Goldbach for Gaussian, Hurwitz, Octavian and Eisenstein Primes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Cambridge Mathematical Journal and Its Descendants: the Linchpin of a Research Community in the Early and Mid-Victorian Age ✩
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematica 31 (2004) 455–497 www.elsevier.com/locate/hm The Cambridge Mathematical Journal and its descendants: the linchpin of a research community in the early and mid-Victorian Age ✩ Tony Crilly ∗ Middlesex University Business School, Hendon, London NW4 4BT, UK Received 29 October 2002; revised 12 November 2003; accepted 8 March 2004 Abstract The Cambridge Mathematical Journal and its successors, the Cambridge and Dublin Mathematical Journal,and the Quarterly Journal of Pure and Applied Mathematics, were a vital link in the establishment of a research ethos in British mathematics in the period 1837–1870. From the beginning, the tension between academic objectives and economic viability shaped the often precarious existence of this line of communication between practitioners. Utilizing archival material, this paper presents episodes in the setting up and maintenance of these journals during their formative years. 2004 Elsevier Inc. All rights reserved. Résumé Dans la période 1837–1870, le Cambridge Mathematical Journal et les revues qui lui ont succédé, le Cambridge and Dublin Mathematical Journal et le Quarterly Journal of Pure and Applied Mathematics, ont joué un rôle essentiel pour promouvoir une culture de recherche dans les mathématiques britanniques. Dès le début, la tension entre les objectifs intellectuels et la rentabilité économique marqua l’existence, souvent précaire, de ce moyen de communication entre professionnels. Sur la base de documents d’archives, cet article présente les épisodes importants dans la création et l’existence de ces revues. 2004 Elsevier Inc. -
Early History of the Riemann Hypothesis in Positive Characteristic
The Legacy of Bernhard Riemann c Higher Education Press After One Hundred and Fifty Years and International Press ALM 35, pp. 595–631 Beijing–Boston Early History of the Riemann Hypothesis in Positive Characteristic Frans Oort∗ , Norbert Schappacher† Abstract The classical Riemann Hypothesis RH is among the most prominent unsolved prob- lems in modern mathematics. The development of Number Theory in the 19th century spawned an arithmetic theory of polynomials over finite fields in which an analogue of the Riemann Hypothesis suggested itself. We describe the history of this topic essentially between 1920 and 1940. This includes the proof of the ana- logue of the Riemann Hyothesis for elliptic curves over a finite field, and various ideas about how to generalize this to curves of higher genus. The 1930ies were also a period of conflicting views about the right method to approach this problem. The later history, from the proof by Weil of the Riemann Hypothesis in charac- teristic p for all algebraic curves over a finite field, to the Weil conjectures, proofs by Grothendieck, Deligne and many others, as well as developments up to now are described in the second part of this diptych: [44]. 2000 Mathematics Subject Classification: 14G15, 11M99, 14H52. Keywords and Phrases: Riemann Hypothesis, rational points over a finite field. Contents 1 From Richard Dedekind to Emil Artin 597 2 Some formulas for zeta functions. The Riemann Hypothesis in characteristic p 600 3 F.K. Schmidt 603 ∗Department of Mathematics, Utrecht University, Princetonplein 5, 3584 CC -
The Case of Sicily, 1880–1920 Rossana Tazzioli
Interplay between local and international journals: The case of Sicily, 1880–1920 Rossana Tazzioli To cite this version: Rossana Tazzioli. Interplay between local and international journals: The case of Sicily, 1880–1920. Historia Mathematica, Elsevier, 2018, 45 (4), pp.334-353. 10.1016/j.hm.2018.10.006. hal-02265916 HAL Id: hal-02265916 https://hal.archives-ouvertes.fr/hal-02265916 Submitted on 12 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Interplay between local and international journals: The case of Sicily, 1880–1920 Rossana Tazzioli To cite this version: Rossana Tazzioli. Interplay between local and international journals: The case of Sicily, 1880–1920. Historia Mathematica, Elsevier, 2018, 45 (4), pp.334-353. 10.1016/j.hm.2018.10.006. hal-02265916 HAL Id: hal-02265916 https://hal.archives-ouvertes.fr/hal-02265916 Submitted on 12 Aug 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. -
LONG-TERM HISTORY and EPHEMERAL CONFIGURATIONS Catherine Goldstein
