DIGITAL QUARTZ PRESSURE TRANSDUCERS for FLIGHT APPLICATIONS Jerome M

Total Page:16

File Type:pdf, Size:1020Kb

DIGITAL QUARTZ PRESSURE TRANSDUCERS for FLIGHT APPLICATIONS Jerome M DIGITAL QUARTZ PRESSURE TRANSDUCERS FOR FLIGHT APPLICATIONS Jerome M. Paros Paroscientific, Inc. INTRODUCTION A series of high precision pressure transducers has been developed to meet the requirements of a variety of aerospace applications. The development of these transducers was prompted by the widespread use and increasing trend toward digital data-acquisition and control systems. The design and performance goals included the requirements for a digital-type output, high accuracy, low power consumption, exceptional reliability, and small size and weight. Also, simple mathematical characterization in the processing of the output signals and general insensitivity to the environmental errors of acceleration, vibration, temperature, humidity and electromagnetic interference, were important considerations. The design, construction and performance of the Digiquartz Pressure Transducers are described in the attached article1 from Measurements and Data entitled "Digital Pressure Transducers". The object of this paper is to describe some of the past, present and future aerospace applications related to flight systems. Topics to be discussed include digital electronic engine control systems, in-flight engine monitoring, flight performance benefits from improved instrumentation and control, and digital air data computer applications. DIGITAL ELECTRONIC ENGINE CONTROL The first flight application of the digital quartz pressure transducers was their use on an F-111 aircraft in the Integrated Propulsion Control System (IPCS). The IPCS program was a research and development effort in which one set of hydro-mechanical engine and inlet controls on a supersonic airplane was replaced with a digital electronic control system. This program was sponsored by the Aero Propulsion Laboratory, Air Force Systems Command, Wright-Patterson AFB, Ohio. The contract was awarded to Boeing Aerospace Company in March 1973- Major participants included Boeing, Pratt & Whitney Division of United Technologies Corporation and Honeywell Inc. Altitude cell tests were performed at NASA- Lewis Research Center and flight tests performed at NASA-Edwards Flight Research Center. The general configuration of the IPCS aircraft is shown in Figure 1. By integrating the inlet and engine controls as shown in the system schematic of Figure 2, the aircraft can operate closer to its performance limits while avoiding possible adverse interactions between engine, inlet, and air frame. Advanced sensors and a digital computer/control system provide more accurate and stable control enabling the engine to develop greater thrust and optimized performance, resulting in extended engine life, greater fuel economy and reduced maintenance costs. Another advantage of digital electronic control systems is their inherent flexibility. Software programming changes to the digital computer can match standard digital hardware controls with a variety of engines, inlets and airframes. Additional benefits are possible due to the ability of the digital propulsion control system to communicate directly with other digital aircraft systems such as the flight controls and air data computer. The digital computer links the inlet and engine controls with a group of advanced sensors, including digital quartz pressure transducers used to measure inlet and output pressures as shown in Figures 3 and 4. A distortion rake supplied by NASA measures the pressure profiles at the fan face. Four digital quartz pressure transducers with ranges of 0 to 30 psia are used to measure inlet pressure and inlet distortion. The digital computer uses the output signals to control the system to accommodate the distortion in the airflow and prevent engine stall through solenoid bleed valves. Two transducers are located at the local mach probe to measure static and total pressure. Two 0 to 30 psia transducers measure static and total pressures at the duct exit. These transducer measurements feed into the computer controlling the spike and the cone on the variable inlet of this supersonic airplane, The flight test phase of the IPCS program was successfully completed in March, of 1976. Some conclusions that can be drawn from the IPCS program are that more precise control of a propulsion system is desirable and possible, but depends upon the availability of precise measurements made with accurate, reliable, and compatible sensors. Transducers with high reliability and outstanding performance are paramount requirements for aircraft control applications; however, significant design and analysis benefits can result from proper engine instrumentation and in- flight performance monitoring. IN FLIGHT ENGINE PERFORMANCE MONITORING Precise analysis of engine performance