Geology of the Chewelah-Loon Lake Area, Stevens and Spokane Counties, Washington

Total Page:16

File Type:pdf, Size:1020Kb

Geology of the Chewelah-Loon Lake Area, Stevens and Spokane Counties, Washington Geology of the Chewelah-Loon Lake Area, Stevens and Spokane Counties, Washington GEOLOGICAL SURVEY PROFESSIONAL PAPER 806 Prepared in cooperation with the Washington Division of Mines and Geology _J Geology of the Chewelah-Loon Lake Area, Stevens and Spokane Counties, Washington · By FRED K. MILLER and LORIN D. CLARK With a section on POTASSIUM-ARGO:N AGES OF THE PLUTONIC ROCKS By JOAN C. ENGELS G E 0 L 0 G I CAL SURVEY P.R 0 FE S S I 0 N A. L PAPER 8 0 6 Prepared in cooperation with the Washington Division of Mines and Geology UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON: 1975 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director / Library of Congress catalog-card No. 73-600314 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 -Price $2.15 (paper cover) Stock Number 2401-02587 CONTENTS Page Page Abstract ····································································-·················· 1 Paleozoic rocks-Continued Introduction ................................................................................ 1 Carbonate rocks-Continued Location and .accessibility.................................................. -1 -·Devonian -or Mississippian carbonate rocks-Con. Previous work ...................................................................... 2 Unit 2 ............................... -..................................... 30 Present work .................................................. :..................... 3 Unit 3 ................... ·.-......................... :...................... 31 Mississippian carbonate rock. ......:............................. 31 ~~~:~e::::;~ s~W~~~~~~~~~~~~~~~~~~~~~~~~~-~~~~~~~~~~::::::::::::::::::: : Paleozoic carbonate· rocks, undivided...................... 32 Precambrian rocks ......•............................... -............................... 4 Mesozoic plutonic rocks ......................................... ................... _33 Belt Supergroup .................................................................. 4 Flowery ·Trail Granodiorite......................... :.................... 34 Prichard Formation .................................................... 4 Starvation Flat Quartz Monzonite.................................. 38 Ravalli Group ........................................... .................. 6 Phillips Lake· Granodiorite (and associated dikes).... 40 Burke Formation ········"···················· ................... 6 Two-mica quartz monzonite.............................................. 44 Revett Formation ~--·····---~---································· 7 Coarse-grained quartz monzonite.................................... 45 St. Regis Formation.......................................... :. 8 Muscovite quartz monzonite............................................ 46 Wallace Formation .................................................... 9 Cenozoic plutonic rocks.......................................... ~................... 47 Missoula Group .......................................................... 11 Silver Point Quartz Monzonite........................................ 47 Striped Peak Formation .................................... 11 Granodiorite ........................................ ................................ 50 Membera ...................................................... 12 Fine-grained quartz monzonite ........................................ 50 Memberb ...................................................... 12 Differentiation of the plutonic rocks............................ ~........... 51 Member c ...................................................... 13 Potassium-argon ages of the plutonic rocks, by Joan C. Memberd ...................................................... 16 Engels.................................................................................... 52 Deer Trail Group ...........-..................................................... 16 Togo(?) Formation ........................................... :........ 17 Cenozoic hypabyssal, volcanic, and sedimentary rocks......... 58 Edna Dolomite ....... .,................................. ................... 17 Mafic dikes .......................................................................... 58 McHale Slate ........................................... ................... 17 Andesite ................................................................................ 60 Stensgar Dolomite ...................................................... 17 Basalt.................................................................................... 60 Buffalo Hump(?) Formation ........ ,........................... 18 Latah Formation ........ ~....................................................... 61 Deer Trail Group, undivided.................................... 18 Conglomerate ...................................................................... 61 Relation between the Belt Supergroup and the Glacial, alluvial, and talus deposits, undifferentiated.... 61 Deer Trail Group............................................................ 18 Structure ...................................................................................... 62 Metamorphic rocks, undivided ........................................ 24 Structures in the Belt Supergroup block........................ 62 Windermere Group ......................................... ................... 24 Folds .............................................................................. 62 Huckleberry Formation ............................................ 24 Faults ............................................................................ 64 Monk Form_ation ..................................... ................... 26 Structures in the Deer Trail Group biock. ................... 65 Paleozoic rocks ............................................................................ 27 Other differences between the two blocks........................ 66 Addy Quartzite ................................... -............ ................... 27 .Structure separating the two blocks................................ 67 Carbonate rocks .................................................................. 29 Other faults .......................................................................... 69 Metaline Formation ............................... ................... 29 Mineral deposits ..................................................... ................... 69 Devonian or Mississippian .carbonate rock............ 30 References. cited .......................................................................... 71 Unit 1 .................................................................... 30 Index .................................................................................-............. 73 ILLUSTRATIONS Page PLATE 1. Geologic map of the north half of the Chewelah-Loon ·Lake-area, Stevens and Spokane Counties, Washington ............................................................................................................................................................... In pocket 2. Geologic map .of. the .south .half.of.the.. Chewelah-.Loon.. Lake area,.Stevens-and Spokane Counties, Washington .............................................................................................................................................. , ................. In pocket FIGURE 1. Index map showing location of Chewelah-Loon Lake area .............................................................................................. 2 2. Map showing location of some geographic features referred to in the text.. ....... :....... -..................................................... 3 3. Generalized columnar section of the Prichard Formation .................................... :............................................................. 5 4 ..- Generalized, columnar.. section of .member. c of, -the· Striped Peak -Formation ·on Quartzite ·Mountain...................... 14 III IV CONTENTS _ Page FIGURE 5. Photograph showing argillite and breccia from member c of the Striped Peak Formation.......................................... 14 6. Photograph showing soft-sediment breccia in the McHale Slate, probable correlative of member c of the Striped Peak Formation .................................................................................................................................................... 15 7. Columnar sections showing possible correlations between the Deer Trail Group and the Belt Supergroup............ 21 8. Generalized geologic map showing the distribution of the Belt Supergroup and Deer Trail Group in and around the Chewelah-Loon Lake area···············-··········································································································· 22 9. Photograph showing the bold cliffs (dip slopes) of Addy Quartzite which form the west side of Quartzite Mountain ............................................................................................................................................................................. 27 10. Photograph showing the contact between the Addy Quartzite and member d of the Striped Peak Formation.......... 27 11. Ternary plots of modes of plutonic rocks ................... _........................................................................................................... 34 12-15. Photographs showing: 12. Fine-grained dike-fomi mass of graphically intergrown rock that intrudes
Recommended publications
  • Delimiting Geologic Structures Affecting Water Movement of The
    WRIA 54 Delimiting geologic structures affecting water movement and flow direction of the CRBG West Plains aquifer. DOE CONTRACT #11-1056 TECHNICAL MEMORANDUM TO ACCOMPANY THE STRUCTURAL GEOLOGY MAP OF THE WEST PLAINS REGION June 2012 Michael B. McCollum and Chad J. Pritchard Geology Department Eastern Washington University Cheney, Washington 99004-2439 I. INTRODUCTION The West Plains region is located just west of Spokane in Spokane and Lincoln Counties, Washington and is bounded to the north by the Spokane River, south by uplands and basalt scablands, east by Latah Creek and the Spokane Valley Aquifer, and to the west by loess covered hills and basalt lowlands. Increasing development and population growth in the eastern portion of the West Plains requires further understanding of the complex geohydrologic system. The complicated geologic history of eastern Washington and the West Plains spans billions of years and the rock types found in the region can be closely tied to the hydrology of the area. Geohydrology of the Spokane Area is strongly influenced by three major rock types 1) Pre- Neogene basement rock, 2) Miocene Columbia River Basalt Group (CRBG) and sedimentary interbeds (e.g. the Latah formation) that define the Columbia Plateau, and 3) Quaternary alluvium and glacial flood deposits that have molded the scablands of eastern Washington. This report begins with a brief overview of the regional geology and structural history of the mountainous areas adjacent to the West Plains region of the Columbia Plateau region, followed by a summary of our original scientific research on the pre-Neogene rocks and structures exposed in the isolated hills and ridges located in the West Plains as well as high density fracture zones, such as the Cheney Fracture Zone.
    [Show full text]
  • Tectonic Features of the Precambrian Belt Basin and Their Influence on Post-Belt Structures
    ... Tectonic Features of the .., Precambrian Belt Basin and Their Influence on Post-Belt Structures GEOLOGICAL SURVEY PROFESSIONAL PAPER 866 · Tectonic Features of the · Precambrian Belt Basin and Their Influence on Post-Belt Structures By JACK E. HARRISON, ALLAN B. GRIGGS, and JOHN D. WELLS GEOLOGICAL SURVEY PROFESSIONAL PAPER X66 U N IT ED STATES G 0 V ERN M EN T P R I NT I N G 0 F F I C E, \VAS H I N G T 0 N 19 7 4 UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress catalog-card No. 74-600111 ) For sale by the Superintendent of Documents, U.S. GO\·ernment Printing Office 'Vashington, D.C. 20402 - Price 65 cents (paper cO\·er) Stock Number 2401-02554 CONTENTS Page Page Abstract................................................. 1 Phanerozoic events-Continued Introduction . 1 Late Mesozoic through early Tertiary-Continued Genesis and filling of the Belt basin . 1 Idaho batholith ................................. 7 Is the Belt basin an aulacogen? . 5 Boulder batholith ............................... 8 Precambrian Z events . 5 Northern Montana disturbed belt ................. 8 Phanerozoic events . 5 Tectonics along the Lewis and Clark line .............. 9 Paleozoic through early Mesozoic . 6 Late Cenozoic block faults ........................... 13 Late Mesozoic through early Tertiary . 6 Conclusions ............................................. 13 Kootenay arc and mobile belt . 6 References cited ......................................... 14 ILLUSTRATIONS Page FIGURES 1-4. Maps: 1. Principal basins of sedimentation along the U.S.-Canadian Cordillera during Precambrian Y time (1,600-800 m.y. ago) ............................................................................................... 2 2. Principal tectonic elements of the Belt basin reentrant as inferred from the sedimentation record ............
    [Show full text]
  • Sequence Stratigraphy of the Neoproterozoic Infra Krol Formation and Krol Group, Lesser Himalaya, India
    SEQUENCE STRATIGRAPHY OF THE NEOPROTEROZOIC INFRA KROL FORMATION AND KROL GROUP, LESSER HIMALAYA, INDIA GANQING JIANG1, NICHOLAS CHRISTIE-BLICK1, ALAN J. KAUFMAN2, DHIRAJ M. BANERJEE3, AND VIBHUTI RAI4 1 Department of Earth and Environmental Sciences and Lamont-Doherty Earth Observatory of Columbia University, Palisades, New York 10964±8000, U.S.A. 2 Department of Geology, University of Maryland, College Park, Maryland 20742±4211, U.S.A. 3 Department of Geology, University of Delhi, Delhi 110007, India 4 Department of Geology, Lucknow University, Lucknow 226007, India e-mail: [email protected] ABSTRACT: A sequence stratigraphic study of terrigenous and carbonate rocks GEOLOGICAL FRAMEWORK of the Infra Krol Formation and Krol Group in the Lesser Himalaya fold and thrust belt of northern India was undertaken as part of a broader investigation The Infra Krol Formation and Krol Group are part of a Neoproterozoic and Lower of the signi®cance of carbon isotope data in Neoproterozoic successions. Eight Cambrian succession more than 12 km thick, cropping out in the Lesser Himalaya regional stratigraphic discontinuities were traced over a distance of nearly 300 in a series of doubly plunging synclines between Solan in the northwest and Nainital, km, and interpretations were anchored in a series of local studies involving the 280 km to the southeast (Fig. 1; Bhargava 1979; Shanker et al. 1989; Shanker et mapping of key beds and the measurement of closely spaced sections. Three of al. 1993; Shanker et al. 1997; Shanker and Mathur 1992).
    [Show full text]
  • Changes in Stratigraphic Nomenclature by the U.S. Geological Survey, 1973
    Changes in Stratigraphic Nomenclature by the U.S. Geological Survey, 1973 GEOLOGICAL SURVEY BULLETIN 1395-A NOV1419/5 5 81 Changes in Stratigraphic Nomenclature by the U.S. Geological Survey, 1973 By GEORGE V. COHEE and WILNA R. WRIGHT CONTRIBUTIONS TO STRATIGRAPHY GEOLOGICAL SURVEY BULLETIN 1395-A UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1975 66 01-141-00 oM UNITED STATES DEPARTMENT OF THE INTERIOR ROGERS C. B. MORTON, Secretary GEOLOGICAL SURVEY V. E. McKelvey, Director Library of Congress Cataloging in Publication Data Cohee, George Vincent, 1907 Changes in stratigraphic nomenclatures by the U. S. Geological Survey, 1973. (Contributions to stratigraphy) (Geological Survey bulletin; 1395-A) Supt. of Docs, no.: I 19.3:1395-A 1. Geology, Stratigraphic Nomenclature United States. I. Wright, Wilna B., joint author. II. Title. III. Series. IV. Series: United States. Geological Survey. Bulletin; 1395-A. QE75.B9 no. 1395-A [QE645] 557.3'08s 74-31466 [551.7'001'4] For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, B.C. 20402 Price 95 cents (paper cover) Stock Number 2401-02593 CONTENTS Page Listing of nomenclatural changes ______ _ Al Beulah Limestone and Hardscrabble Limestone (Mississippian) of Colorado abandoned, by Glenn R. Scott _________________ 48 New and revised stratigraphic names in the western Sacramento Valley, Calif., by John D. Sims and Andre M. Sarna-Wojcicki __ 50 Proposal of the name Orangeburg Group for outcropping beds of Eocene age in Orangeburg County and vicinity, South Carolina, by George E. Siple and William K. Pooser _________________ 55 Abandonment of the term Beattyville Shale Member (of the Lee Formation), by Gordon W.
    [Show full text]
  • American Journal of Science, Vol
    [American Journal of Science, Vol. 318, February, 2018, P. 167–207, DOI 10.2475/02.2018.1] American Journal of Science FEBRUARY 2018 ONE DIAMICTITE AND TWO RIFTS: STRATIGRAPHY AND GEOCHRONOLOGY OF THE GATAGA MOUNTAIN OF NORTHERN BRITISH COLUMBIA ATHENA EYSTER*,§,†, FILIPPO FERRI**, MARK D. SCHMITZ***, and FRANCIS A. MACDONALD* ABSTRACT. Neoproterozoic glacial diamictites and rift-related volcanics are pre- served throughout the North American Cordillera, yet the nature and timing of both glaciation and rifting are poorly constrained. New geochronological, geochemical, and stratigraphic data from the Cryogenian Gataga volcanics and bounding units at Gataga Mountain, in the Kechika Trough of northern British Columbia, better constrain the age of these rift-related volcanics and suggest that they erupted during glaciation. At Gataga Mountain, three informal sequences are exposed; a basal quartzite, the Gataga volcanics, and an overlying mixed carbonate-siliciclastic succession. The basal quartz- ite is dominated by cross-bedded sandstone with an intertidal facies assemblage including bidirectional cross-stratification and mud-cracks, indicative of non-glacial deposition. The overlying Gataga volcanics are over one kilometer thick, comprising both mafic and felsic units, with volcaniclastic breccia and interbedded sedimentary units including iron formation and matrix-supported diamictite with exotic clasts. Magmatic ages in the upper Gataga volcanics span 696.2 ؎ 0.2 to 690.1 ؎ 0.2 Ma, and detrital zircon from the underlying non-glacial quartzite provide a maximum age constraint on the onset of glaciation <735.8 ؎ 0.6 Ma. We interpret interfingering beds of matrix-supported diamictite with exotic clasts within the Gataga volcanics to record sub-ice shelf sedimentation and volcanism during the Sturtian Glaciation.
    [Show full text]
  • Dicionarioct.Pdf
    McGraw-Hill Dictionary of Earth Science Second Edition McGraw-Hill New York Chicago San Francisco Lisbon London Madrid Mexico City Milan New Delhi San Juan Seoul Singapore Sydney Toronto Copyright © 2003 by The McGraw-Hill Companies, Inc. All rights reserved. Manufactured in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this publication may be repro- duced or distributed in any form or by any means, or stored in a database or retrieval system, without the prior written permission of the publisher. 0-07-141798-2 The material in this eBook also appears in the print version of this title: 0-07-141045-7 All trademarks are trademarks of their respective owners. Rather than put a trademark symbol after every occurrence of a trademarked name, we use names in an editorial fashion only, and to the benefit of the trademark owner, with no intention of infringement of the trademark. Where such designations appear in this book, they have been printed with initial caps. McGraw-Hill eBooks are available at special quantity discounts to use as premiums and sales promotions, or for use in corporate training programs. For more information, please contact George Hoare, Special Sales, at [email protected] or (212) 904-4069. TERMS OF USE This is a copyrighted work and The McGraw-Hill Companies, Inc. (“McGraw- Hill”) and its licensors reserve all rights in and to the work. Use of this work is subject to these terms. Except as permitted under the Copyright Act of 1976 and the right to store and retrieve one copy of the work, you may not decom- pile, disassemble, reverse engineer, reproduce, modify, create derivative works based upon, transmit, distribute, disseminate, sell, publish or sublicense the work or any part of it without McGraw-Hill’s prior consent.
    [Show full text]
  • Geology of the Pegmatites and Associated Rocks of Maine
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, DIRECTOR BULLETIN 445 GEOLOGY OF THE PEGMATITES AND ASSOCIATED ROCKS OF MAINE INCLUDING FELDSPAR, QUARTZ, MICA, AND GEM DEPOSITS BY EDSON S. BASTIN WASHINGTON GOVERNMENT PRINTING OFFICE 1911 CONTENTS. Introduction.............................................................. 9 Definition of pegmatite...................................................... 10 Geographic distribution.................................................... 10 Geology.................................................................. 10 Bordering rocks....................................................... 10 Pegmatites in foliated rocks........................................ 11 General statement............................................ 11 Sedimentary foliates........................................... 11 Igneous foliates.....".......................................... 12 Pegmatites in massive granites.................................... 13 'Age.................................................................. 15 General character..................................................... 15 Mineral and chemical composition................................. 15 Mineral constituents.......................................... 15 Relative proportions of minerals............................... 18 Quartzose phases. ..............................^............. 18 Fluidal cavities............................................... 19 Sodium and lithium phases................................... 20 Muscovite
    [Show full text]
  • A Review of Paleobotanical Studies of the Early Eocene Okanagan (Okanogan) Highlands Floras of British Columbia, Canada and Washington, USA
    Canadian Journal of Earth Sciences A review of paleobotanical studies of the Early Eocene Okanagan (Okanogan) Highlands floras of British Columbia, Canada and Washington, USA. Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2015-0177.R1 Manuscript Type: Review Date Submitted by the Author: 02-Feb-2016 Complete List of Authors: Greenwood, David R.; Brandon University, Dept. of Biology Pigg, KathleenDraft B.; School of Life Sciences, Basinger, James F.; Dept of Geological Sciences DeVore, Melanie L.; Dept of Biological and Environmental Science, Keyword: Eocene, paleobotany, Okanagan Highlands, history, palynology https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 70 Canadian Journal of Earth Sciences 1 A review of paleobotanical studies of the Early Eocene Okanagan (Okanogan) 2 Highlands floras of British Columbia, Canada and Washington, USA. 3 4 David R. Greenwood, Kathleen B. Pigg, James F. Basinger, and Melanie L. DeVore 5 6 7 8 9 10 11 Draft 12 David R. Greenwood , Department of Biology, Brandon University, J.R. Brodie Science 13 Centre, 270-18th Street, Brandon, MB R7A 6A9, Canada; 14 Kathleen B. Pigg , School of Life Sciences, Arizona State University, PO Box 874501, 15 Tempe, AZ 85287-4501, USA [email protected]; 16 James F. Basinger , Department of Geological Sciences, University of Saskatchewan, 17 Saskatoon, SK S7N 5E2, