Generalized Suffix Trees for Biological Sequence Data: Applications and Implementation

Total Page:16

File Type:pdf, Size:1020Kb

Generalized Suffix Trees for Biological Sequence Data: Applications and Implementation Generalized Suffix Trees for Biological Sequence Data: Applications and Implementation Paul Bieganski, John Ned1 and John V. Cadis Computer Science Department, University of Minnesota Ernest E Retzel Medical School, University of Minnesota This paper addresses applications of sujjix trees and subsequence the entire sequence must be accessed, and in generalized suffix trees (GSTs)to biological sequence data order to detect a subsequence in a set of sequences, each analysis. We define a basic set of suffix tree and GST oper- sequence must be accessed sequentially. As the volume of ations needed to support sequence data analysis. While sequence data increases, the data access time itself those &finitions are straightforward, the construction and becomes the limiting factor of sequence information manipulation of disk-based GST structures for large vol- retrieval regardless of advances in sequence comparison umes of sequence data requires intricate design. GST pro- speeds. What is needed is a system capable of content- cessing is fast because the structure is content addressing of sequence. Such a system allows a sequence addressable, supporting efJicient searches for all to be accessed in terms of what it contains without having sequences that contain particular subsequences. Instead to specify where it is contained. of laboriously searching sequences stored as arrays, we In this, paper we describe the data structures and opera- search by walking down the tree. We present a new GST- tions providing content-addressable access to sequence based sequence alignment algorithm, called GESTALT. data, outline their possible applications and report on our GESTALT finds all exact matches in parallel, and uses work on their implementation. In section 2, we provide a best-first search to extend them to produce alignments. short review of suffix trees and generalized suffix trees. In Our implementation experiences with applications using section 3, we review the operations that provide the basis GST structures for sequence analysis lead us to conclude for construction of applications using suffix tree struc- that GSTs are valuable tools for analyzing biological tures. In section 4 we outline a generalized suffix tree- sequence data. based sequence homology search algorithm. In section 5, we present an overview of sequence information pro- cessing applications that can be constructed using the 1 Introduction basic operations described in section 3. In section 6 we report on our experiences with implementations of some Genetic codings transmit information from a parent to of the applications. In section 7, we summarize and outline its progeny. The primary representation of information is future work. sequences of symbols from a limited alphabet. The most commonly used alphabets represent the four nucleic acids 2 Suffix trees forming strands of DNA and the twenty amino acids con- stituting polypeptides. The information encoding power of A trie is an indexing structure used for indexing sets of these limited sets of molecules lies in their ability to form key values of varying sizes[l3]. A trie is a tree in which long chains. the branching at any level is determined by a partial key Sequence information is most commonly stored in value (see figure 1). A suffix tree is a PATRICIA trie [4] computer memory in contiguous locations, in order of the built over the set of all suffixes of a given sequence S. Fig- molecules in the biological sequence. This storage method ure 2 illustrates a sample suffix tree of a short DNA is not efficient for a large group of sequence information sequence. Each path from the root of the suffix tree repre- processing applications. The key problem lies in the fact sents a suffix of the original string. Any individual suffix that data stored sequentially must be processed sequen- of the original sequence can be recreated by walking along tially. The information within the sequence is often a path from the root and catenating the labels of the edges encoded through the presence of a certain subsequence of traversed along the way. Nodes with a single outgoing molecules; for example a sequence of DNA coding for a edge can be collapsed, resulting in edges with multi- certain protein. In order to detect the presence of any given 35 Proceedings of the Twenty-Seventh Annual Hawaii 1060-3425194$3.00 0 1994 IEEE International Conference on System Sciences, 1994 Authorized licensed use limited to: University of Minnesota. Downloaded on March 17, 2009 at 15:56 from IEEE Xplore. Restrictions apply. A? ACACTT fl0 0 FIGURE 1. A suffix tree for sequence ACTT I FIGURE 4. A generalized suffix tree for two sequences, ACACTT and CT. Notice the sequence identifier leaves (squares) denoting the origin of every suffix of every sequence. The number of identifier leaves for every sequence is equal to the number of suffixes of that sequence (equal to the number of characters in the sequence). be constructed in O(n) time [30], where n is the sum of FIGURE 2. Suffix tree for sequence ACACTT. Some edges have multi-symbol labels resulting lengths of all sequences stored in the tree. Parallel algo- from collapsing nodes with single children. rithms for GST construction will be described later. 