under flight conditions has been made possible through the use of the digital quartz pressure transducers. Figure 5 shows the general location and function of the diagnostic flight test pressure sensors employed on the Air Launched Cruise Missile (ALCM). The ALCM is a highly accurate, extended range, air to ground weapon that can be launched by a penetrating bomber such as the B-52 and the B-1. After the missile is ejected from its carry position, the engine inlet pops up and the elevons are deployed, followed next by the vertical tail. Then the low bypass turbofan engine is ignited, the wings are unfolded and full engine thrust is rapidly achieved as a function of altitude at launch. Five transducers are mounted in a single package on the engine bypass duct. These 0-45 psia sensors are used to measure inner and outer fan duct total pressures as well as inner, center and outer turbine exhaust pressures. One 0- 300 psia transducer measures compressor delivery pressures as mounted on the engine. Two 0-30 psia transducers are used at the inlet duct to measure total inlet pressures. These measurements in conjunction with other diagnostic information can determine basic engine performance. The requirements imposed on the pressure transducers included a digital-type output, high accuracy, fast response time, small size and weight, and the ability to perform well under the severe environmental conditions of shock, vibration, and temperature associated with this missile. These sensors have also been used as part of a thrust measurement system on the McDonnell- Douglas YC-15 prototype MSTOL transport, in which the Model 245-A transducers measure core engine discharge and fan discharge pressures. FLIGHT PERFORMANCE BENEFITS FROM IMPROVED INSTRUMENTATION AND CONTROL One of the most important flight benefits achievable through improved instrumentation is reduced fuel consumption. Because of the rise in the price of jet engine fuel, both aircraft manufacturers and users have reviewed methods of improving fuel conservation. An article published by the Boeing Commercial Aircraft Company has examined possible areas of improvement including reduced aerodynamic drag, and improved instrumentation such as mach meter reading and engine pressure ratio (EPR) transmission and display. The study concluded that the greatest potential for fuel savings on these commercial aircraft were in order of importance, inaccurate mach meter correction, improved EPR gauges and flow meters and improved aerodynamic performance. Contributions to improved fuel economy must be achieved not only through improved instrumentation, controls and displays, but also through proper maintenance and calibration of these devices. As an example of the penalties associated with instrument errors the effects due to inaccurate readings on 747 and 727 airplane mach meters were examined. This is shown in Table 1 where an assumed error in mach meter of 0.01 mach low (i.e. reading 0.84 mach when the airplane was in fact flying 0.85 mach). If the mach meter was inherently inaccurate or had been subjected to environmental errors, or had been inadequately calibrated, then the airplane would actually be flying 4 knots indicated air speed and 6 knots true air speed faster at cruise altitude Flying at a higher than optimum speed as a result of the instrument error results in a fuel burn penalty on a 747 aircraft of 717 lbs per hour, or 226,655 US gallons per year. Table 1 shows the associated penalties in dollars for the added fuel consumption based on fuel costs of 20 cents per gallon, 40 cents per gallon, and 60 cents per gallon. The respective dollar amounts which could be saved per year by correct mach meter reading for the 747 airplane is over $45,000, $90,000 and $135,000 per year based on the assumed mach meter error and the variable costs of the jet fuel. Comparative figures for a 727 airplane indicate penalties would be approximately one third as great as that for the 747 airplane. The second major instrument error affecting fuel consumption is due to inadequate engine pressure ratio (EPR) gauges. Aircraft turbine engines are used to generate the propulsive energy by imparting momentum to a gas. The gas used by turbine engines is a mixture of products of combustion and air raised to a high energy level by the process of combustion. The basic turbine engine consists of a compressor, burner, turbine and nozzle. The combination of compressor, burner and turbine is referred to as the gas generator. This term is used to describe the function of accepting air at a low energy level and producing a new gas (air plus products of combustion) at a high energy level. The gas generator thus provides the high-energy gas to the nozzle and results in the propulsive force or thrust used to propel the aircraft. The cockpit instrument used to display
Recommended publications
  • Aircraft Engine Performance Study Using Flight Data Recorder Archives
    Aircraft Engine Performance Study Using Flight Data Recorder Archives Yashovardhan S. Chati∗ and Hamsa Balakrishnan y Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA Aircraft emissions are a significant source of pollution and are closely related to engine fuel burn. The onboard Flight Data Recorder (FDR) is an accurate source of information as it logs operational aircraft data in situ. The main objective of this paper is the visualization and exploration of data from the FDR. The Airbus A330 - 223 is used to study the variation of normalized engine performance parameters with the altitude profile in all the phases of flight. A turbofan performance analysis model is employed to calculate the theoretical thrust and it is shown to be a good qualitative match to the FDR reported thrust. The operational thrust settings and the times in mode are found to differ significantly from the ICAO standard values in the LTO cycle. This difference can lead to errors in the calculation of aircraft emission inventories. This paper is the first step towards the accurate estimation of engine performance and emissions for different aircraft and engine types, given the trajectory of an aircraft. I. Introduction Aircraft emissions depend on engine characteristics, particularly on the fuel flow rate and the thrust. It is therefore, important to accurately assess engine performance and operational fuel burn. Traditionally, the estimation of fuel burn and emissions has been done using the ICAO Aircraft Engine Emissions Databank1. However, this method is approximate and the results have been shown to deviate from the measured values of emissions from aircraft in operation2,3.
    [Show full text]
  • 2.0 Axial-Flow Compressors 2.0-1 Introduction the Compressors in Most Gas Turbine Applications, Especially Units Over 5MW, Use Axial fl Ow Compressors
    2.0 Axial-Flow Compressors 2.0-1 Introduction The compressors in most gas turbine applications, especially units over 5MW, use axial fl ow compressors. An axial fl ow compressor is one in which the fl ow enters the compressor in an axial direction (parallel with the axis of rotation), and exits from the gas turbine, also in an axial direction. The axial-fl ow compressor compresses its working fl uid by fi rst accelerating the fl uid and then diffusing it to obtain a pressure increase. The fl uid is accelerated by a row of rotating airfoils (blades) called the rotor, and then diffused in a row of stationary blades (the stator). The diffusion in the stator converts the velocity increase gained in the rotor to a pressure increase. A compressor consists of several stages: 1) A combination of a rotor followed by a stator make-up a stage in a compressor; 2) An additional row of stationary blades are frequently used at the compressor inlet and are known as Inlet Guide Vanes (IGV) to ensue that air enters the fi rst-stage rotors at the desired fl ow angle, these vanes are also pitch variable thus can be adjusted to the varying fl ow requirements of the engine; and 3) In addition to the stators, another diffuser at the exit of the compressor consisting of another set of vanes further diffuses the fl uid and controls its velocity entering the combustors and is often known as the Exit Guide Vanes (EGV). In an axial fl ow compressor, air passes from one stage to the next, each stage raising the pressure slightly.
    [Show full text]
  • Using an Autothrottle to Compare Techniques for Saving Fuel on A
    Iowa State University Capstones, Theses and Graduate Theses and Dissertations Dissertations 2010 Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft Rebecca Marie Johnson Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/etd Part of the Electrical and Computer Engineering Commons Recommended Citation Johnson, Rebecca Marie, "Using an autothrottle ot compare techniques for saving fuel on a regional jet aircraft" (2010). Graduate Theses and Dissertations. 11358. https://lib.dr.iastate.edu/etd/11358 This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Using an autothrottle to compare techniques for saving fuel on A regional jet aircraft by Rebecca Marie Johnson A thesis submitted to the graduate faculty in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE Major: Electrical Engineering Program of Study Committee: Umesh Vaidya, Major Professor Qingze Zou Baskar Ganapathayasubramanian Iowa State University Ames, Iowa 2010 Copyright c Rebecca Marie Johnson, 2010. All rights reserved. ii DEDICATION I gratefully acknowledge everyone who contributed to the successful completion of this research. Bill Piche, my supervisor at Rockwell Collins, was supportive from day one, as were many of my colleagues. I also appreciate the efforts of my thesis committee, Drs. Umesh Vaidya, Qingze Zou, and Baskar Ganapathayasubramanian. I would also like to thank Dr.
