Magnesium Isotopes As a Probe of the Milky Way Chemical Evolution

Total Page:16

File Type:pdf, Size:1020Kb

Magnesium Isotopes As a Probe of the Milky Way Chemical Evolution MAGNESIUM ISOTOPES AS A PROBE OF THE MILKY WAY CHEMICALEVOLUTION anders overaa thygesen supervisor: prof. dr. norbert christlieb referees: prof. dr. norbert christlieb prof. dr. eva grebel august 3, 2015 dissertation submitted to the combined faculties for the natural sciences and for mathematics of the ruperto-carola-university of heidelberg, germany for the degree of doctor of natural sciences put forward by: anders overaa thygesen born in randers, denmark oral examination: october 14, 2015 ABSTRACT The study of elemental abundance ratios from spectroscopy of stars has for a long time been used to investigate the structure and the chemical evolution history of the Milky Way. However, even with the ever-increasing number of stars with detailed abundances, many de- tails about the Milky Way evolution are still not understood. While ele- mental abundance measurements already provide a lot of information, nucleosynthesis models predict not only bulk abundances of an ele- ment, but also its isotopic composition. When these can be measured, additional details about the nucleosynthesis can be obtained. The iso- topic composition of elements in stars has only been measured for the lightest elements and even for these, observations of the highest quality are needed. In addition, detailed modeling of the line-formation in the stellar atmospheres is needed to correctly interpret the data. The purpose of this thesis is to: • Investigate the chemical evolution history of the massive, high- metallicity globular cluster 47 Tucanae, by performing an exten- sive study of a range of elements in cool giants. • Perform the first study of Mg isotopes in this cluster, to further constrain its chemical evolution history. In addition, this work rep- resents the first study ever of the effects of using 3D stellar atmo- spheric models to derive the Mg isotopic mixture. • Perform the first study of Mg isotopes in stars in the inner disk of the Milky Way and the Milky Way bulge, including stars in the globular cluster NGC 6522. • Demonstrate that this type of study is feasible for stars in the bulge, and show how the Mg isotopic ratios can be used to con- strain chemical evolution models for this part of the Galaxy. The Mg isotopic ratios were successfully measured in all 21 observed stars and provided additional constraints on the chemical evolution his- tory of 47 Tucanae. In addition, the first results for Mg isotopes with 3D stellar atmospheres gave improved fits to the MgH molecular features, compared to 1D. This also resulted in an increase of the measured frac- tion of 25Mg, improving the agreement with chemical evolution models. For the inner disk and the bulge, we reached a level of accuracy on the Mg isotopic ratios that will allow us to distinguish between different chemical evolution models. For the one field star in the bulge, we see v an indication of more efficient star formation compared to the disk, but a larger sample of stars is needed before firm claims can be made. vi ZUSAMMENFASSUNG Messungen von chemischen Elementhäufigkeitsverhältnissen aus Stern- spektren sind seit langer Zeit verwendet worden, um die Struktur und die chemische Entwicklungsgeschichte der Milchstraße zu untersuchen. Doch selbst mit der ständig steigenden Anzahl der Sterne mit detail- lierten Häufigkeiten sind viele Details über die Entwicklung der Milch- straße noch immer nicht verstanden. Während solche Häufigkeitsmes- sungen bereits eine Vielzahl von Informationen enthalten, prognostizie- ren Nukleosynthesemodelle nicht nur die pauschale Häufigkeit eines Elements, sondern auch dessen Isotopenzusammensetzung. Wenn diese gemessen werden kann, lassen sich zusätzliche Informationen über Kern- prozesse gewinnen. Bisher konnten