3 Basic suffix tree operations In this section we describe a set of basic operations on generalized suffix trees. Molecular biology applications FIGURE 3. Suffix fitree for sequence CT are implemented by combining one or more of these oper- ations. symbol labels, such as the edge labeled AC coming out of In the remainder of the paper we use seq to denote a the root of the tree in figure 2. single sequence and SEQS to denote a set of sequences. A suffix tree for sequence S of length n can be con- In suffix trees with multi-letter edge labels, it is not suffi- structed in O(n) time [8] and the number of nodes in the cient to give the node in order to describe a subsequence tree is in general a linear function of n [30]. Heuristic because the subsequence may terminate within an edge. arguments [301 and our experiments with trees containing For the sake of clarity we assume subsequences terminate the rodent subsection of GenBank indicate that the number at nodes in the discussion. of nodes is equal to less than twice the number of bases in 3.1 Suffix tree construction [tree(seq)l the sequence for long DNA sequences. A generalized suffix tree (GST) is an augmented ver- Suffix tree construction algorithms have been described sion of the suffix tree allowing for multiple sequences to in the literature [8, 17, 231. They operate by constructing be stored in the same tree. A GST can be viewed as a suf- an initial tree with a single branch corresponding to the fix tree with additional sequence-identifierleaves added to entire sequence and incrementally modifying the tree to the leaves of the original suffix tree. A generalized suffix include all of its suffixes. An important variable in the con- tree containing multiple sequences contains all suffixes of struction process is the choice of data structures used to each of the original sequences (see figures 2,2 and 4). For represent the tree. Fixed node-size trees have a node every suffix, its sequence of origin is identified. A GST access time advantage over child list-based ones since a can be augmented with information about the number of descendant can be accessed directly, without having to different sequences that contain suffixes expressed by traverse a list. They are particularly useful when the num- descendants of each node (see figure 4). This number is ber of descendant pointers is small. For instance, each also known as the Color Set Count (CSC) [7]. A GST can node of a DNA sequence GST can have at most four chil- dren, labelled A, C, G and T. Child list-based nodes are 36 Authorized licensed use limited to: University of Minnesota. Downloaded on March 17, 2009 at 15:56 from IEEE Xplore. Restrictions apply. more space efficient in applications when the number of matching the prefix of seq can be determined by examin- descendant nodes may be large, for example when repre- ing the sequence count information in the nearest descen- senting amino acid sequences. dant of the traversal termination point (see the description 3.2 Generalized suffm tree construction of GST in section 2). [gst(SEQS)i 3.5 Suffix tree matching [match(tree(s), tree(p))l The GST construction process is usually approached Matching of suffix trees against suffix trees is per- 17, 231 by adding a special sequence separator symbol to formed similarly to matching of sequences against suffix the alphabet. The sequences to be included in the tree are trees. Instead of traversing a single path, however, all paths catenated, separated from each other by the separator sym- corresponding to an exhaustive traversal of one tree are bol. The GST is created using the ordinary suffix tree con- traversed in the other tree. If the trees were truncated every struction algorithm on the catenated sequence. The GST time the traversal process reaches a dead end in either tree. created using this process has to be kept in main memory the resulting tree would contain all common subsequences during construction, hence this approach is not feasible of the two sequences. This tree can be examined to deter- when sets of thousands or more sequences are involved. mine the lengths and locations for common subsequences. We have developed an incremental disk-based GST con- To avoid truncating the trees, summary information about struction method using binary merging of GSTs. Two the match can be collected during the traversal process. GSTs representing two disjoint sets of sequences are For instance, the longest common subsequence can be merged to produce a single GST representing the union of determined by keeping track of the longest match encoun- the two sets.
