SLE Drug Pipeline: an Embarrassment of Riches

Total Page:16

File Type:pdf, Size:1020Kb

SLE Drug Pipeline: an Embarrassment of Riches 12 Lupus/CT Diseases R HEUMATOLOGY N EWS • March 2008 SLE Drug Pipeline: An Embarrassment of Riches BY BRUCE JANCIN for longer than 12 months. That raises safety concerns. Belimumab was found to have no effect on time to flare Denver Bureau And human antichimeric antibody production has been or SLE Disease Activity Index in a randomized trial in- a problem. volving 449 patients with mild to moderate active SLE. In S NOWMASS, COLO. — The drug pipeline is sudden- Rituximab’s role in treating SLE should be clarified response, sponsor Human Genome Sciences Inc. created ly chock-full of biologic agents, good news for rheuma- within the year, upon completion of two ongoing phase a novel combined end point, applied it retroactively, and tologists, who have been waiting more than 3 decades III trials: Explorer in patients with active nonrenal lupus, declared the study a success. The new combined primary since the last approval of a new therapy for SLE. Some and Lunar in lupus nephritis patients. end point is being used in two ongoing phase III trials of of these agents have completed promising phase II clin- Ocrelizumab is a second-generation anti-CD20 agent the anti-BlyS agent, each double the size of the earlier one. ical trials and are well along in phase III. in ongoing clinical trials. As a humanized monoclonal an- The new end point consists of at least a 4-point im- “For many years, I would give talks on the latest de- tibody, it is likely to have fewer safety issues. provement on the SLE Disease Activity Index, no new velopments in mouse models and speculate about what Another focus of research into 1A/2B British Isles Lupus Assess- might happen in patients. Today, I can talk about real clin- lupus therapy is abatacept: This ment Group domain scores, and ical data on a new generation of biologic therapies for lu- agent prevents costimulation of T ‘If atacicept is no worsening in Physician Global pus,” Dr. David Wofsy marvelled at a symposium spon- cells, and it appears to have syner- more effective, it Assessment. sored by the American College of Rheumatology. gistic efficacy when combined may also be more While Dr. Wofsy said the com- He offered up what he emphasized were personal and with a brief course of cyclophos- toxic. Only time pany’s persistence is laudable, he highly opinionated “shoot from the hip” predictions as to phamide. “In the mouse models of and more studies was highly critical of the new com- the first-generation biologic induction therapies for lupus lupus, nothing compares to this,” will tell.’ bined end point, as well as the fact most likely to emerge from the pack: the anti-CD20 agent said Dr. Wofsy, who did the origi- that the earlier negative trial has ocrelizumab, abatacept (Orencia), and—as a long shot— nal animal studies. DR. WOFSY never been published, although it an anti–tumor necrosis factor agent such as etanercept. Current or upcoming clinical was first presented in 2005. “I think the best chance for a new major step forward trials include Bristol-Myers Squibb Co.–sponsored stud- “This trial has been subjected to spin unlike any other in induction therapy lies in these three agents,” said Dr. ies of abatacept in SLE patients without nephritis and trial I’ve ever seen,” he said. “I think this novel end point Wofsy, the George A. Zimmermann Distinguished Pro- abatacept plus mycophenolate mofetil in lupus nephritis, is a disservice to the community. It doesn’t translate into fessor of Rheumatology and director of the clinical tri- as well as an NIH-sponsored study of abatacept plus anything meaningful to anybody who takes care of lupus als center at the University of California, San Francisco. short-course cyclophosphamide vs. cyclophosphamide patients.” He added that if the phase III trials prove pos- As for his predictions regarding likely first-generation alone for lupus nephritis to be conducted by Dr. Wofsy itive, “that may be a business triumph but it won’t be a biologic maintenance therapies, he named the anti–B-lym- and coworkers. scientific breakthrough.” phocyte stimulator (anti-BlyS) agent belimumab (Lym- “It will take a while longer to know about abatacept, “In the end, if you can’t make lupus nephritis better phoStat-B), atacicept, and abetimus sodium (Riquent), but I think the strong preclinical data and its effectiveness with these risky immunosuppressive drugs, you probably formerly known as LJP 394, as the top candidates. in rheumatoid arthritis gives us some hope,” he said. don’t have a drug,” Dr. Wofsy asserted. B cells make a compelling target for therapeutic re- Preliminary data on research with anti–tumor necrosis Like belimumab, atacicept blocks the BlyS pathway. But search because of the multiple mechanisms by which they factor–α therapy suggest TNF’s inflammatory effect