    [Show full text]
  • The Predicted Performance of a Two-Spool Turbofan Engine in Rainstorms
    THE PREDICTED PERFORMANCE OF A TWO-SPOOL TURBOFAN ENGINE IN RAINSTORMS By Tarik Baki Thesis presented for the degree of Masters of Science MSc to the faculty of Engineering Department of Mechanical Engineering Glasgow University April 1993. © Tarik Baki. ProQuest Number: 11007734 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a com plete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. uest ProQuest 11007734 Published by ProQuest LLC(2018). Copyright of the Dissertation is held by the Author. All rights reserved. This work is protected against unauthorized copying under Title 17, United States C ode Microform Edition © ProQuest LLC. ProQuest LLC. 789 East Eisenhower Parkway P.O. Box 1346 Ann Arbor, Ml 48106- 1346 ^1581 GLASGOW 1 UNIVERSITY LIBRARY f This thesis is dedicated to the memory of my kind and loving grand-mother Mama Hadja and my dear grand-father Hadj Tahar. You will always be present in our hearts. CONTENTS ACKNOWLEDGEMENTS NOMENCLATURE STATION NUMBERING SUMMARY PAGE CHAPTER I : GENERAL INTRODUCTION AND BACKGROUND 1.1. Introduction 4 1.1.1. Contribution made in the presentinvestigation 6 1.2. Historical development of gas turbines 7 1.3. Modem developments 9 1.4. Turbojet engine development 10 1.5. Transient behaviour of aircraft gas turbine 11 CHAPTER II : PERFORMANCE PREDICTION PROGRAM FOR TWO-SPOOL TURBOFAN ENGINE 2.1. Modelling of gas turbines 13 2.1.1.
    [Show full text]
  • STS-1000: a High Performance Turboshaft Engine for Hybrid
    AIAA 2018-2018 Engine Design Competition Sharif University of Technology STS-IDOO: A Candidate T urboshaft Engine for Hybrid Electric Medium Altitude Long Endurance Search and Rescue UAV High PowBr to WBight Low FuBI Consumption Modular 6 Compact SIGNATURE SHEET Prof. Kaveh Ghorbanian M. Reza AminiMagham Alireza Ebrahimi Faculty Advisor Project Advisor Team Leader 952166 Amir Nazemi Abolfazl Zolfaghari Hojjat Etemadianmofrad Vahid Danesh 981123 919547 964808 964807 M. Mahdi Asnaashari Saeide Kazembeigi Mahdi Jamshidiha Amirreza Saffizadeh 952842 978931 688249 937080 Copyright © 2019 by FARAS. Published by the American Institute of Aeronautics and Astronautics, Inc., with Permission Executive Summary This report proposes a turboshaft engine referred to “Sharif TurboShaft 1000 (STS-1000)” as a candidate engine to replace the baseline engine TPE331-10 for the next generation “Hybrid Electric Medium Altitude Long Endurance Search and Rescue UAV” by the year 2025. STS-1000, unlike the baseline engine, is a split single-spool turboshaft engine. The hot gas generator is a single spool with a single stage radial compressor, a reverse annular combustion chamber, and an uncooled single stage axial compressor turbine. The required shaft power is produced by a two stage axial power turbine on a separate spool which passes through the spool of the core engine and is intended to drive a power generator at the cold end of the engine. The air intake is of S-type and the exhaust duct has circular cross section. Compared to TPE331-10, STS-1000 has a higher turbine inlet temperature, a lower stage number for the air compressor, and requires less mass flow rate.