Recommended publications
  • Full-Text and Keyword Indexes for String Searching
    Technische Universität München Full-text and Keyword Indexes for String Searching by Aleksander Cisłak arXiv:1508.06610v1 [cs.DS] 26 Aug 2015 Master’s Thesis in Informatics Department of Informatics Technische Universität München Full-text and Keyword Indexes for String Searching Indizierung von Volltexten und Keywords für Textsuche Author: Aleksander Cisłak ([email protected]) Supervisor: prof. Burkhard Rost Advisors: prof. Szymon Grabowski; Tatyana Goldberg, MSc Master’s Thesis in Informatics Department of Informatics August 2015 Declaration of Authorship I, Aleksander Cisłak, confirm that this master’s thesis is my own work and I have docu- mented all sources and material used. Signed: Date: ii Abstract String searching consists in locating a substring in a longer text, and two strings can be approximately equal (various similarity measures such as the Hamming distance exist). Strings can be defined very broadly, and they usually contain natural language and biological data (DNA, proteins), but they can also represent other kinds of data such as music or images. One solution to string searching is to use online algorithms which do not preprocess the input text, however, this is often infeasible due to the massive sizes of modern data sets. Alternatively, one can build an index, i.e. a data structure which aims to speed up string matching queries. The indexes are divided into full-text ones which operate on the whole input text and can answer arbitrary queries and keyword indexes which store a dictionary of individual words. In this work, we present a literature review for both index categories as well as our contributions (which are mostly practice-oriented).
    [Show full text]
  • Suffix Trees, Suffix Arrays, BWT
    ALGORITHMES POUR LA BIO-INFORMATIQUE ET LA VISUALISATION COURS 3 Raluca Uricaru Suffix trees, suffix arrays, BWT Based on: Suffix trees and suffix arrays presentation by Haim Kaplan Suffix trees course by Paco Gomez Linear-Time Construction of Suffix Trees by Dan Gusfield Introduction to the Burrows-Wheeler Transform and FM Index, Ben Langmead Trie • A tree representing a set of strings. c { a aeef b ad e bbfe d b bbfg e c f } f e g Trie • Assume no string is a prefix of another Each edge is labeled by a letter, c no two edges outgoing from the a b same node are labeled the same. e b Each string corresponds to a d leaf. e f f e g Compressed Trie • Compress unary nodes, label edges by strings c è a a c b e d b d bbf e eef f f e g e g Suffix tree Given a string s a suffix tree of s is a compressed trie of all suffixes of s. Observation: To make suffixes prefix-free we add a special character, say $, at the end of s Suffix tree (Example) Let s=abab. A suffix tree of s is a compressed trie of all suffixes of s=abab$ { $ a b $ b b$ $ ab$ a a $ b bab$ b $ abab$ $ } Trivial algorithm to build a Suffix tree a b Put the largest suffix in a b $ a b b a Put the suffix bab$ in a b b $ $ a b b a a b b $ $ Put the suffix ab$ in a b b a b $ a $ b $ a b b a b $ a $ b $ Put the suffix b$ in a b b $ a a $ b b $ $ a b b $ a a $ b b $ $ Put the suffix $ in $ a b b $ a a $ b b $ $ $ a b b $ a a $ b b $ $ We will also label each leaf with the starting point of the corresponding suffix.
    [Show full text]
  • Suffix Trees and Suffix Arrays in Primary and Secondary Storage Pang Ko Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 2007 Suffix trees and suffix arrays in primary and secondary storage Pang Ko Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Bioinformatics Commons, and the Computer Sciences Commons Recommended Citation Ko, Pang, "Suffix trees and suffix arrays in primary and secondary storage" (2007). Retrospective Theses and Dissertations. 15942. https://lib.dr.iastate.edu/rtd/15942 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Suffix trees and suffix arrays in primary and secondary storage by Pang Ko A dissertation submitted to the graduate faculty in partial fulfillment of the requirements for the degree of DOCTOR OF PHILOSOPHY Major: Computer Engineering Program of Study Committee: Srinivas Aluru, Major Professor David Fern´andez-Baca Suraj Kothari Patrick Schnable Srikanta Tirthapura Iowa State University Ames, Iowa 2007 UMI Number: 3274885 UMI Microform 3274885 Copyright 2007 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code. ProQuest Information and Learning Company 300 North Zeeb Road P.O. Box 1346 Ann Arbor, MI 48106-1346 ii DEDICATION To my parents iii TABLE OF CONTENTS LISTOFTABLES ................................... v LISTOFFIGURES .................................. vi ACKNOWLEDGEMENTS. .. .. .. .. .. .. .. .. .. ... .. .. .. .. vii ABSTRACT....................................... viii CHAPTER1. INTRODUCTION . 1 1.1 SuffixArrayinMainMemory .