Isotopenzusammensetzungen in Ster- nen nur für die leichtesten Elemente gemessen werden und selbst für diese sind Beobachtungen von höchster Qualität erforderlich. Zusätz- lich ist eine detaillierte Modellierung der Linienbildung in den Sternat- mosphären nötig, um die Daten richtig interpretieren zu können. Das Ziel dieser Arbeit ist: • die chemische Entwicklungsgeschichte des massereichen, metall- reichen Kugelsternhaufens 47 Tucanae durch eine umfassende Stu- die eines breiten Bereichs an Elementen in kühlen Riesensternen zu untersuchen; • erste Messungen von Mg-Isotopen in diesem Haufen durchzu- führen, um seine chemische Entwicklung weiter einzuschränken. Darüber hinaus stellt diese Arbeit die erste Studie über die Aus- wirkungen von dreidimensionalen Sternatmosphärenmodellen auf das abgeleitete Mg-Isotopengemisch dar. • Die erste Untersuchung von Mg-Isotopen in Sternen der inneren Scheibe der Milchstraße sowie ihrer zentralen Verdickung – dem “Bulge”; • eine Demonstration, daß diese Art von Studie für Sterne im Bulge machbar ist, und somit zu zeigen, wie die Mg-Isotopenverhältnisse Modelle der chemischen Entwicklung für diesen Teil der Galaxie einschränken können. Die Isotopenverhältnisse für Mg wurden erfolgreich in allen Sternen dieses Projekts gemessen und erlauben zusätzliche Einschränkungen über die chemische Entwicklung von 47 Tucanae. Weiterhin konnten vii die ersten Ergebnisse der MgIsotope aus dreidimensionalen Modellat- mosphären Molekülbanden von MgH weitaus besser repräsentieren als die gängigen eindimensionalen Modelle. Dies führte auch zu einem Anstieg des gemessenen Anteils von 25Mg, wodurch die Übereinstim- mung mit den chemischen Modellen verbessert wurde. Für die innere Scheibe und den Bulge erreichten wir ein Maß an Genauigkeit auf die Mg-Isotopenverhältnisse, das uns erlaubt, zwischen verschiedenen chemischen Entwicklungsmodellen zu unterscheiden. Für den Stern im Bulge sehen wir einen Hinweis auf effizientere Sternentstehung im Ver- gleich zur Scheibe, jedoch sind Messungen in einer größeren Anzahl von Sternen notwendig, bevor festere Aussagen getroffen werden kön- nen. viii "I’ll keep this wisdom in my flesh / I leave here believing more than I had / And there’s a reason I’ll be / A reason I’ll be back." — Eddie Vedder, No Ceiling, 2007 First and foremost I want to express my gratitude to my two supervi- sors, Prof. Norbert Christlieb and Dr. Luca Sbordone. You, and the rest of the group made me feel extremely welcome at the Landessternwarte from day one, and continued to contribute to make the LSW a pleas- ant and inspiring place for me to work throughout my studies. Thanks for giving me the freedom to pursue my project as independently as I wanted, and for your willingness to guide and teach me when I was in need of advice. A very special thanks to Luca for your seemingly infi- nite patience with me, for always taking time for discussions, and for your support throughout my time as a PhD student. It made a world of difference, both on a scientific and personal level. Your ability to always rekindle my enthusiasm for my research never ceases to amaze me. I would also like to extend my thanks to Hans Ludwig for your help with CO5BOLD, countless useful discussions, valuable input, and your willingness to explain things to me three, four, five times if needed. You always make me think more about my science. Thanks to my many collaborators who have been involved in my research, in particular Dr. David Yong, Dr. Amanda Karakas and Dr. Melissa Ness for many use- ful discussions and constructive feedback on my work (and more than one epic karaoke session). Thanks also to Dr. Andreas Koch for his help with the German translation of my abstract, and many interesting dis- cussions. It has been a pleasure to be a member of the Zentrum für Astronomie in Heidelberg, and I wish to acknowledge the generous funding from the SFB 881 "The Milky Way Galaxy", as well as a Distinguished Doc- toral Fellowship from the Heidelberg Graduate School for Fundamental Physics. This allowed me to accomplish my PhD, and made it possible for me to attend numerous meetings and conferences around the world, which have been invaluable experiences. It has also been a pleasure to be a member of the International Max Planck Research School and I want to thank Dr. Christian Fendt, whose engagement has contributed greatly to the well-being of all the students at IMPRS, as well as pro- vided useful support on several occasions. I also want to thank all the wonderful people in Heidelberg, and elsewhere, who made the last three years an amazing journey. In no particular order: Andrew, Tobias, Michael, Taisiya, Emer, Melanie, Ben, ix Richard, Paolo, Sonia, Ilya, Dave, László, Wie´nczysław, Joanna, Camille, Eric, Kathrin, Amelia, Paulina, Sundar, Liz, Roger, Ioana, Nikolay, all the swing dancing people and all the remaining people that I have un- intentionally left out. You have all helped make my time as a graduate student better and full of fond memories. A special thanks to Cata- rina and Anastasia for helping me keep my sanity through the last few months of my PhD, getting my mind off science, help keeping my cool and preventing my brain from exploding for the last month of my thesis writing. Til sidst, men ikke mindst, tak til jer derhjemme. Ude er godt, men hjemme bedst. Tak, mor og far, for at støtte mig på alle måder og for jeres utallige besøg, også når jeg indimellem har for travlt til at være fuldt til stede. Tak, Sigrid, for at være verdens sejeste søster og altid være der for mig. Det betyder alverden at jeg har jer at læne mig op af, selvom jeg er langt væk. Tak til Jakob, Rune, Lise, Bo, Jeppe, Cecilie, Gudmund og resten af flokken. Der er længe imellem vi ses, men jeg værdsætter det virkeligt at I bevarer kontakten, det gør en verden til forskel. x CONTENTS
Recommended publications
  • CHEM 1A: Exam 1 Practice Problems
    CHEM 1A: Exam 1 Practice Problems: These practice problems are not a comprehensive list of all questions to be asked on the exam. Refer to the suggested textbook HW, other practice problems on the review page, iclicker questions, & challenge problem sets for a comprehensive review. Unit Conversions & Dimensional Analysis: 65.3 g of Iron → _______________ mol Iron 12 3.97 x 10 CO2 molecules →_______________ mol CO2 0.783 mol of CH3CH2OH →_______________ mL of CH3CH2OH Reference Information: Density = 0.789 g/mL The density of a sample of propane (C3H8) gas is 1.80 g/L. How many molecules of propane are contained in a 1.50 L balloon? What about the total number of atoms? 1.097 x 10-2 nm-1 → _______________ m-1 True or False: A gram of magnesium contains more atoms than a gram of calcium. Each conversion below involves at least one mistake. Can you identify the mistakes and correct them? Corrected Conversions: 5.98 푚표푙 1 퐿 1 푚퐿 푚표푙 = ? 퐿 10−3푚퐿 1 푐푚3 푐푚3 ________________________________________________________________________________________________________________________________________________________________________________________________________________________ 0.087 푛푚 1 푚 1 푚푚 = ? 푚푚 1 10−9푛푚 103푚 ________________________________________________________________________________________________________________________________________________________________________________________________________________________ 7.874 푔 1 푘푔 (10−2푐푚)3 푘푔 = ? 푐푚3 10−3푔 (1 푚)3 푚3 Nomenclature & Formulas Which of the following compounds contains the cation with the highest charge? CuCl2 BaCl2 Na3PO4 Fe(NO3)3 Complete the table below. Formula Name CaCl2 Calcium Chloride Mg3(PO4)2 Magnesium phosphate Co(MnO4)2 Cobalt (II) permanganate Fe2S3 Iron (III) Sulfide H2SO3 Sulfurous acid HClO Hypochlorous acid P4O10 Tetraphosphorus decoxide N2O5 Dinitrogen pentoxide Atomic Theory & Nuclear Chemistry Complete the table below.
    [Show full text]
  • Agenda 10/6/2017 Per 2. Isotope - One More Time
    Agenda 10/6/2017 Per 2. Isotope - one more time https://drive.google.com/drive/folders/0BzGRyLjDEz_XdFJrN2ZBNkM4TDg • Slip Quiz • Modern Model of the Atom • Limitations of Model 1 in Isotopes Pogil • Average Atomic Mass • Looking for Patterns - Analysis Activity • Homework Slip Quiz 1.How many neutrons in an atom of neon-21 (21Ne). State clearly how you figure it out. 2. How many electrons in a neon-21 atom? How do you know? Slip Quiz 1.How many neutrons in an atom of neon-21 (21Ne). State how you know. I find neon’s atomic number on periodic table, neon has atomic number 10 which tells me it has 10 protons in its nucleus. The remainder of the particles in the nucleus are neutrons. Mass number - atomic number = number of neutrons 21 - 10 = 11 So Ne-21 has 11 neutrons. Slip Quiz 2. How many electrons in a neon-21 atom? How do you know? I know that for an electrically neutral atom, the number of protons in the nucleus is equal to the number of electrons in the electron cloud around the nucleus. For question 1 I found the atomic number of neon-21 is 10, hence the atoms have 10 protons and must also have 10 electrons. Isotopes Back to last Extension Questions 17. What characteristics of Model 1 are inconsistent with our understanding of what atoms look like? Note, limitations of models always exist, and we should be aware of them so we don’t try to use the model in situations where it does not really apply.
    [Show full text]
  • Average Or Apparent Mass of an Element SCIENTIFIC Isotopes and Atomic Mass
    Average or Apparent Mass of an Element SCIENTIFIC Isotopes and Atomic Mass Introduction At the beginning of the 19th century, John Dalton proposed his new atomic theory—all atoms of the same element are identical and equal in mass. It was a simple yet revolutionary theory. It was also not quite right. The discovery of radioactivity in the 20th century made it possible to study the actual structure and mass of atoms. Gradually, evidence was obtained that atoms of the same element could have different masses. These atoms were called isotopes. How are isotopes different from one another? What is the relationship between the atomic mass of an element and the mass of each isotope? Concepts • Isotope • Atomic and electron structure • Mass number • Atomic mass Materials Bags, zipper-lock, 15 Lima beans, 20 oz Balance, centigram (0.01-g precision) Navy beans, 4 oz Kidney beans, 12 oz Weighing dishes or small cups, 4 Labeling pen or marker Safety Precautions Although the materials used in this activity are considered nonhazardous, please observe all normal laboratory safety guidelines. The food- grade items that have been brought into the lab are considered laboratory chemicals and are for lab use only. Do not taste or ingest any materials in the chemistry laboratory. Wash hands thoroughly with soap and water before leaving the laboratory. Preparation “Bean bag” isotopes may be mixed in any proportion to prepare samples for analysis. The mixtures analyzed in the Sample Data section were prepared by mixing navy beans, kidney beans, and lima beans in the following proportion: 100 g navy beans, 280 g kidney beans, and 500 g lima beans (Note: 1 oz = 28.35 g).
    [Show full text]
  • Production of Aluminium and the Heavy Magnesium Isotopes in Asymptotic Giant Branch Stars
    CSIRO PUBLISHING www.publish.csiro.au/journals/pasa Publications of the Astronomical Society of Australia, 2003, 20, 279–293 Production of Aluminium and the Heavy Magnesium Isotopes in Asymptotic Giant Branch Stars A. I. Karakas and J. C. Lattanzio School of Mathematical Sciences, Monash University, Wellington Road, Clayton, Vic 3800, Australia [email protected] Received 2003 January 20, accepted 2003 May 30 Abstract: We investigate the production of aluminium and magnesium in asymptotic giant branch models covering a wide range in mass and composition. We evolve models from the pre-main sequence, through all intermediate stages, to near the end of the thermally-pulsing asymptotic giant branch phase. We then perform detailed nucleosynthesis calculations from which we determine the production of the magnesium and aluminium isotopes as a function of the stellar mass and composition. We present the stellar yields of sodium and the magnesium and aluminium isotopes. We discuss the abundance predictions from the stellar models in reference to abundance anomalies observed in globular cluster stars. Keywords: stars: AGB and post-AGB — stars: abundances — stars: interiors — stars: low mass — ISM: abundances 1 Introduction 1997; Siess, Livio, & Lattanzio 2002). There are currently In recent years our attempts to understand many aspects no quantitative studies of the production of the neutron- of nucleosynthesis and stellar evolution have come to rely rich Mg isotopes in low-metallicity WR stars. There are on our understanding of the production of the magne- quantitative studies of magnesium production in low- sium and aluminium isotopes. For example, abundance metallicityAGB stars (Forestini & Charbonnel 1997; Siess anomalies in globular cluster stars have been a problem et al.
    [Show full text]
  • Atomic Mass ƒ 4.6 – Electron Energy Levels Chapter 4 ƒ 4.7 – Electron Configurations ƒ 4.8 – Trends in Periodic Properties
    Lecture Presentation 4.1 – Elements and Symbols 4.2 – The Periodic Table 4.3 – The Atom 4.4 – Atomic Number and Mass Number 4.5 – Isotopes and Atomic Mass 4.6 – Electron Energy Levels Chapter 4 4.7 – Electron Configurations 4.8 – Trends in Periodic Properties General, Organic, and Biological Chemistry: Structures of Life, 5/e © 2016 Pearson Education, Inc. Karen C. Timberlake Elements: are pure substances from which all other things are built. are listed on the periodic table. Goal : Given its name, write its correct symbol; from the symbol. Write the correct name. General, Organic, and Biological Chemistry: Structures of Life, 5/e © 2016 Pearson Education, Inc. Karen C. Timberlake Element names come from planets, mythological figures, Chemical symbols minerals, colors, geographic locations, and famous people. Carbon, C • represent the names of the elements. • consist of one to two letters and start with a capital letter. One-Letter Symbols Two-Letter Symbols C carbon Co cobalt N nitrogen Ca calcium F fluorine Al aluminum O oxygen Mg magnesium General, Organic, and Biological Chemistry: Structures of Life, 5/e © 2016 Pearson Education, Inc. General, Organic, and Biological Chemistry: Structures of Life, 5/e © 2016 Pearson Education, Inc. Karen C. Timberlake Karen C. Timberlake Write the correct chemical symbols for each of the following elements: A. iodine B. iron C. magnesium D. zinc E. nitrogen General, Organic, and Biological Chemistry: Structures of Life, 5/e © 2016 Pearson Education, Inc. Karen C. Timberlake Give the names of the elements with the following symbols: Mercury (Hg) Is a silvery, shiny element that is liquid at room A.
