine concentrations were referred to get maintenance dosage. Levodopa and 5-hydroxytryptophan Taipei Veterans General Hospital and confirmed to have PTPS were administered together in 4 divided doses before meals. (REPRINTED) ARCH NEUROL / VOL 65 (NO. 3), MAR 2008 WWW.ARCHNEUROL.COM 388 ©2008 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 09/26/2021 Table 1. Demographic and Biochemical Characteristics and Outcomes of Treated Patients With PTPS Deficiency BW Initial Age at Treatment Onset, d IQ Phe Peak, Gestational BW Age at Patient
Recommended publications
  • Malignant Hyperphenylalaninemia Tetrahydrobiopterin (BH4) Phenylalanine
    Pediat. Res. 13: 1 150-1 155 (1979) Dihydropterine reductase (DHPR) phenylketonuria malignant hyperphenylalaninemia tetrahydrobiopterin (BH4) phenylalanine Malignant Hyperphenylalaninemia-Clinical Features, Biochemical Findings, and Experience with Administration of Biopterins D. M. DANKS, P. SCHLESINGER, F. FIRGAIRA, R. G. H. COTTON. B. M. WATSON, H. REMBOLD. AND G. HENNINGS Genetics Research Unit, Royal Children S Hospital Research Foundation, and Department of Paediatrics, Universi1.y of Melbourne, Parkville, Australia (D. M. D., P. S., F. F.. R. G. H. C., B. M. W.) and Max Planck Institutfur Biochemie. Germany (H. R., G. H.) Summary has been attributed to defective production of neurotransmitters derived from hydroxylation of tyrosine and of tryptophan (3, 4). Four cases of malignant hyperphenylalaninemia (MHPA) are The results of treatment with L-dopa and 5-hydroxytryptophan described. Pretreatment serum phenylalanine levels were 1.5, 3.0, support this contention (2, 3. 7). 2.4, and 0.9 mmoles/l. Dihydropteridine reductase (DHPR) defi- Four patients with MHPA seen in Melbourne since 1963 are ciency was proven in one patient by assays on cultured fibroblastic presented. One patient has been shown to have DHPR deficiency cells and was presumed in her sibling and in another deceased and her sister is presumed to have died of this defect. Both parents patient whose parents' fibroblastic cells show approximately 50% of another baby had DHPR levels in the heterozygote range of normal enzyme activity. DHPR and phenylalanine hydroxylase suggesting DHPR deficiency as the cause of her death. The 4th deficiency were excluded by assays on liver obtained at autopsy in baby had neither PH or DHPR deficiency and defective BH4 the 4th patient.
    [Show full text]
  • Epithelial Cell Line Derived from Endometriotic Lesion Mimics Macrophage Nervous Mechanism of Pain Generation on Proteome and Metabolome Levels
    biomolecules Article Epithelial Cell Line Derived from Endometriotic Lesion Mimics Macrophage Nervous Mechanism of Pain Generation on Proteome and Metabolome Levels Benjamin Neuditschko 1,2,† , Marlene Leibetseder 1,† , Julia Brunmair 1 , Gerhard Hagn 1 , Lukas Skos 1, Marlene C. Gerner 3 , Samuel M. Meier-Menches 1,2,4 , Iveta Yotova 5 and Christopher Gerner 1,4,* 1 Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria; [email protected] (B.N.); [email protected] (M.L.); [email protected] (J.B.); [email protected] (G.H.); [email protected] (L.S.); [email protected] (S.M.M.-M.) 2 Department of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Waehringer Straße 42, 1090 Vienna, Austria 3 Division of Biomedical Science, University of Applied Sciences, FH Campus Wien, Favoritenstraße 226, 1100 Vienna, Austria; [email protected] 4 Joint Metabolome Facility, Faculty of Chemistry, University of Vienna, Waehringer Straße 38, 1090 Vienna, Austria 5 Department of Obstetrics and Gynaecology, Medical University of Vienna, Spitalgasse 23, 1090 Vienna, Austria; [email protected] Citation: Neuditschko, B.; * Correspondence: [email protected] Leibetseder, M.; Brunmair, J.; Hagn, † Authors contributed equally. G.; Skos, L.; Gerner, M.C.; Meier-Menches, S.M.; Yotova, I.; Abstract: Endometriosis is a benign disease affecting one in ten women of reproductive age world- Gerner, C. Epithelial Cell Line wide. Although the pain level is not correlated to the extent of the disease, it is still one of the Derived from Endometriotic Lesion cardinal symptoms strongly affecting the patients’ quality of life.