    [Show full text]
  • Space-Efficient K-Mer Algorithm for Generalised Suffix Tree
    International Journal of Information Technology Convergence and Services (IJITCS) Vol.7, No.1, February 2017 SPACE-EFFICIENT K-MER ALGORITHM FOR GENERALISED SUFFIX TREE Freeson Kaniwa, Venu Madhav Kuthadi, Otlhapile Dinakenyane and Heiko Schroeder Botswana International University of Science and Technology, Botswana. ABSTRACT Suffix trees have emerged to be very fast for pattern searching yielding O (m) time, where m is the pattern size. Unfortunately their high memory requirements make it impractical to work with huge amounts of data. We present a memory efficient algorithm of a generalized suffix tree which reduces the space size by a factor of 10 when the size of the pattern is known beforehand. Experiments on the chromosomes and Pizza&Chili corpus show significant advantages of our algorithm over standard linear time suffix tree construction in terms of memory usage for pattern searching. KEYWORDS Suffix Trees, Generalized Suffix Trees, k-mer, search algorithm. 1. INTRODUCTION Suffix trees are well known and powerful data structures that have many applications [1-3]. A suffix tree has various applications such as string matching, longest common substring, substring matching, index-at, compression and genome analysis. In recent years it has being applied to bioinformatics in genome analysis which involves analyzing huge data sequences. This includes, finding a short sample sequence in another sequence, comparing two sequences or finding some types of repeats. In biology, repeats found in genomic sequences are broadly classified into two, thus interspersed (spaced to each other) and tandem repeats (occur next to each other). Tandem repeats are further classified as micro-satellites, mini-satellites and satellites.
    [Show full text]
  • String Matching and Suffix Tree BLAST (Altschul Et Al'90)
    String Matching and Suffix Tree Gusfield Ch1-7 EECS 458 CWRU Fall 2004 BLAST (Altschul et al’90) • Idea: true match alignments are very likely to contain a short segment that identical (or very high score). • Consider every substring (seed) of length w, where w=12 for DNA and 4 for protein. • Find the exact occurrence of each substring (how?) • Extend the hit in both directions and stop at the maximum score. 1 Problems • Pattern matching: find the exact occurrences of a given pattern in a given structure ( string matching) • Pattern recognition: recognizing approximate occurences of a given patttern in a given structure (image recognition) • Pattern discovery: identifying significant patterns in a given structure, when the patterns are unknown (promoter discovery) Definitions • String S[1..m] • Substring S[i..j] •Prefix S[1..i] • Suffix S[i..m] • Proper substring, prefix, suffix • Exact matching problem: given a string P called pattern, and a long string T called text, find all the occurrences of P in T. Naïve method • Align the left end of P with the left end of T • Compare letters of P and T from left to right, until – Either a mismatch is found (not an occurrence – Or P is exhausted (an occurrence) • Shift P one position to the right • Restart the comparison from the left end of P • Repeat the process till the right end of P shifts past the right end of T • Time complexity: worst case θ(mn), where m=|P| and n=|T| • Not good enough! 2 Speedup • Ideas: – When mismatch occurs, shift P more than one letter, but never shift so far as to miss an occurrence – After shifting, ship over parts of P to reduce comparisons – Preprocessing of P or T Fundamental preprocessing • Can be on pattern P or text T.