    [Show full text]
  • Melt Solidification and Late-Stage Evaporation in the Evolution of a FUN Inclusion from the Vigarano C3V Chondrite
    Gewfiimica ep Cosmodzimica Act@ Vol. 55, pp. 623437 Copyright Q 1991 Pergamon #es pk. Printed in U.S.A. Melt solidification and late-stage evaporation in the evolution of a FUN inclusion from the Vigarano C3V chondrite ANDREW M. DAVIS,’ GLENN J. MACPHERSON,~ ROBERT N. CLAYTON, 1*3*4TOSHIKO K. MAYEDA,’ PAUL J. SYLVESTER,~ LAWRENCE GROSSMAN,“~ RICHARD W. HINTON,*‘* and JOHN R. LAUGHLI~~ ‘Enrico Fermi Institute, University of Chicago, Chicago, IL 60637, USA *Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA 3Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA “Department of Chemistry, University of Chicago, Chicago, IL 60637, USA (Received March 26, 1990; accepted in revisedform November 29, 1990) Abstract-Vigarano 1623-S is a forsterite-bearing refractory inclusion in which oxygen, magnesium, and silicon show large degrees of mass-dependent isotopic fractionation. The core of 16234 consists of forsteritic olivine, fassaite, melilite (Ak&, and spinel, all of which show isotopic mass fractionation, averaging -30.6L/amu for magnesium and - lO.OL/amu for silicon; it is enclosed in a mantle consisting of aluminous melilite (Ak 16-6o),spinel, perovskite, and hibonite. Hibonite and spine1 in the mantle are enriched in heavy isotopes of magnesium by S- 1%/amu relative to the core. 1623-5 originally formed by solidification of a magnesium-rich melt. The endemic isotopic mass fractionation may have been caused by evaporation of that melt or may reflect an earlier evaporation event affecting the reservoir from which the interior of 1623-5 formed. Later fiash remelting of the outer part of the core, and vola- tilization of SiO2 and MgO from the melt so produced, caused formation of a mantle that is in isotopic and petrologic di~uili~~um with the core.
    [Show full text]
  • TABLE of CONTENTS Radiation, Radioactivity, and Risk Assessment
    TABLE OF CONTENTS Radiation, Radioactivity, and Risk Assessment TABLE OF CONTENTS OVERVIEW — THE THREE “R’s”: RADIATION, RADIOACTIVITY, AND RISK ASSESSMENT (article) ...... 1 Table 1 — Radiation Doses ...................................................................................................................... 5 Table 2 — Comparing Radiation Risk to Other Risks ............................................................................... 5 Table 3 — Radioactivity of Some Natural and Man-Made Materials ........................................................ 6 Table 4 — Half-lives of Some Radioactive Isotopes and Their Uses ........................................................ 6 Table 5 — Units of Radiation and Radioactivity ........................................................................................ 7 INSTRUCTOR’S GUIDE ................................................................................................................................... 9 ACTIVITY 1 — LET’S INVESTIGATE ............................................................................................................... 15 ACTIVITY 2 — TIME LINE ................................................................................................................................ 19 ACTIVITY 3 — FINDING THE AGE OF A FOSSIL ........................................................................................... 25 ACTIVITY 4 — RADIOACTIVE GOLF BALL FINDER ..................................................................................... 29 ACTIVITY
    [Show full text]
  • Separation of Magnesium Isotopes by 1-Aza-12-Crown-4 Bonded Merrifield Peptide Resin
    Korean J. Chem. Eng., 18(5), 750-754 (2001) SHORT COMMUNICATION Separation of Magnesium Isotopes by 1-Aza-12-Crown-4 Bonded Merrifield Peptide Resin Dong Won Kim†, Byong Kwang Joen, Soo Han Kwon, Jae Sup Shin, Hai Il Ryu*, Jong Seung Kim** and Young Shin Joen*** Department of Chemistry, College of Natural Sciences, Chungbuk National University, Cheongju 361-763, Republic of Korea *Department of Chemistry Education, College of Education, Kongju National University, Kongju 314-701, Republic of Korea **Department of Chemistry, Konyang University, Nonsan 320-711, Republic of Korea ***Division of Chemical Analysis, Korea Atomic Energy Research Institute, Daejeon 305-606, Republic of Korea (Received 5 March 2001 • accepted 18 June 2001) Abstract− Magnesium isotope separation was investigated by chemical ion exchange with the 1-aza-12-crown-4 bonded Merrifield peptide resin using elution chromatography. The capacity of the novel azacrown ion exchanger was 1.0 meq/g dry resin. The heavier isotopes of magnesium were enriched in the resin phase, while the lighter isotopes were enriched in the solution phase. The single stage separation factor was determined according to the method of Glueckauf from the elution curve and isotopic assays. The separation factors of 24Mg2+-25Mg2+, 24Mg2+-26Mg2+, and 25Mg2+-26Mg2+ isotope pairs were 1.012, 1.024, and 1.011, respectively. Key words: Monoazacrown, Capacity, Distribution Coefficient, Magnesium Isotope, Separation, Isotope Effect, Chromatog- raphy INTRODUCTION bert et al. [1961] also reported that the isotope enrichment of magne- sium, calcium, strontium, and barium through the migration of ions It was reported that crown ethers might also be applicable to the in molten halides.