    [Show full text]
  • Inherited Disorders of Neurotransmitters: Classification and Practical Approaches for Diagnosis and Treatment
    Published online: 2018-10-29 2 Review Article Inherited Disorders of Neurotransmitters: Classification and Practical Approaches for Diagnosis and Treatment Heiko Brennenstuhl1 Sabine Jung-Klawitter1 Birgit Assmann1 Thomas Opladen1 1 Division of Neuropediatrics and Metabolic Medicine, Department of Address for correspondence Prof. Dr. Thomas Opladen, MD, Division General Pediatrics, University Children’s Hospital Heidelberg, of Neuropediatrics and Metabolic Medicine, Department of General Heidelberg, Germany Pediatrics, Im Neuenheimer Feld 430, D-69120 Heidelberg, Germany (e-mail: [email protected]). Neuropediatrics 2019;50:2–14. Abstract Neurotransmitter deficiencies are rare neurological disorders with clinical onset during childhood. The disorders are caused by genetic defects in the enzymes involved in synthesis, degradation, or transport of neurotransmitters or by defects in the cofactor biosynthesis such as tetrahydrobiopterin (BH4). With the newly described DNAJC12 deficiency, a chaperon-associated neurotransmitter disorder, the pathophysiological spectrum has been broadened. All deficiencies result in a lack of monoamine neurotransmitters, especially dopamine and its products, with a subset leading to decreased levels of serotonin. Symptoms can occur already in the neonatal period. Keywords Classical signs are hypotonia, movement disorders, autonomous dysregulations, and ► inherited monoamine impaired development. Diagnosis depends on quantitative detection of neurotrans- neurotransmitter mitters in cerebrospinal
    [Show full text]
  • Two Filipino Patients with 6-Pyruvoyltetrahydropterin Synthase Deficiency
    CASE REPORT Two Filipino Patients with 6-Pyruvoyltetrahydropterin Synthase Deficiency John Karl L. de Dios1,2, Mary Anne D. Chiong,1,2 1Department of Pediatrics, College of Medicine and Philippine General Hospital, University of the Philippines Manila; 2Institute of Human Genetics, National Institutes of Health, University of the Philippines Manila ABSTRACT enzymes: guanosine triphosphate cyclohydrolase Hyperphenylalaninemia can result from defects in either the (GTPCH), 6-pyruvoyltetrahydropterin synthase (PTPS), phenylalanine hydroxylase (PAH) enzyme or in the synthesis or dihydropteridine reductase (DHPR) and pterin-4a- recycling of the active pterin, tetrahydrobiopterin (BH4), which is an carbinolamine dehydratase (PCD). The first two enzymes are obligate co-factor for the PAH enzyme, as well as tyrosine hydroxylase and tryptophan hydroxylase. One of the most common causes of BH4 involved in the biosynthesis of tetrahydrobiopterin, the last 3 deficiency is a defect in the synthesis of 6-pyruvoyltetrahydropterin two in its regeneration. A third enzyme in the biosynthesis synthase (PTPS) enzyme. Patients present with progressive neurological of BH4 is sepiapterin reductase, but its deficiency is not disease such as mental retardation, convulsions and disturbance of associated with hyperphenylalaninemia 1 (Figure 1). tone and posture despite strict adherence to diet and good metabolic Clinical manifestations for a severe PAH defect or BH4 control. The authors report the first two cases of PTPS deficiency in the synthesis/recycling defect can be similar, with patients Philippines. Both are females with initial phenylalanine levels of more presenting with progressive neurological impairment than 1300 umol/L who continued to develop neurologic deterioration during infancy. Since management of these patients will despite good metabolic control and strict adherence to diet.