in the atacicept also blocks the APRIL (a proliferation-inducing are believed to contribute to SLE: presentation of anti- kidney might be an important mediator in lupus renal ligand) pathway, thereby more effectively blocking signals gen, regulation of T-cell activation, differentiation into an- flares. A trial of infliximab as short-duration induction ther- to B cells. B-cell levels in treated patients fall by about 50%, tibody-producing plasma cells, and stimulation of proin- apy is underway in Europe. Dr. Wofsy and colleagues are as with belimumab, but atacicept-treated patients also flammatory cytokines. about to start a clinical trial with etanercept. show a 50% reduction in IgM and 20% decrease in IgG. Furthest along in development are the anti-CD20 mon- “Until those trials are in, I would discourage anybody “But if atacicept is more effective, it may also be more oclonal antibodies. And of these, the one surrounded by from doing it, but there are some anecdotes that have at toxic. Only time and more studies will tell. There’s an ar- the most buzz is rituximab (Rituxan), already approved least opened our eyes to the possibility,” the rheumatol- ray of B-cell therapies out there that are under investi- for rheumatoid arthritis. An audience show of hands in- ogist continued. gation, and no one can tell you which one is going to be dicated most have used rituximab in lupus patients—and Riquent was developed solely as a relatively safe thera- best,” Dr. Wofsy said. most believed it worked. py for the purpose of maintaining remission. This novel Both atacicept and belimumab are agents that are more “It’s a very widespread belief in our community that rit- agent binds specifically to B cells that make anti-DNA an- likely to sustain a remission than induce it, in his view. uximab is effective in lupus. I have to warn you to be care- tibodies, tolerizing them and causing selective B-cell anergy Other potential biologic therapies in lupus include anti- ful about that. We got the big surprise from the CellCept and death. The appeal of Riquent lies in its power to re- CD3, -4, or -22, anti-B7, anti-C5, anti-interleukin-10, and trial. The literature on anti-CD20 is pretty lean at this duce autoantibodies without global immune suppression. agents directed at the interleukin-6 receptor. Stem cell point,” said Dr. Wofsy, who is also a former ACR president. A 230-patient phase II trial proved negative. However, transplantation is also under investigation. “My hope mirrors yours, but I’m very cautious in this area La Jolla Pharmaceutical Co. saw positive signals in the Dr. Wofsy serves as a consultant to Serono and Zymo- because we continue to get disappointing surprises.” data and has completed enrollment in a phase III trial in- Genetics and is organizing the phase II-III clinical trials of Indeed, while 34 of 35 rituximab-treated lupus patients volving more than 700 lupus nephritis patients with atacicept for SLE. He is also a consultant to Bristol-Myers reported in the literature responded with peripheral B- high-affinity anti-DNA antibodies who were in remission Squibb regarding abatacept, and to Genentech/Biogen cell depletion, 4 of them experienced sustained depletion at baseline. The primary end point is time to renal flare. Idec/Roche regarding rituximab and ocrelizumab. Minipulse Cyclophosphamide Favored in Lupus Nephritis BY BRUCE JANCIN fessor of medicine at the University of Cal- regimen can achieve the same efficacy These [ELNT] data support that strong- Denver Bureau ifornia, San Francisco, and a former ACR with fewer adverse effects (Arthritis ly,” he continued. president. Rheum. 2004;50:3934-40). Patients and physicians alike look long- S NOWMASS, COLO. — Most Ameri- For many years, the standard therapy for The European minipulse regimen con- ingly at the bursting-full SLE drug devel- can physicians who treat systemic lupus lupus nephritis has been the high-dose sists of six pulses of 500 mg given at 2- opment pipeline, eager for the day when erythematosus have been overly slow to pulse intravenous cyclophosphamide (Cy- week intervals, followed by azathioprine. they can finally discard cyclophosphamide adopt the low-dose, less toxic minipulse in- toxan) regimen that has shown to be ef- Patients tend to be deeply grateful to be in favor of agents that are less toxic and/or travenous cyclophosphamide regimen pi- fective in an NIH trial. This regimen typ- done with cyclophosphamide after just 12 more effective. But there is reason to be- oneered in the landmark Euro-Lupus ically involves dosing monthly for 6 weeks. lieve that cyclophosphamide may contin- Nephritis Trial, Dr. David Wofsy said at a months at 0.5-1.0 g/m2, followed by two Some American physicians have criti- ue to play an important role in the com- symposium sponsored by the American pulses at 3-month intervals, then mainte- cized the ELNT because its Northern ing biologic therapy era.