    [Show full text]
  • CH1 1. State Whether the Following Properties of Matter Are Physical Or Chemical
    CH1 1. State whether the following properties of matter are physical or chemical. (a) An iron nail is attracted to a magnet. (b) A piece of paper spontaneously ignites when its temperature reaches 451 °F. (c) Abronze statue develops a green coating (patina) over time. (d) A block of wood floats on water. Ans: a. Physical b. Chemical c. Chemical d. Physical 2. Express each number in exponential notation. (a) 8950.; (b) 10,700.; (c) 0.0240; (d) 0.0047; (e) 938.3; (f) 275,482. Ans: a. 8.950 × 10 b. 1.0700 × 10 c. 2.40 × 10 d. 4.7 × 10 e. 9.383 × 10 f. 3 4 −2 −3 2 25482 × 10 5 3. Express each value in exponential form. Where appropriate, include units in your answer. (a) speed of sound (sea level): 34,000 centimeters per second (b) equatorial radius of Earth: 6378 kilometers (c) the distance between the two hydrogen atoms in the hydrogen molecule: 74 trillionths of a meter . × . × (d) = .ퟑ× ퟐ �ퟐ ퟐ ퟏퟎ �+�ퟒ ퟕ ퟏퟎ � −ퟑ ퟓ ퟖ ퟏퟎ Ans: a. 3.4 × 10 cm s b. 6.378 × 10 km c. 7.4 × 10 m d. 4.6 × 10 4 3 −11 5 ⁄ 4. Express each of the following to four significant figures. (a) 3984.6; (b) 422.04; (c) 186,000; (d) 33,900; (e) . × ; (f) . × . −ퟑ ퟑ Ans: a. 3985 b. 422.0 c. 1.860 × 10 d. 3.390 × ퟔ10ퟑퟐퟏ e. 6.ퟏퟎ321 × 10ퟓ ퟎퟒퟕퟐ f. 5.047ퟏퟎ× 10 5 4 −3 3 5. An American press release describing the 1986 nonstop, round-the-world trip by the ultra-lightweight aircraft Voyager included the following data: flight distance: 25,012 mi flight time: 9 days, 3 minutes, 44 seconds fuel capacity: nearly 9000 lb fuel remaining at end of flight: 14 gal To the maximum number of significant figures permitted ,calculate (a) the average speed of the aircraft in kilometers per hour (b) the fuel consumption in kilometers per kilogram of fuel (assume a density of for the fuel) Ans: a.