    [Show full text]
  • Building Microbial Factories for The
    Contents lists available at ScienceDirect Metabolic Engineering journal homepage: www.elsevier.com/locate/meteng Building microbial factories for the production of aromatic amino acid pathway derivatives: From commodity chemicals to plant-sourced natural products ∗ Mingfeng Caoa,b,1, Meirong Gaoa,b,1, Miguel Suásteguia,b, Yanzhen Meie, Zengyi Shaoa,b,c,d, a Department of Chemical and Biological Engineering, Iowa State University, USA b NSF Engineering Research Center for Biorenewable Chemicals (CBiRC), Iowa State University, USA c Interdepartmental Microbiology Program, Iowa State University, USA d The Ames Laboratory, USA e School of Life Sciences, No.1 Wenyuan Road, Nanjing Normal University, Qixia District, Nanjing, 210023, China ARTICLE INFO ABSTRACT Keywords: The aromatic amino acid biosynthesis pathway, together with its downstream branches, represents one of the Aromatic amino acid biosynthesis most commercially valuable biosynthetic pathways, producing a diverse range of complex molecules with many Shikimate pathway useful bioactive properties. Aromatic compounds are crucial components for major commercial segments, from De novo biosynthesis polymers to foods, nutraceuticals, and pharmaceuticals, and the demand for such products has been projected to Microbial production continue to increase at national and global levels. Compared to direct plant extraction and chemical synthesis, Flavonoids microbial production holds promise not only for much shorter cultivation periods and robustly higher yields, but Stilbenoids Benzylisoquinoline alkaloids also for enabling further derivatization to improve compound efficacy by tailoring new enzymatic steps. This review summarizes the biosynthetic pathways for a large repertoire of commercially valuable products that are derived from the aromatic amino acid biosynthesis pathway, and it highlights both generic strategies and spe- cific solutions to overcome certain unique problems to enhance the productivities of microbial hosts.
    [Show full text]
  • Tetrahydrobiopterin Deficiency
    Blau et al.: Tetrahydrobiopterin deficiency Pteridines Vol. 4, 1993. pp. 1-10 Review Tetrahydrobiopterin Deficiency: From Phenotype to Genotype* Nenad Blau i! §, Beat Thonyi!, Claus W. Heizmann i!, and Jean-Louis Dhondt t :I Division of Clinical Chemistry. University Children's Hospital. Steinwiesstr. 75. CH-8032 ZUlich. Switzerland tCentre Hospitalier Sanit-Philbert Faculte Libre de Medecine. Lomme Cedex, France (Received January 10. 1993) Summary As a result of the selective screening worldwide during the last 18 years, approximately 250 patients with tetrahydrobiopterin deficiency were discovered. Most patients suffer from 6-pyruvoyl tetrahydropterin synthase deficiency (58%), followed by dihydropteridine reductase deficiency (35%), GTP cyclohydrolase I deficiency (3%), and "primapterinuria" (4%). The patients can be treated with neurotransmitter precursors, as well as with tetrahydrobiopterin. However, data on long term treatment are still scarce and it is therefore of great value to investigate all newborns with even mild hyperphenylalaninemia. Cloning of the enzymes involved in the biosynthesis and regeneration of tetrahydrobiopterin makes them to be easily accessible for biochemical and biological studies. So far, all proteins expressed heterologous are active in E. coli. Cloning of the wild type gene and mutant analysis of patients allow the rapid identification of the defective gene on the molecular level. Key words: Tetrahydrobiopterin, Deficiency, Hyperphenylalaninemia, Gene cloning, DNA. In troducti on Early detection of tetrahydrobiopterin (BH4) defi­ nine to tyrosine: tyrosine-3-hydroxylase and trypto­ ciency became essential soon after it was recognized phan-5-hydroxylase are the rate-limiting enzymes in that a number of patients with hyperphenylalanin­ the biosynthesis of catecholamines and serotonin, emia (HPA) show progressive neurological illness de­ respectively (4).