    [Show full text]
  • Text Algorithms
    Text Algorithms Jaak Vilo 2015 fall Jaak Vilo MTAT.03.190 Text Algorithms 1 Topics • Exact matching of one paern(string) • Exact matching of mulDple paerns • Suffix trie and tree indexes – Applicaons • Suffix arrays • Inverted index • Approximate matching Exact paern matching • S = s1 s2 … sn (text) |S| = n (length) • P = p1p2..pm (paern) |P| = m • Σ - alphabet | Σ| = c • Does S contain P? – Does S = S' P S" fo some strings S' ja S"? – Usually m << n and n can be (very) large Find occurrences in text P S Algorithms One-paern Mul--pa'ern • Brute force • Aho Corasick • Knuth-Morris-Pra • Commentz-Walter • Karp-Rabin • Shi]-OR, Shi]-AND • Boyer-Moore Indexing • • Factor searches Trie (and suffix trie) • Suffix tree Anima-ons • h@p://www-igm.univ-mlv.fr/~lecroq/string/ • EXACT STRING MATCHING ALGORITHMS Anima-on in Java • ChrisDan Charras - Thierry Lecroq Laboratoire d'Informaque de Rouen Université de Rouen Faculté des Sciences et des Techniques 76821 Mont-Saint-Aignan Cedex FRANCE • e-mails: {Chrisan.Charras, Thierry.Lecroq} @laposte.net Brute force: BAB in text? ABACABABBABBBA BAB Brute Force P i i+j-1 S j IdenDfy the first mismatch! Queson: §Problems of this method? L §Ideas to improve the search? J Brute force attempt 1: gcatcgcagagagtatacagtacg Algorithm Naive GCAg.... attempt 2: Input: Text S[1..n] and gcatcgcagagagtatacagtacg paern P[1..m] g....... attempt 3: Output: All posiDons i, where gcatcgcagagagtatacagtacg g....... P occurs in S attempt 4: gcatcgcagagagtatacagtacg g....... for( i=1 ; i <= n-m+1 ; i++ ) attempt 5: gcatcgcagagagtatacagtacg for ( j=1 ; j <= m ; j++ ) g......
    [Show full text]
  • 4. Suffix Trees and Arrays
    Let us analyze the average case time complexity of the verification phase. The best pattern partitioning is as even as possible. Then each pattern Many variations of the algorithm have been suggested: • factor has length at least r = m/(k + 1) . b c The expected number of exact occurrences of a random string of The filtration can be done with a different multiple exact string • • length r in a random text of length n is at most n/σr. matching algorithm. The expected total verification time is at most The verification time can be reduced using a technique called • • hierarchical verification. m2(k + 1)n m3n . O σr ≤ O σr The pattern can be partitioned into fewer than k + 1 pieces, which are • searched allowing a small number of errors. This is (n) if r 3 log m. O ≥ σ A lower bound on the average case time complexity is Ω(n(k + log m)/m), The condition r 3 logσ m is satisfied when (k + 1) m/(3 logσ m + 1). σ • ≥ ≤ and there exists a filtering algorithm matching this bound. Theorem 3.24: The average case time complexity of the Baeza-Yates–Perleberg algorithm is (n) when k m/(3 log m + 1) 1. O ≤ σ − 153 154 4. Suffix Trees and Arrays Let T = T [0..n) be the text. For i [0..n], let Ti denote the suffix T [i..n). Summary: Approximate String Matching ∈ Furthermore, for any subset C [0..n], we write T = Ti i C . In ∈ C { | ∈ } We have seen two main types of algorithms for approximate string matching: particular, T[0..n] is the set of all suffixes of T .