LONG-TERM HISTORY AND EPHEMERAL CONFIGURATIONS Catherine Goldstein To cite this version: Catherine Goldstein. LONG-TERM HISTORY AND EPHEMERAL CONFIGURATIONS. Interna- tional Congress of Mathematicians, Aug 2018, Rio de Janeiro, Brazil. pp.487-522. hal-02334505 HAL Id: hal-02334505 https://hal.archives-ouvertes.fr/hal-02334505 Submitted on 29 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. LONG-TERM HISTORY AND EPHEMERAL CONFIGURATIONS CATHERINE GOLDSTEIN Abstract. Mathematical concepts and results have often been given a long history, stretching far back in time. Yet recent work in the history of mathe- matics has tended to focus on local topics, over a short term-scale, and on the study of ephemeral configurations of mathematicians, theorems or practices. The first part of the paper explains why this change has taken place: a renewed interest in the connections between mathematics and society, an increased at- tention to the variety of components and aspects of mathematical work, and a critical outlook on historiography itself. The problems of a long-term history are illustrated and tested using a number of episodes in the nineteenth-century history of Hermitian forms, and finally, some open questions are proposed. -
Gotthold Eisenstein and Philosopher John
Gotthold Eisenstein and Philosopher John Franz Lemmermeyer Abstract Before the recent publication of the correspondence between Gauss and Encke, nothing was known about the role that John Taylor, a cotton merchant from Liverpool, had played in the life of Gotthold Eisenstein. In this article, we will bring together what we have discovered about John Taylor’s life. Eisenstein’s Journey to England Gotthold Eisenstein belonged, together with Dirichlet, Jacobi and Kummer, to the generation after Gauss that shaped the theory of numbers in the mid- 19th century, and like Galois, Abel, Riemann, Roch and Clebsch, Eisenstein died young. Today, Eisenstein’s name can be found in the Eisenstein series, Eisenstein sums, the Eisenstein ideal, Eisenstein’s reciprocity law and in his irreducibility criterion, and he is perhaps best known for his ingenious proofs of the quadratic, cubic and biquadratic reciprocity laws. Eisenstein’s father Jo- hann Konstantin Eisenstein emigrated to England in 1840; Eisenstein and his mother followed in June 1842, although Eisenstein’s few remarks on this episode in his autobiography [3] belie the dramatic events that he experienced in Eng- land. On their journey to England, the Eisensteins passed through Hamburg; during the Great Fire in May 1842 about a third of the houses in the Altstadt had burned down. What we learn from Eisenstein’s account is that he was impressed by the sight of railroad lines running right under the foundations of houses (in London?) and by the Menai suspension bridge in Wales: Eisenstein mentions that he undertook six sea voyages, and that on one of them they sailed arXiv:2101.03344v1 [math.HO] 9 Jan 2021 under the tremendous suspension bridge in Anglesey, which was so high that the Berlin Palace would easily have fitted under its main arch. -
Arxiv:Math.HO/0507203 V1 11 Jul 2005
SAUNDERS MAC LANE, THE KNIGHT OF MATHEMATICS S. S. KUTATELADZE Abstract. This is a short obituary of Saunders Mac Lane (1909–2005). San Francisco and April 14, 2005 form the terminal place and date of the mar- vellous almost centennial life of the prominent American mathematician Saunders Mac Lane who shared with Samuel Eilenberg (1913–1998) the honor of creation of category theory which ranks among the most brilliant, controversial, ambitious, and heroic mathematical achievements of the 20th century. Category theory, alongside set theory, serves as a universal language of modern mathematics. Categories, functors, and natural transformations are widely used in all areas of mathematics, allowing us to look uniformly and consistently on vari- ous constructions and formulate the general properties of diverse structures. The impact of category theory is irreducible to the narrow frameworks of its great ex- pressive conveniences. This theory has drastically changed our general outlook on the foundations of mathematics and widened the room of free thinking in mathe- matics. Set theory, a great and ingenious creation of Georg Cantor, occupies in the common opinion of the 20th century the place of the sole solid base of modern mathematics. Mathematics becomes sinking into a section of the Cantorian set theory. Most active mathematicians, teachers, and philosophers consider as obvi- ous and undisputable the thesis that mathematics cannot be grounded on anything but set theory. The set-theoretic stance transforms paradoxically into an ironclad -
Math Retreat 2021