    [Show full text]
  • Neurological Aspects of Biopterin Metabolism
    Arch Dis Child: first published as 10.1136/adc.61.2.130 on 1 February 1986. Downloaded from Archives of Disease in Childhood, 1986, 61, 130-137 Neurological aspects of biopterin metabolism I SMITH, R J LEEMING, N P C CAVANAGH, AND K HYLAND Hospital for Sick Children and Institute of Child Health, London, and The General Hospital, Birmingham SUMMARY Plasma total biopterin concentration was measured by bioassay in 59 infants with hyperphenylalaninaemia and in 50 children with developmental regression and or movement disorder with normal plasma phenylalanine concentrations. In infants with raised phenylalanine concentrations plasma biopterin concentrations were significantly raised in proportion to the phenylalanine values. Five patients had plasma biopterin concentrations at the extremes of the range, and of these two had defective biopterin metabolism. One with low plasma biopterin concentration apparently had a partial defect of biopterin synthesis but died before investigations were complete. One with high plasma biopterin concentration, even when phenylalanine concentrations had fallen to the normal range, had dihydropteridine reductase deficiency. In this patient concentrations of homovanillic acid and 5-hydroxyindolacetic acid in the cerebrospinal fluid (CSF) were severely reduced. In children without hyperphenylalaninaemia plasma biopterin concentrations were normal. Twenty two patients were subjected to lumbar puncture, of whom six with developmental regression without movement disorder had normal CSF biopterin concentrations, and 11 withcopyright. movement disorder other than torsion dystonia had significantly lower CSF biopterin concentrations. Five patients with torsion dystonia had normal biopterin concentrations. Tetrahydrobiopterin is the essential cofactor for three hydroxylation reactions, the conversion of GTP http://adc.bmj.com/ phenylalanine to tyrosine, tyrosine to L-dopa, and tryptophan to 5-hydroxytryptophan.' These last two B, BH2 j reactions are the rate limiting steps of catecholamine Ne 2P3 --- NeH2 and serotonin synthesis.
    [Show full text]
  • Oral Berberine Improves Brain Dopa/Dopamine Levels to Ameliorate Parkinson’S Disease by Regulating Gut Microbiota
    Signal Transduction and Targeted Therapy www.nature.com/sigtrans ARTICLE OPEN Oral berberine improves brain dopa/dopamine levels to ameliorate Parkinson’s disease by regulating gut microbiota Yan Wang1, Qian Tong2, Shu-Rong Ma1, Zhen-Xiong Zhao1, Li-Bin Pan1, Lin Cong1, Pei Han1, Ran Peng1, Hang Yu1, Yuan Lin1, Tian-Le Gao1, Jia-Wen Shou1, Xiao-Yang Li1, Xian-Feng Zhang2, Zheng-Wei Zhang1, Jie Fu1, Bao-Ying Wen1, Jin-Bo Yu1, Xuetao Cao3 and Jian-Dong Jiang 1 The phenylalanine–tyrosine–dopa–dopamine pathway provides dopamine to the brain. In this process, tyrosine hydroxylase (TH) is the rate-limiting enzyme that hydroxylates tyrosine and generates levodopa (L-dopa) with tetrahydrobiopterin (BH4) as a coenzyme. Here, we show that oral berberine (BBR) might supply H• through dihydroberberine (reduced BBR produced by bacterial nitroreductase) and promote the production of BH4 from dihydrobiopterin; the increased BH4 enhances TH activity, which accelerates the production of L-dopa by the gut bacteria. Oral BBR acts in a way similar to vitamins. The L-dopa produced by the intestinal bacteria enters the brain through the circulation and is transformed to dopamine. To verify the gut–brain dialog activated by BBR’s effect, Enterococcus faecalis or Enterococcus faecium was transplanted into Parkinson’s disease (PD) mice. The bacteria significantly increased brain dopamine and ameliorated PD manifestation in mice; additionally, combination of BBR with bacteria showed better therapeutic effect than that with bacteria alone. Moreover, 2,4,6-trimethyl-pyranylium tetrafluoroborate (TMP-TFB)- derivatized matrix-assisted laser desorption mass spectrometry (MALDI-MS) imaging of dopamine identified elevated striatal dopamine levels in mouse brains with oral Enterococcus, and BBR strengthened the imaging intensity of brain dopamine.