Recommended publications
  • BAFF-Neutralizing Interaction of Belimumab Related to Its Therapeutic Efficacy for Treating Systemic Lupus Erythematosus
    ARTICLE DOI: 10.1038/s41467-018-03620-2 OPEN BAFF-neutralizing interaction of belimumab related to its therapeutic efficacy for treating systemic lupus erythematosus Woori Shin1, Hyun Tae Lee1, Heejin Lim1, Sang Hyung Lee1, Ji Young Son1, Jee Un Lee1, Ki-Young Yoo1, Seong Eon Ryu2, Jaejun Rhie1, Ju Yeon Lee1 & Yong-Seok Heo1 1234567890():,; BAFF, a member of the TNF superfamily, has been recognized as a good target for auto- immune diseases. Belimumab, an anti-BAFF monoclonal antibody, was approved by the FDA for use in treating systemic lupus erythematosus. However, the molecular basis of BAFF neutralization by belimumab remains unclear. Here our crystal structure of the BAFF–belimumab Fab complex shows the precise epitope and the BAFF-neutralizing mechanism of belimumab, and demonstrates that the therapeutic activity of belimumab involves not only antagonizing the BAFF–receptor interaction, but also disrupting the for- mation of the more active BAFF 60-mer to favor the induction of the less active BAFF trimer through interaction with the flap region of BAFF. In addition, the belimumab HCDR3 loop mimics the DxL(V/L) motif of BAFF receptors, thereby binding to BAFF in a similar manner as endogenous BAFF receptors. Our data thus provides insights for the design of new drugs targeting BAFF for the treatment of autoimmune diseases. 1 Department of Chemistry, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea. 2 Department of Bio Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea. These authors contributed equally: Woori Shin, Hyun Tae Lee, Heejin Lim, Sang Hyung Lee.
    [Show full text]
  • Fig. L COMPOSITIONS and METHODS to INHIBIT STEM CELL and PROGENITOR CELL BINDING to LYMPHOID TISSUE and for REGENERATING GERMINAL CENTERS in LYMPHATIC TISSUES
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date Χ 23 February 2012 (23.02.2012) WO 2U12/U24519ft ft A2 (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A61K 31/00 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, PCT/US201 1/048297 KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, (22) International Filing Date: ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, 18 August 201 1 (18.08.201 1) NO, NZ, OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, (26) Publication Language: English ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 61/374,943 18 August 2010 (18.08.2010) US kind of regional protection available): ARIPO (BW, GH, 61/441,485 10 February 201 1 (10.02.201 1) US GM, KE, LR, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, 61/449,372 4 March 201 1 (04.03.201 1) US ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (72) Inventor; and EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, ΓΓ, LT, LU, (71) Applicant : DEISHER, Theresa [US/US]; 1420 Fifth LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Avenue, Seattle, WA 98101 (US).