    [Show full text]
  • Modifications of the Landau-Vishkin Algorithm Computing Longest
    Modifications of the Landau-Vishkin Algorithm Computing Longest Common Extensions via Suffix Arrays and Efficient RMQ computations Rodrigo C´esar de Castro Miranda1, Mauricio Ayala-Rinc´on1, and Leon Solon1 Instituto de CiˆenciasExatas,Universidade de Bras´ılia [email protected],[email protected],[email protected] Abstract. Approximate string matching is an important problem in Computer Science. The standard solution for this problem is an O(mn) running time and space dynamic programming algorithm for two strings of length m and n. Lan- dau and Vishkin developed an algorithm which uses suffix trees for accelerating the computation along the dynamic programming table and reaching space and running time in O(nk), where n > m and k is the maximum number of ad- missible differences. In the Landau and Vishkin algorithm suffix trees are used for pre-processing the sequences allowing an O(1) running time computation of the longest common extensions between substrings. We present two O(n) space variations of the Landau and Vishkin algorithm that use range-minimum-queries (RMQ) over the longest common prefix array of an extended suffix array instead of suffix trees for computing the longest common extensions: one which computes the RMQ with a lowest common ancestor query over a Cartesian tree and other that applies the succinct RMQ computation developed by Fischer and Heun. 1 Introduction Matching strings with errors is an important problem in Computer Science, with ap- plications that range from word processing to text databases and biological sequence alignment. The standard algorithm for approximate string matching is a dynamic pro- gramming algorithm with O(mn) running-time and space complexity, for strings of size m and n.
    [Show full text]
  • EECS730: Introduction to Bioinformatics
    EECS730: Introduction to Bioinformatics Lecture 16: Next-generation sequencing http://blog.illumina.com/images/default-source/Blog/next-generation-sequencing.jpg?sfvrsn=0 Some slides were adapted from Dr. Shaojie Zhang (University of Central Florida), Karl Kingsford (Carnegie Mellon University), and Ben Langmead (John Hopkins University) Why sequencing Shyr and Liu, 2013 Sequencing using microarray http://homes.cs.washington.edu/~dcjones/assembly-primer/kmers.png Sequencing advantages • Unbiased detection of novel transcripts: Unlike arrays, sequencing technology does not require species- or transcript-specific probes. It can detect novel transcripts, gene fusions, single nucleotide variants, indels (small insertions and deletions), and other previously unknown changes that arrays cannot detect. • Broader dynamic range: With array hybridization technology, gene expression measurement is limited by background at the low end and signal saturation at the high end. Sequencing technology quantifies discrete, digital sequencing read counts, offering a broader dynamic range. • Easier detection of rare and low-abundance transcripts: Sequencing coverage depth can easily be increased to detect rare transcripts, single transcripts per cell, or weakly expressed genes. http://www.illumina.com/technology/next-generation-sequencing/mrna-seq.html Outline of sequencing mechanism • Take the target DNA molecule as a template • Utilize signals that are emitted when incorporating different nucleic acids • Read out and parse the signal to determine the sequence of the DNA Sanger sequencing • Developed by Frederick Sanger (shared the 1980 Nobel Prize) and colleagues in 1977, it was the most widely used sequencing method for approximately 39 years. • Gold standard for sequencing today • Accurate (>99.99% accuracy) and produce long reads (>500bp) • Relatively expensive ($2400 per 1Mbp) and low throughput Sanger sequencing • This method begins with the use of special enzymes to synthesize fragments of DNA that terminate when a selected base appears in the stretch of DNA being sequenced.
    [Show full text]
  • Construction of Aho Corasick Automaton in Linear Time for Integer Alphabets
    Construction of Aho Corasick Automaton in Linear Time for Integer Alphabets Shiri Dori∗ Gad M. Landau† University of Haifa University of Haifa & Polytechnic University Abstract We present a new simple algorithm that constructs an Aho Corasick automaton for a set of patterns, P , of total length n, in O(n) time and space for integer alphabets. Processing a text of size m over an alphabet Σ with the automaton costs O(m log |Σ|+k), where there are k occurrences of patterns in the text. A new, efficient implementation of nodes in the Aho Corasick automaton is introduced, which works for suffix trees as well. Key words: Design of Algorithms, String Matching, Suffix Tree, Suffix Array. 1 Introduction The exact set matching problem [7] is defined as finding all occurrences in a text T of size m, of any pattern in a set of patterns, P = {P1,P2, ..., Pq}, of cumulative size n over an alphabet Σ. The classic data structure solving this problem is the automaton proposed by Aho and Corasick [2]. It is constructed in O(n log |Σ|) preprocessing time and has O(m log |Σ|+k) search time, where k represents the number of occurrences of patterns in the text. This solution is suitable especially for applications in which a large number of patterns is known and fixed in advance, while the text varies. We will explain the data structure in detail in Section 2. The suffix tree of a string is a compact trie of all the suffixes of the string. Several algorithms construct it in linear time for a constant alphabet size [14, 16, 17].