    [Show full text]
  • An Experimental Study of Magnesium-Isotope Fractionation in Chlorophyll-A Photosynthesis
    UC Davis UC Davis Previously Published Works Title An experimental study of magnesium-isotope fractionation in chlorophyll-a photosynthesis Permalink https://escholarship.org/uc/item/8x5346hj Journal Geochimica et Cosmochimica Acta, 70(16) ISSN 0016-7037 Authors Black, J R Yin, Q Z Casey, W H Publication Date 2006-08-01 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Geochim. Cosmochim Acta June 07,2006 An Experimental Study of Magnesium-Isotope Fractionation in Chlorophyll-a Photosynthesis Jay R. Black Department of Chemistry Department of Geology, University of California, Davis, CA 95616. [email protected] Qing-zhu Yin Department of Geology, University of California, Davis, CA 95616. [email protected] and William H. Casey* Department of Chemistry Department of Geology, University of California, Davis, CA 95616. [email protected] keywords: photosynthesis, magnesium isotopes, isotope fractionation, chlorophyll, cyanobacteria, biogeochemistry running title: Mg-isotope fractionation in chlorophyll-a 1 Abstract Measurements are presented of the magnesium isotopic composition of chlorophyll-a, extracted from cyanobacteria, relative to the isotopic composition of the culture medium in which the cyanobacteria were grown. Yields of 50-93% chlorophyll-a were achieved from the pigment extracts of Synechococcus elongatus, a unicellular cyanobacteria. This material was then digested using concentrated nitric acid to extract magnesium. Separation was accomplished using columns of cation-exchange
    [Show full text]
  • NGSS Lesson Planning STARS Elements Grade/Grade Band: HS Topic: Periodic Table: Properties and Symbols Lesson # Unit 1
    NGSS Lesson Planning STARS Elements Grade/Grade Band: HS Topic: Periodic Table: Properties and Symbols Lesson # Unit 1 Brief Lesson Description: Challenge students to discover repeating patterns and properties of the elements. Performance Expectation(s): HS-PS1-1. Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. Specific Learning Outcomes: 1. Students will identify and describe the organization and components of the periodic table. 2. Students will determine relationships between chemical and physical properties of elemental families in the periodic table. 3. Students will manipulate protons, neutrons, and electrons to understand the composition and atomic symbols of each element on the periodic table. 4. Students will understand and apply the octet rule to create stable chemical compounds. Narrative / Background Information Prior Student Knowledge Familiarity with the Bohr model. Realization that the model of the atom is used to explain observable properties of elements and compounds. Physical changes. Elements, compounds, and mixtures. Remind students of the following background explanations during the Opening Activity: Both physical and chemical changes are occurring when a candle is lit. Candle wax is essentially a lot of carbon and hydrogen atoms bonded together as molecules called hydrocarbons. These atoms and molecules are vibrating, and they are attracted to one another as a solid. These attractions between the molecules are called intermolecular forces. When the solid wax is heated, the molecules move faster and faster, and the intermolecular forces begin to break. Eventually, the solid melts to form liquid wax.
    [Show full text]
  • Lecture Presentation Chapter 4
    Lecture Presentation Chapter 4 4.1 – Elements and Symbols 4.2 – The Periodic Table 4.3 – The Atom 4.4 – Atomic Number and Mass Number 4.5 – Isotopes and Atomic Mass 4.6 – Electron Energy Levels 4.7 – Electron Configurations 4.8 – Trends in Periodic Properties General, Organic, and Biological Chemistry: Structures of Life, 5/e © 2016 Pearson Education, Inc. Karen C. Timberlake Goal : Given its name, write its correct symbol; from the symbol. Write the correct name. Elements: are pure substances from which all other things are built. are listed on the periodic table. General, Organic, and Biological Chemistry: Structures of Life, 5/e © 2016 Pearson Education, Inc. Karen C. Timberlake Element names come from planets, mythological figures, minerals, colors, geographic locations, and famous people. General, Organic, and Biological Chemistry: Structures of Life, 5/e © 2016 Pearson Education, Inc. Karen C. Timberlake Chemical symbols Carbon, C • represent the names of the elements. • consist of one to two letters and start with a capital letter. One-Letter Symbols Two-Letter Symbols C carbon Co cobalt N nitrogen Ca calcium F fluorine Al aluminum O oxygen Mg magnesium General, Organic, and Biological Chemistry: Structures of Life, 5/e © 2016 Pearson Education, Inc. Karen C. Timberlake Write the correct chemical symbols for each of the following elements: A. iodine B. iron C. magnesium D. zinc E. nitrogen General, Organic, and Biological Chemistry: Structures of Life, 5/e © 2016 Pearson Education, Inc. Karen C. Timberlake Give the names of the elements with the following symbols: A. P B. Al C. Mn D. H E.
    [Show full text]