Welcome to the 30th Annual Retreat of the UW-Eau Claire Mathematics Department. This year we feature mathematical talks given by faculty anD stuDents in the morning. Zoom “Table Groups” During the lunch hour proviDe an opportunity to catch up with the speakers anD frienDs. In the afternoon, the 11th annual AnDrew Balas Lecture, An Introduction to Spatial Graph Theory, will be presenteD by Dr. Erica Flapan. This is followeD by an electrifying, heart-breaking, brain-splitting mathematics competition for stuDents! 2 Zoom Room 1 https://uwec-edu.zoom.us/j/86063628229?pwd=ZVpka3RtdjRkQng2M1Mrc1EvTjJXQT09 Meeting ID: 860 6362 8229 Passcode: 897620 8:30-8:50 Madelyn St. Pierre Cryptarithms! 9:00-9:20 Mackenzie Lenz Patterns of Binary 9:30-9:50 Shelby DesJardin Don’t limit your possibilities 10:00-10:20 Abbie Groppe & Bryce Your Solution May Be the Problem Johnson 10:30-10:50 Allie Gorman You Can't Beat the Odds 11:00-11:20 Kaitlyn Gerndt The Monty Hall Problem and Bayes' Theorem 11:30-11:50 Grace Liebl Expanding on The Goat Problem 12:00-12:20 Katelin Nelson October Primes Zoom Room 2 https://uwec-edu.zoom.us/j/82139457644?pwd=Zy9KSllOczMvWW9jU3hqT0NOejY5QT09 Meeting ID: 821 3945 7644 Passcode: math2021 8:30-8:50 Dan Guyer & Lily Leith A Search for Primitive Roots in the Eisenstein Integer Ring 9:00-9:20 Joe McCausland & Jack Galois Theory and Groups of Field Extensions Saunders 9:30-9:50 Dan Guyer & Lily Leith An Introduction to Cyclotomic Polynomials 10:00-10:20 Gabriel Hamilton A Closer Look at the Josephus Problem 10:30-10:50 Amanda Rolf -
View This Volume's Front and Back Matter
i i “IrvingBook” — 2013/5/22 — 15:39 — page i — #1 i i 10.1090/clrm/043 Beyond the Quadratic Formula i i i i i i “IrvingBook” — 2013/5/22 — 15:39 — page ii — #2 i i c 2013 by the Mathematical Association of America, Inc. Library of Congress Catalog Card Number 2013940989 Print edition ISBN 978-0-88385-783-0 Electronic edition ISBN 978-1-61444-112-0 Printed in the United States of America Current Printing (last digit): 10987654321 i i i i i i “IrvingBook” — 2013/5/22 — 15:39 — page iii — #3 i i Beyond the Quadratic Formula Ron Irving University of Washington Published and Distributed by The Mathematical Association of America i i i i i i “IrvingBook” — 2013/5/22 — 15:39 — page iv — #4 i i Council on Publications and Communications Frank Farris, Chair Committee on Books Gerald M. Bryce, Chair Classroom Resource Materials Editorial Board Gerald M. Bryce, Editor Michael Bardzell Jennifer Bergner Diane L. Herrmann Paul R. Klingsberg Mary Morley Philip P. Mummert Mark Parker Barbara E. Reynolds Susan G. Staples Philip D. Straffin Cynthia J Woodburn i i i i i i “IrvingBook” — 2013/5/22 — 15:39 — page v — #5 i i CLASSROOM RESOURCE MATERIALS Classroom Resource Materials is intended to provide supplementary class- room material for students—laboratory exercises, projects, historical in- formation, textbooks with unusual approaches for presenting mathematical ideas, career information, etc. 101 Careers in Mathematics, 2nd edition edited by Andrew Sterrett Archimedes: What Did He Do Besides Cry Eureka?, Sherman Stein Beyond the Quadratic Formula, Ronald S. -
A History of Stickelberger's Theorem
A History of Stickelberger’s Theorem A Senior Honors Thesis Presented in Partial Fulfillment of the Requirements for graduation with research distinction in Mathematics in the undergraduate colleges of The Ohio State University by Robert Denomme The Ohio State University June 8, 2009 Project Advisor: Professor Warren Sinnott, Department of Mathematics 1 Contents Introduction 2 Acknowledgements 4 1. Gauss’s Cyclotomy and Quadratic Reciprocity 4 1.1. Solution of the General Equation 4 1.2. Proof of Quadratic Reciprocity 8 2. Jacobi’s Congruence and Cubic Reciprocity 11 2.1. Jacobi Sums 11 2.2. Proof of Cubic Reciprocity 16 3. Kummer’s Unique Factorization and Eisenstein Reciprocity 19 3.1. Ideal Numbers 19 3.2. Proof of Eisenstein Reciprocity 24 4. Stickelberger’s Theorem on Ideal Class Annihilators 28 4.1. Stickelberger’s Theorem 28 5. Iwasawa’s Theory and The Brumer-Stark Conjecture 39 5.1. The Stickelberger Ideal 39 5.2. Catalan’s Conjecture 40 5.3. Brumer-Stark Conjecture 41 6. Conclusions 42 References 42 2 Introduction The late Professor Arnold Ross was well known for his challenge to young students, “Think deeply of simple things.” This attitude applies to no story better than the one on which we are about to embark. This is the century long story of the generalizations of a single idea which first occurred to the 19 year old prodigy, Gauss, and which he was able to write down in no less than 4 pages. The questions that the young genius raised by offering the idea in those 4 pages, however, would torment the greatest minds in all the of the 19th century. -
Gotthold Eisenstein English Version