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0209462 A1 Bilotti Et Al
    US 20170209462A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0209462 A1 Bilotti et al. (43) Pub. Date: Jul. 27, 2017 (54) BTK INHIBITOR COMBINATIONS FOR Publication Classification TREATING MULTIPLE MYELOMA (51) Int. Cl. (71) Applicant: Pharmacyclics LLC, Sunnyvale, CA A 6LX 3/573 (2006.01) A69/20 (2006.01) (US) A6IR 9/00 (2006.01) (72) Inventors: Elizabeth Bilotti, Sunnyvale, CA (US); A69/48 (2006.01) Thorsten Graef, Los Altos Hills, CA A 6LX 3/59 (2006.01) (US) A63L/454 (2006.01) (52) U.S. Cl. CPC .......... A61 K3I/573 (2013.01); A61K 3 1/519 (21) Appl. No.: 15/252,385 (2013.01); A61 K3I/454 (2013.01); A61 K 9/0053 (2013.01); A61K 9/48 (2013.01); A61 K (22) Filed: Aug. 31, 2016 9/20 (2013.01) (57) ABSTRACT Disclosed herein are pharmaceutical combinations, dosing Related U.S. Application Data regimen, and methods of administering a combination of a (60) Provisional application No. 62/212.518, filed on Aug. BTK inhibitor (e.g., ibrutinib), an immunomodulatory agent, 31, 2015. and a steroid for the treatment of a hematologic malignancy. US 2017/0209462 A1 Jul. 27, 2017 BTK INHIBITOR COMBINATIONS FOR Subject in need thereof comprising administering pomalido TREATING MULTIPLE MYELOMA mide, ibrutinib, and dexamethasone, wherein pomalido mide, ibrutinib, and dexamethasone are administered con CROSS-REFERENCE TO RELATED currently, simulataneously, and/or co-administered. APPLICATION 0008. In some aspects, provided herein is a method of treating a hematologic malignancy in a subject in need 0001. This application claims the benefit of U.S.
    [Show full text]
  • BCMA-Targeted Immunotherapy for Multiple Myeloma Bo Yu1, Tianbo Jiang2 and Delong Liu2*
    Yu et al. Journal of Hematology & Oncology (2020) 13:125 https://doi.org/10.1186/s13045-020-00962-7 REVIEW Open Access BCMA-targeted immunotherapy for multiple myeloma Bo Yu1, Tianbo Jiang2 and Delong Liu2* Abstract B cell maturation antigen (BCMA) is a novel treatment target for multiple myeloma (MM) due to its highly selective expression in malignant plasma cells (PCs). Multiple BCMA-targeted therapeutics, including antibody-drug conjugates (ADC), chimeric antigen receptor (CAR)-T cells, and bispecific T cell engagers (BiTE), have achieved remarkable clinical response in patients with relapsed and refractory MM. Belantamab mafodotin-blmf (GSK2857916), a BCMA-targeted ADC, has just been approved for highly refractory MM. In this article, we summarized the molecular and physiological properties of BCMA as well as BCMA-targeted immunotherapeutic agents in different stages of clinical development. Keywords: B cell maturation antigen, BCMA, Belantamab mafodotin, CAR-T, Antibody-drug conjugate, Bispecific T cell engager Introduction B cell maturation antigen (BCMA) Recent advances in novel therapeutics such as prote- BCMA is encoded by a 2.92-kb TNFRSF17 gene located asome inhibitors (PI) and immunomodulatory drugs on the short arm of chromosome 16 (16p13.13) and (IMiD) have significantly improved the treatment out- composed of 3 exons separated by 2 introns (Fig. 1). comes in patients with multiple myeloma (MM) [1–8]. BCMA is a 184 amino acid and 20.2-kDa type III trans- However, most MM patients eventually relapse due to membrane glycoprotein, with the extracellular N the development of drug resistance [9]. In addition, terminus containing a conserved motif of 6 cysteines many of the current popular target antigens, such as [18–21].