    [Show full text]
  • Acceleration Control for a Gas Turbine Engine with Duct Pressure Loss Compensation
    Europaisches Patentamt European Patent Office © Publication number: 0 401 152 A2 Office europeen des brevets © EUROPEAN PATENT APPLICATION © Application number: 90630111.4 © Int. CIA F02C 9/28, F04D 27/02 © Date of filing: 30.05.90 © Priority: 30.05.89 US 359186 © Applicant: UNITED TECHNOLOGIES 30.05.89 US 359451 CORPORATION United Technologies Building 1, Financial @ Date of publication of application: Plaza 05.12.90 Bulletin 90/49 Hartford, CT 061 01 (US) © Designated Contracting States: © Inventor: Smith, Jesse Walter DE FR GB IT 4186 S.E. Fairway Court Stuart, Florida 34997(US) © Representative: Waxweiier, Jean et al OFFICE DENNEMEYER S.a.r.l. P.O. Box 1502 L-1015 Luxembourg(LU) © Acceleration control for a gas turbine engine with duct pressure loss compensation. © A control to control the acceleration mode for a gas turbine engine so as to allow the engine to accelerate rapidly with adequate stall margin by sim- ulating a compressor stall limit. The stall limit is attained by generating a limiting ratio of burner pres- sure and another engine pressure as a function of corrected compressor rotor speed assuming that the stall margin is independent of compressor bleed, power extraction and degradation of engine efficien- cy. Control logic means to compensate for fan by- pass duct pressure losses in a system that controls the acceleration mode for a twin spool gas turbine engine so as to allow the engine to accelerate rap- idly with adequate stall margin by simulating a com- CM pressor stall limit. The stall limit is attained by gen- -5I8.7' FIG. I < erating a limiting ratio of burner pressure and an- other engine pressure as a function of corrected CM LO compressor rotor speed assuming that the stall mar- gin is independent of compressor bleed, power ex- traction and degradation of engine efficiency.
    [Show full text]
  • ENGINE CONTROLS CONTROLS App
    Università del Salento - FACOLTA’ DI INGEGNERIA INDUSTRIALE – Brindisi Dipartimento di Ingegneria dell’Innovazione - Lecce CORSO DI LAUREA SPECIALISTICA IN Ingegneria Aerospaziale PROPULSIONEPROPULSIONE AEROSPAZIALEAEROSPAZIALE II ENGINEENGINE CONTROLS CONTROLS App. O AIAA AIRCRAFT ENGINE DESIGN www.amazon.com LA DISPENSA E’ DISPONIBILE SU http://www.ingindustriale.unisalento.it/didattica/ Prof. Ing. A. Ficarella [email protected] 1 Università del Salento - FACOLTA’ DI INGEGNERIA INDUSTRIALE – Brindisi Dipartimento di Ingegneria dell’Innovazione - Lecce potential of unstable behavior fan or compressor surge/stall primary functions of the engine control maintain stable thrust smooth repeatable performance during transient stable airflow, pressure, temperature and rotor speed avoid stall/surge and significant T, p or speed variations secondary functions startup and shutdown bleed and power extraction inlet anti-icing hot-gas protection tip clearance control 2 Università del Salento - FACOLTA’ DI INGEGNERIA INDUSTRIALE – Brindisi Dipartimento di Ingegneria dell’Innovazione - Lecce difficulty in direct measuring mass flow thrust must be inferred to relate engine thrust to the engine operating line on a fan map mechanical rotor speeds are easily measured the fan rotor speed N1, corrected for inlet T and p, correlates very well to engine mass flow a differential pressure measurement correlates very well with fluid velocities 3 Università del Salento - FACOLTA’ DI INGEGNERIA INDUSTRIALE – Brindisi Dipartimento di
    [Show full text]
  • Simulating Indirect Thrust Measurement Methods for High