GOTTHOLD EISENSTEIN (April 4, 1823 – October 11, 1852) by HEINZ KLAUS STRICK , Germany The mathematics historian MORITZ CANTOR reported that in 1877, shortly before his death, CARL FRIEDRICH GAUSS said that there had only been three epoch-making mathematicians: ARCHIMEDES , NEWTON and EISENSTEIN . We cannot be sure that GAUSS really said this, but it can be concluded from many other statements of the Princeps Mathematicorum that he had a high opinion of EISENSTEIN . This brilliant mathematician died when he was only 29 years old and one can only guess what achievements he could have accomplished if he had not died so early. Even as a child, GOTTHOLD EISENSTEIN was often ill. The oldest son of a Berlin merchant barely survived a meningitis infection, but remained susceptible to illness for the rest of his short life. All five siblings born after him died at an early age, four of them from meningitis. His consistently poor physical condition prevented him from playing in the streets with children of the same age. His mother anxiously looked after his well-being, teaching him the letters of the alphabet when he was only two years old. The arithmetic lessons in the first years of school bored him, because he could not understand why, for example, multiplication had to be practised for days. In contrast, he liked anything that challenged his logical thinking. Because of his state of health, he was sent to the countryside for a few months, which, however, set him back in his school development. At the age of ten, EISENSTEIN moved to a boarding school in rural Charlottenburg (which only became part of Berlin from 1920). -
Landau's Problems on Primes
János PINTZ Landau’s problems on primes Tome 21, no 2 (2009), p. 357-404. <http://jtnb.cedram.org/item?id=JTNB_2009__21_2_357_0> © Université Bordeaux 1, 2009, tous droits réservés. L’accès aux articles de la revue « Journal de Théorie des Nom- bres de Bordeaux » (http://jtnb.cedram.org/), implique l’accord avec les conditions générales d’utilisation (http://jtnb.cedram. org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l’utilisation à fin strictement personnelle du copiste est constitutive d’une infrac- tion pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright. cedram Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/ Journal de Théorie des Nombres de Bordeaux 21 (2009), 357-404 Landau’s problems on primes par János PINTZ Résumé. Au congrès international de Cambridge en 1912, Lau- dau dressa la liste de quatre problèmes de base sur les nombres pre- miers. Ces problèmes furent caractérisés dans son discours comme “inaccessibles en l’état actuel de la science”. Ces problèmes sont les suivants : (1) Existe-t-il une infinité de nombres premiers de la forme n2 + 1 ? (2) La conjecture (binaire) de Goldbach, que chaque nombre pair supérieur à 2 est somme de deux nombres premiers. (3) La conjecture des nombres premiers jumeaux. (4) Existe-t-il toujours un nombre premier entre deux carrés consécutifs ? Tous ces problèmes sont encore ouverts. Le travail présenté ici est un exposé des résultats partiels aux problèmes (2)–(4), avec une attention particuliere concernant les résultats récents de D. -
The Role of GH Hardy and the London Mathematical Society
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Historia Mathematica 30 (2003) 173–194 www.elsevier.com/locate/hm The rise of British analysis in the early 20th century: the role of G.H. Hardy and the London Mathematical Society Adrian C. Rice a and Robin J. Wilson b,∗ a Department of Mathematics, Randolph-Macon College, Ashland, VA 23005-5505, USA b Department of Pure Mathematics, The Open University, Milton Keynes MK7 6AA, UK Abstract It has often been observed that the early years of the 20th century witnessed a significant and noticeable rise in both the quantity and quality of British analysis. Invariably in these accounts, the name of G.H. Hardy (1877–1947) features most prominently as the driving force behind this development. But how accurate is this interpretation? This paper attempts to reevaluate Hardy’s influence on the British mathematical research community and its analysis during the early 20th century, with particular reference to his relationship with the London Mathematical Society. 2003 Elsevier Inc. All rights reserved. Résumé On a souvent remarqué que les premières années du 20ème siècle ont été témoins d’une augmentation significative et perceptible dans la quantité et aussi la qualité des travaux d’analyse en Grande-Bretagne. Dans ce contexte, le nom de G.H. Hardy (1877–1947) est toujours indiqué comme celui de l’instigateur principal qui était derrière ce développement. Mais, est-ce-que cette interprétation est exacte ? Cet article se propose d’analyser à nouveau l’influence d’Hardy sur la communauté britannique sur la communauté des mathématiciens et des analystes britanniques au début du 20ème siècle, en tenant compte en particulier de son rapport avec la Société Mathématique de Londres.