    [Show full text]
  • Targeting BAFF and APRIL in Systemic Lupus Erythemathosis a Comparison of Trials of Three BAFF/APRIL Inhibitors
    Targeting BAFF and APRIL in Systemic Lupus Erythemathosis A comparison of trials of three BAFF/APRIL inhibitors Figure 1: B-cell targeting therapies to treat systemic lupus erythemathosis (1) Abstract: Systemic Lupus Erythemathosis (SLE) is a complex autoimmune disease. Diagnosis and prognosis are difficult and have a lot of confounders. Progress of the disease is thus followed by a number of measures, such as damage indices like SELENA/SLEDAI and BILAG, B-cell numbers, immunoglobulin levels, in particular autoantibodies such as anti-dsDNA antibodies, and complement C3 and C4 levels. B-cell proliferation and activation are overstimulated in SLE, particularly through the BAFF/APRIL stimulated pathways. A number of BAFF/APRIL targeting biologicals have been approved for use in treatment of SLE or are currently in clinical trials. Three of these are highlighted here: Belimumab, Blisibimod and Atacicept. Belimumab, a fully humanized anti-BAFF antibody, is already approved by the USFDA. In clinical studies it has been show to lower the damage index, B-cell numbers and immunoglobulin levels, it increases complement levels and may reduce the need for steroids. Blisibimod, a synthetic peptibody, is in stage II trials. Like Belimumab, Blisbimod lowers the damage index and B-cell numbers, increases complement levels and may reduce the need for steroids. Ataticept, a fusion protein, is in stage III trials. Atacicept also lowers the damage index, B-cell numbers and immunoglobulin levels, increases complement and may reduce the need for steroids. The differences are relatively small and to determine the most promising of these treatments close attention has to be paid to the data from trials.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9.498,544 B2 Ennis Et Al
    USOO949854.4B2 (12) United States Patent (10) Patent No.: US 9.498,544 B2 Ennis et al. (45) Date of Patent: Nov. 22, 2016 (54) GENETICALLY MODIFIED HUMAN (56) References Cited UMIBILICAL CORD PERVASCULAR CELLS FOR PROPHYLAXIS AGAINST OR U.S. PATENT DOCUMENTS TREATMENT OF BIOLOGICAL, OR 5,158,867 A 10/1992 McNally et al. CHEMICAL AGENTS 5,919,702 A 7/1999 Purchio et al. 6,132,724 A 10/2000 Blum (71) Applicant: Tissue Regeneration Therapeutics 7,122,178 B1 10/2006 Simmons et al. 7,547,546 B2 6/2009 Davies et al. Inc., Toronto (CA) 2003.0161818 A1 8, 2003 Weiss et al. 2004/O136967 A1 7/2004 Weiss et al. 2004/O137612 A1 7/2004 Baksh et al. (72) Inventors: Jane Elizabeth Ennis, Oakville (CA); 2005/OO 19911 A1 1/2005 Gronthos et al. Jeffrey Donald Turner, 2005, 0148074 A1 7/2005 Davies et al. Chute-a-Blondeau (CA); John Edward 2005/O158289 A1 7/2005 Simmons et al. Davies, Toronto (CA) 2005/0281790 A1 12/2005 Simmons et al. 2006, OOO8452 A1 1/2006 Simmons et al. 2006, O193840 A1 8, 2006 Gronthos et al. (73) Assignee: Tissue Regeneration Therapeutics 2006, O199263 A1 9/2006 Auger et al. Inc., Toronto (CA) 2006/0286O77 A1 12/2006 Gronthos et al. 2007/0134205 A1 6/2007 Rosenberg 2008.0020459 A1 1/2008 Baksh et al. (*) Notice: Subject to any disclaimer, the term of this 2008.0113434 A1 5/2008 Davies et al. patent is extended or adjusted under 35 2009/0047277 A1 2/2009 Reed et al.