    THE AMERICAN SOCIETY OF MECHANICAL ENGINEERS 93-G-335 345 E. 47th St., New York, N.Y. 10017 The Society shall not be responsible for statements or opinions advanced in papers or discussion at meetings of the Society or of its Divisions or Sections, © or printed in its publications. Discussion is printed only if the paper is pub- lished in an ASME Journal, Papers are available from ASME for 15 months after the meeting. Printed in U.S.A. Copyright © 1993 by ASME Downloaded from http://asmedigitalcollection.asme.org/GT/proceedings-pdf/GT1993/78910/V03BT16A091/2403731/v03bt16a091-93-gt-335.pdf by guest on 26 September 2021 SIMUAIG IIEC US MEASUEME MEOS O IG YASS UOAS . Stvnn nd . Srvntt Department of Mechanical and Aerospace Engineering Carleton University Ottawa, Ontario, Canada ABSTRACT ABBREVIATIONS As yet, there is no known reliable method for directly measuring BPR bypass ratio the thrust of a turbofan in flight. Manufacturers of civil turbofans CDP HP Compressor delivery total pressure use various indirect thrust measurements to indicate performance EPR engine pressure ratio of an engine to the flight deck. Included among these are: Engine EGT LP Turbine exhaust gas total temperature Pressure Ratio (EPR), Integrated Engine Pressure Ratio (IEPR), Fan FPR fan pressure ratio mechanical speed (N,), and various Turbine Gas Temperatures such GG gas generator (core of turbofan) as ITT or EGT. Of key concern is whether these thrust indicators HDTO hot day take-off (ISA +15°C at SLS) give an accurate account of the actual engine thrust. The accuracy HPC,HPT high pressure compressor, turbine of these methods, which are crucial at take-off, may be IEPR integrated engine pressure ratio compromised by various types of common engine deterioration, to ISA international standard atmosphere the point where a thrust indicator may give a false indication of the ITT inter-turbine total temperature health and thrust of the engine.
    [Show full text]
  • Airplane Turboprop Engines Basic Familiarization
    AIRPLANE TURBOPROP ENGINES BASIC FAMILIARIZATION INTRODUCTION Many of today's airplanes are powered by turboprop engines. These engines are quite reliable, providing years of trouble-free service. However, because of the rarity of turboprop engine malfunctions, and the limitations of simulating those malfunctions, many flight crews have felt unprepared to diagnose engine malfunctions that have occurred. The purpose of this text is to provide straightforward material to give flight crews the basics of airplane engine operational theory. This text will also provide pertinent information about malfunctions that may be encountered during the operation of turboprop-powered airplanes. It is not the purpose of this text to supersede or replace more detailed instructional texts or to suggest limiting the flight crew's understanding and working knowledge of airplane turbine engine operation and malfunctions to the topics and depth covered here. Upon completing this material, flight crews should understand that some engine malfunctions can feel and sound more severe than anything they have ever experienced; however, the airplane is still flyable, and the first priority of the flight crew should remain "fly the airplane." PROPULSION Figure 1 showing balloon with no escape path for the air inside. All forces are balanced. Propulsion is the net force that results from unequal pressures. Gas (air) under pressure in a sealed container exerts equal pressure on all surfaces of the container; therefore, all the forces are balanced and there are no forces to make the container move. 1 If there is a hole in the container, gas (air) cannot push against that hole and the gas escapes.