    [Show full text]
  • Analysis of Catecholamines and Pterins in Inborn Errors of Monoamine Neurotransmitter Metabolism—From Past to Future
    cells Review Analysis of Catecholamines and Pterins in Inborn Errors of Monoamine Neurotransmitter Metabolism—From Past to Future Sabine Jung-Klawitter * and Oya Kuseyri Hübschmann Department of General Pediatrics, Division of Neuropediatrics and Metabolic Medicine, University Hospital Heidelberg, 69120 Heidelberg, Germany * Correspondence: [email protected]; Tel.: +49-(0)6221-5639586 Received: 30 June 2019; Accepted: 4 August 2019; Published: 9 August 2019 Abstract: Inborn errors of monoamine neurotransmitter biosynthesis and degradation belong to the rare inborn errors of metabolism. They are caused by monogenic variants in the genes encoding the proteins involved in (1) neurotransmitter biosynthesis (like tyrosine hydroxylase (TH) and aromatic amino acid decarboxylase (AADC)), (2) in tetrahydrobiopterin (BH4) cofactor biosynthesis (GTP cyclohydrolase 1 (GTPCH), 6-pyruvoyl-tetrahydropterin synthase (PTPS), sepiapterin reductase (SPR)) and recycling (pterin-4a-carbinolamine dehydratase (PCD), dihydropteridine reductase (DHPR)), or (3) in co-chaperones (DNAJC12). Clinically, they present early during childhood with a lack of monoamine neurotransmitters, especially dopamine and its products norepinephrine and epinephrine. Classical symptoms include autonomous dysregulations, hypotonia, movement disorders, and developmental delay. Therapy is predominantly based on supplementation of missing cofactors or neurotransmitter precursors. However, diagnosis is difficult and is predominantly based on quantitative detection of neurotransmitters, cofactors, and precursors in cerebrospinal fluid (CSF), urine, and blood. This review aims at summarizing the diverse analytical tools routinely used for diagnosis to determine quantitatively the amounts of neurotransmitters and cofactors in the different types of samples used to identify patients suffering from these rare diseases. Keywords: inborn errors of metabolism; catecholamines; pterins; HPLC; fluorescence detection; electrochemical detection; MS/MS 1.
    [Show full text]
  • Early Diagnosis of 6-Pyruvoyl-Tetrahydropterin Synthase Deficiency
    Shintaku: Early diagnosis of 6-pyruvoyl-tetrahydropterin synthase deficiency Pteridines Vol. 5, 1994, pp. 18-27 Early Diagnosis of 6-Pyruvoyl-tetrahydropterin Synthase Deficiency Haruo Shintaku Department of Pediatrics, Osaka City University Medical School, Osaka 545, Japan (Received December 10, 1993) Summary 6-Pyruvoyl-tetrahydropterin synthase (PTPS) deficiency, which used to be called dihydrobiopterin synthase deficiency, is the most common kind of tetrahydrobiopterin deficiency. Early treatment by administration of tetrahydrobiopterin and neurotransmitter precursors helps to prevent neurological injury, so prompt diag­ nosis of neonates with hyperphenylalaninemia discovered by screening for phenylketonuria is necessary. Three patients with PTPS deficiency were diagnosed by pteridine analysis. All patients had low biopterin and high neopterin levels in the urine, resulting in a neopterin to biopterin ratio (NIB) much higher than that of age-matched controls. The mean NIB in the parents of these patients was twice that of healthy unrelated adults. PTPS activity was measured in one of these patients with PTPS deficiency and in his family members; the patient was homozygous and his parents were heterozygous for PTPS deficiency. This result meant that NIB could be used as an index of PTPS activity. In healthy subjects studied cross­ sectionally, urinary levels of pteridine decreased in groups of increasing age, and the same change was found in subjects with hyperphenylalaninemia studied cross-sectionally. Thus, pteridine values of patients