    [Show full text]
  • Classification Decisions Taken by the Harmonized System Committee from the 47Th to 60Th Sessions (2011
    CLASSIFICATION DECISIONS TAKEN BY THE HARMONIZED SYSTEM COMMITTEE FROM THE 47TH TO 60TH SESSIONS (2011 - 2018) WORLD CUSTOMS ORGANIZATION Rue du Marché 30 B-1210 Brussels Belgium November 2011 Copyright © 2011 World Customs Organization. All rights reserved. Requests and inquiries concerning translation, reproduction and adaptation rights should be addressed to [email protected]. D/2011/0448/25 The following list contains the classification decisions (other than those subject to a reservation) taken by the Harmonized System Committee ( 47th Session – March 2011) on specific products, together with their related Harmonized System code numbers and, in certain cases, the classification rationale. Advice Parties seeking to import or export merchandise covered by a decision are advised to verify the implementation of the decision by the importing or exporting country, as the case may be. HS codes Classification No Product description Classification considered rationale 1. Preparation, in the form of a powder, consisting of 92 % sugar, 6 % 2106.90 GRIs 1 and 6 black currant powder, anticaking agent, citric acid and black currant flavouring, put up for retail sale in 32-gram sachets, intended to be consumed as a beverage after mixing with hot water. 2. Vanutide cridificar (INN List 100). 3002.20 3. Certain INN products. Chapters 28, 29 (See “INN List 101” at the end of this publication.) and 30 4. Certain INN products. Chapters 13, 29 (See “INN List 102” at the end of this publication.) and 30 5. Certain INN products. Chapters 28, 29, (See “INN List 103” at the end of this publication.) 30, 35 and 39 6. Re-classification of INN products.
    [Show full text]
  • PHARMACEUTICAL APPENDIX to the TARIFF SCHEDULE 2 Table 1
    Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2020) Revision 19 Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names INN which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service CAS registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known.
    [Show full text]
  • An Update on the Current State of Management and Clinical Trials for Iga Nephropathy
    Journal of Clinical Medicine Review An Update on the Current State of Management and Clinical Trials for IgA Nephropathy Chee Kay Cheung 1,2 , Arun Rajasekaran 3 , Jonathan Barratt 1,2,† and Dana V. Rizk 3,*,† 1 Department of Cardiovascular Sciences, University of Leicester, Leicester LE1 7RH, UK; [email protected] (C.K.C.); [email protected] (J.B.) 2 John Walls Renal Unit, University Hospitals of Leicester NHS Trust, Leicester LE5 4PW, UK 3 Division of Nephrology, Department of Medicine, University of Alabama at Birmingham, ZRB 614, 1720 2nd Avenue South, Birmingham, AL 35294, USA; [email protected] * Correspondence: [email protected] † Both authors contributed equally to this work. Abstract: IgA nephropathy remains the most common primary glomerular disease worldwide. It affects children and adults of all ages, and is a leading cause of end-stage kidney disease, making it a considerable public health issue in many countries. Despite being initially described over 50 years ago, there are still no disease specific treatments, with current management for most patients being focused on lifestyle measures and renin-angiotensin-aldosterone system blockade. However, significant advances in the understanding of its pathogenesis have been made particularly over the past decade, leading to great interest in developing new therapeutic strategies, and a significant rise in the number of interventional clinical trials being performed. In this review, we will summarise the current state of management of IgAN, and then describe major areas of interest where new therapies are at their most advanced stages of development, that include the gut mucosal immune system, B cell signalling, the complement system and non-immune modulators.
    [Show full text]
  • The Future of B-Cell Activating Factor Antagonists in the Treatment of Systemic Lupus Erythematosus
    pISSN: 2093-940X, eISSN: 2233-4718 Journal of Rheumatic Diseases Vol. 24, No. 2, April, 2017 https://doi.org/10.4078/jrd.2017.24.2.65 Review Article The Future of B-cell Activating Factor Antagonists in the Treatment of Systemic Lupus Erythematosus William Stohl Division of Rheumatology, Department of Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA, USA To review B-cell activating factor (BAFF)-antagonist therapy in systemic lupus erythematosus (SLE), literature was searched us- ing the search words and phrases, “BAFF”, “B lymphocyte stimulator (BLyS)”, “a proliferation-inducing ligand (APRIL)”, “B-cell maturation antigen (BCMA)”, “transmembrane activator and calcium-modulating and cyclophilin ligand interactor (TACI)”, “BLyS receptor 3 (BR3)”, “belimumab”, “atacicept”, “blisibimod”, “tabalumab”, and “lupus clinical trial”. In addition, papers from the author’s personal library were searched. BAFF-antagonist therapy in SLE has a checkered past, with four late-stage clin- ical trials meeting their primary endpoints and four failing to do so. Additional late-stage clinical trials are enrolling subjects to address some of the remaining unresolved questions, and novel approaches are proposed to improve results. The BAFF-centric pathway is a proven therapeutic target in SLE. As the only pathway in the past 50+ years to have yielded an United States Food and Drug Administration-approved drug for SLE, it occupies a unique place in the armamentarium of the practicing rheumatologist. The challenges facing clinicians and investigators are how to better tweak the BAFF-centric pathway and im- prove on the successes realized. (J Rheum Dis 2017;24:65-73) Key Words.