    [Show full text]
  • CJ-3000 Turbofan Engine Design Proposal
    CJ-3000 Turbofan Engine Design Proposal Team Leader: Wang Yingjun Team Member: Guo Minghao & Hu Yu Faculty Advisor: Dr. Chen Min SIGNATURE PAGE Design Team: Wang Yingjun: #921794 Guo Mingha: #921803 Hu Yu: #921800 Acknowledgements The authors would like to thank the following individuals who were instrumental in the success of this engine design: Dr. Chen Min for his tremendous help in completing this proposal. Dr. Li Lin and Dr. Fan Yu for their advice on rotor dynamics Dr. Chen Jiang for his guidance on turbomachinery aerodynamics Dr. Joachim Kurzke, Prof. Peter Jeschke, and Mr. Guo Ran for their aids on GasTurb Our colleague Zhao Jiaheng for his novel idea on cycle design Our senior Li Mingzhe for his instruction on turbine design The work site provided by our College All the teachers, students and facilities who have aided. Abstract The CJ 3000 is a triple-spool, mixed flow, middle bypass ratio turbofan engine designed as a candidate engine for the next generation supersonic transport. The performance of the CJ 3000 is shown to reach all requirements of the RFP. The CJ 3000 offers great performance gains over the requirements and baseline engine, providing required thrust levels and a significantly lower TSFC for all four main flight conditions, less total engine weight, less fuel consumption and NOx emissions, and lower exhaust noise at takeoff. The practical and advanced technologies CJ 3000 employed are presented as follows. Engine Component Technologies Employed Engine Configuration Triple-Spool Engine Inlet System Two-Dimensional
    [Show full text]
  • Aircraft Engine Operation and Malfunction
    Airplane Turbofan Engine Operation and Malfunctions Basic Familiarization for Flight Crews Chapter 1 General Principles Introduction the flight crew's understanding and Today's modern airplanes are powered working knowledge of airplane turbine by turbofan engines. These engines are engine operation and malfunctions to the quite reliable, providing years of trouble- topics and depth covered here. Upon free service. However, because of the completing this material, flight crews rarity of turbofan engine malfunctions, should understand that some engine and the limitations of simulating those malfunctions can feel and sound more malfunctions, many flight crews have severe than anything they have ever felt unprepared to diagnose engine experienced; however, the airplane is malfunctions that have occurred. still flyable, and the first priority of the flight crew should remain "fly the The purpose of this text is to provide airplane." straightforward material to give flight crews the basics of airplane engine Propulsion operational theory. This text will also provide pertinent information about malfunctions that may be encountered during the operation of turbofan- powered airplanes, especially those malfunctions that cannot be simulated well and may thus cause confusion. While simulators have greatly improved pilot training, many may not have been programmed to simulate the actual noise, vibration and aerodynamic forces that certain malfunctions cause. In addition, Fig 1 showing balloon with no escape path for it appears that the greater the sensations, the air inside. All forces are balanced. the greater the startle factor, along with greater likelihood the flight crew will try Propulsion is the net force that results to diagnose the problem immediately from unequal pressures.
    [Show full text]
  • Stability and Performance of Propulsion Control Systems with Distributed Control Architectures and Failures
    STABILITY AND PERFORMANCE OF PROPULSION CONTROL SYSTEMS WITH DISTRIBUTED CONTROL ARCHITECTURES AND FAILURES DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Rohit K. Belapurkar, M.S. Graduate Program in Aeronautical and Astronautical Engineering The Ohio State University 2012 Dissertation Committee: Prof. Rama K. Yedavalli, Advisor Prof. Meyer Benzakein Prof. Krishnaswamy Srinivasan Copyright by Rohit K. Belapurkar 2012 ABSTRACT Future aircraft engine control systems will be based on a distributed architecture, in which, the sensors and actuators will be connected to the controller through an engine area network. Distributed engine control architecture enables the use of advanced control techniques along with achieving weight reduction, improvement in performance and lower life cycle cost. The performance of distributed engine control system is predominantly dependent on the performance of communication network. Due to serial data transmission, time delays are introduced between the sensor/actuator nodes and distributed controller. Although these random transmission time delays are less than the control system sampling time, they may degrade the performance of the control system or in worst case, may even destabilize the control system. Network faults may result in data dropouts, which may cause the time delays to exceed the control system sampling time. A comparison study was conducted for selection of a suitable engine area network. A set of guidelines are presented in this dissertation based on the comparison study. Three different architectures for turbine engine control system based on a distributed framework are presented. A partially distributed engine control system for a turbo-shaft engine is designed based on ARINC 825, a general standardization of Controller Area Network (CAN).
    [Show full text]