    [Show full text]
  • Tetrahydropiopterin Deficiencies: Diagnosis, Treatment and Follow-Up
    TETRAHYDROPIOPTERIN DEFICIENCIES: DIAGNOSIS, TREATMENT AND FOLLOW-UP Alberto Burlina Division of Metabolic Disorders Department of Pediatrics - University Hospital Padova, Italy PHENYLALANINE HYDROXYLATING SYSTEM • Phenylalanine hydroxylase deficiency Phenylketonuria Phenylketonuria responsiveness to tetrahydrobiopterin • Tetrahydrobiopterin deficiencies GTP-CH PTPS SR DHPR PAH PCD DE NOVO BIOSYNTHETIC PATHWAY FROM GTP GFRP + BH4 RECYCLING PATHWAY SYNTHESIS OF TETRAHYDROBIOPTERIN (salvage pathway) TETRAHYDROBIOPTERIN COFACTOR DEFICIENCIES WITHOUT HYPERPHENYLALANINEMIA Segawa disease Sepiapterin reductase deficiency (SR) WITH HYPERPHENYLALANINEMIA GTP cyclohydrolase I deficiency (GTPCH) 6-Pyruvoyltetrahydropterin synthase deficiency (PTPS) Dihydropteridine reductase deficiency (DHPR) Pterin-4-α-carbinolamine dehydratase (PCD) DIFFERENTIAL DIAGNOSIS OF BH4 DEFECTS + + + +/- TETRAHYDROBIOPTERIN METABOLISM PATHWAY GTP GTP-Cyclohydrolase NH2TP Neopterin PTPS 6PTP SR BH4 Tyr Trp DHPR PAH TH TPH L-Dopa 5-HTP qBH2 COMT / MAO AADC MAO HVA Dopamine Serotonin 5HIAA DH SNA HIOMT MHPG Norepinephrine N-acetylserotonin Melatonin LOGISTICS OF CSF INVESTIGATIONS • Sample preparation • Freeze CSF immediately at – – preservatives 70º C – snap freezing • Contamination with blood disturb results (centrifuge – volume immediately before freezing) • Sample storage & transport • Chose the right technique (s) • Certain amount of CSF is (very low levels of metabolites necessary (3-4 ml), collect in at in CSF) least 5 fractions 0,5 – 1 ml • Establish own control
    [Show full text]
  • Consensus Guideline for the Diagnosis and Treatment of Tetrahydrobiopterin
    Opladen et al. Orphanet Journal of Rare Diseases (2020) 15:126 https://doi.org/10.1186/s13023-020-01379-8 REVIEW Open Access Consensus guideline for the diagnosis and treatment of tetrahydrobiopterin (BH4) deficiencies Thomas Opladen1*†, Eduardo López-Laso2†, Elisenda Cortès-Saladelafont3,4†, Toni S. Pearson5, H. Serap Sivri6, Yilmaz Yildiz6, Birgit Assmann1, Manju A. Kurian7,8, Vincenzo Leuzzi9, Simon Heales10, Simon Pope10, Francesco Porta11, Angeles García-Cazorla3, Tomáš Honzík12, Roser Pons13, Luc Regal14, Helly Goez15, Rafael Artuch16, Georg F. Hoffmann1, Gabriella Horvath17, Beat Thöny18, Sabine Scholl-Bürgi19, Alberto Burlina20, Marcel M. Verbeek21, Mario Mastrangelo9, Jennifer Friedman22, Tessa Wassenberg14, Kathrin Jeltsch1†, Jan Kulhánek12*†, Oya Kuseyri Hübschmann1† and on behalf of the International Working Group on Neurotransmitter related Disorders (iNTD) Abstract Background: Tetrahydrobiopterin (BH4) deficiencies comprise a group of six rare neurometabolic disorders characterized by insufficient synthesis of the monoamine neurotransmitters dopamine and serotonin due to a disturbance of BH4 biosynthesis or recycling. Hyperphenylalaninemia (HPA) is the first diagnostic hallmark for most BH4 deficiencies, apart from autosomal dominant guanosine triphosphate cyclohydrolase I deficiency and sepiapterin reductase deficiency. Early supplementation of neurotransmitter precursors and where appropriate, treatment of HPA results in significant improvement of motor and cognitive function. Management approaches differ across the world
    [Show full text]