    [Show full text]
  • Suffix Trees and Suffix Arrays Some Problems Exact String Matching Applications in Bioinformatics Suffix Trees History of Suffix
    Some problems • Given a pattern P = P[1..m], find all occurrences of P in a text S = S[1..n] Suffix Trees and • Another problem: – Given two strings S [1..n ] and S [1..n ] find their Suffix Arrays 1 1 2 2 longest common substring. • find i, j, k such that S 1[i .. i+k-1] = S2[j .. j+k-1] and k is as large as possible. • Any solutions? How do you solve these problems (efficiently)? Exact string matching Applications in Bioinformatics • Finding the pattern P[1..m] in S[1..n] can be • Multiple genome alignment solved simply with a scan of the string S in – Michael Hohl et al. 2002 O(m+n) time. However, when S is very long – Longest common substring problem and we want to perform many queries, it – Common substrings of more than two strings would be desirable to have a search • Selection of signature oligonucleotides for algorithm that could take O(m) time. microarrays • To do that we have to preprocess S. The – Kaderali and Schliep, 2002 preprocessing step is especially useful in • Identification of sequence repeats scenarios where the text is relatively constant – Kurtz and Schleiermacher, 1999 over time (e.g., a genome), and when search is needed for many different patterns. Suffix trees History of suffix trees • Any string of length m can be degenerated • Weiner, 1973: suffix trees introduced, linear- into m suffixes. time construction algorithm – abcdefgh (length: 8) • McCreight, 1976: reduced space-complexity – 8 suffixes: • h, gh, fgh, efgh, defgh, cdefgh, bcefgh, abcdefgh • Ukkonen, 1995: new algorithm, easier to describe • The suffixes can be stored in a suffix-tree and this tree can be generated in O(n) time • In this course, we will only cover a naive (quadratic-time) construction.
    [Show full text]
  • Suffix Trees and Their Applications
    Eötvös Loránd University Faculty of Science Bálint Márk Vásárhelyi Suffix Trees and Their Applications MSc Thesis Supervisor: Kristóf Bérczi Department of Operations Research Budapest, 2013 Sux Trees and Their Applications Acknowledgements I would like to express my gratitude to my supervisor, Kristóf Bérczi, whose dedi- cated and devoted work helped and provided me with enough support to write this thesis. I would also like to thank my family that they were behind me through my entire life and without whom I could not have nished my studies. Soli Deo Gloria. - 2 - Sux Trees and Their Applications Contents Contents Introduction 5 1 Preliminaries 7 1.1 Sux tree . .7 1.2 A naive algorithm for constructing a sux tree . .8 1.3 Construct a compact sux tree in linear time . .9 1.4 Generalized sux trees . 14 2 Applications 16 2.1 Matching . 16 2.2 Longest common substring . 18 2.3 Longest common subsequence . 19 2.4 Super-string . 19 2.5 Circular string linearisation . 21 2.6 Repetitive structures . 21 2.7 DNA contamination . 24 2.8 Genome-scale projects . 24 3 String matching statistics 26 3.1 Motivation . 26 3.2 Distance of two strings . 26 3.3 Matching statistics . 27 3.4 Dynamic programming approach . 28 3.5 Adaptation for text searching . 28 4 Size of a sux tree 29 4.1 The growth of the sux tree . 29 4.2 Lower bound for the expectation of the growth . 32 4.3 Autocorrelation of a String . 34 - 3 - Sux Trees and Their Applications Contents 5 Appendix 39 5.1 The Program Used for Examining the Size of the Sux Tree .
    [Show full text]