    [Show full text]
  • BAFF Suppresses IL-15 Expression in B Cells
    BAFF Suppresses IL-15 Expression in B Cells Ning Ma, Chen Xing, He Xiao, Youdi He, Gencheng Han, Guojiang Chen, Chunmei Hou, Bernadette Marrero, Yujuan Wang, Shengquan Zhang, Beifen Shen, Yan Li and Renxi This information is current as Wang of September 28, 2021. J Immunol 2014; 192:4192-4201; Prepublished online 26 March 2014; doi: 10.4049/jimmunol.1302132 http://www.jimmunol.org/content/192/9/4192 Downloaded from Supplementary http://www.jimmunol.org/content/suppl/2014/03/26/jimmunol.130213 Material 2.DCSupplemental http://www.jimmunol.org/ References This article cites 39 articles, 14 of which you can access for free at: http://www.jimmunol.org/content/192/9/4192.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 28, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology BAFF Suppresses IL-15 Expression in B Cells Ning Ma,*,†,1 Chen Xing,*,1 He Xiao,*,1 Youdi He,‡ Gencheng Han,* Guojiang Chen,* Chunmei Hou,* Bernadette Marrero,x Yujuan Wang,{ Shengquan Zhang,‖ Beifen Shen,* Yan Li,* and Renxi Wang* Clinical trials have shown that BAFF inhibitors do not reduce memory B cell levels but can reduce the number of mature B cells.
    [Show full text]
  • Immunfarmakológia Immunfarmakológia
    Gergely: Immunfarmakológia Immunfarmakológia Prof Gergely Péter Az immunpatológiai betegségek döntő többsége gyulladásos, és ennek következtében általában szövetpusztulással járó betegség, melyben – jelenleg – a terápia alapvetően a gyulladás csökkentésére és/vagy megszűntetésére irányul. Vannak kizárólag gyulladásgátló gyógyszereink és vannak olyanok, amelyek az immunreakció(k) bénításával (=immunszuppresszió révén) vagy emellett vezetnek a gyulladás mérsékléséhez. Mind szerkezetileg, mind hatástanilag igen sokféle csoportba oszthatók, az alábbi felosztás elsősorban didaktikus célokat szolgál. 1. Nem-szteroid gyulladásgátlók (‘nonsteroidal antiinflammatory drugs’ NSAID) 2. Kortikoszteroidok 3. Allergia-elleni szerek (antiallergikumok) 4. Sejtoszlás-gátlók (citosztatikumok) 5. Nem citosztatikus hatású immunszuppresszív szerek 6. Egyéb gyulladásgátlók és immunmoduláns szerek 7. Biológiai terápia 1. Nem-szteroid gyulladásgátlók (NSAID) Ezeket a vegyületeket, melyek őse a szalicilsav (jelenleg, mint acetilszalicilsav ‘aszpirin’ használatos), igen kiterjedten alkalmazzák a reumatológiában, az onkológiában és az orvostudomány szinte minden ágában, ahol fájdalom- és lázcsillapításra van szükség. Egyes felmérések szerint a betegek egy ötöde szed valamilyen NSAID készítményt. Szerkezetük alapján a készítményeket több csoportba sorolhatjuk: szalicilátok (pl. acetilszalicilsav) pyrazolidinek (pl. fenilbutazon) ecetsav származékok (pl. indometacin) fenoxiecetsav származékok (pl. diclofenac, aceclofenac)) oxicamok (pl. piroxicam, meloxicam) propionsav
    [Show full text]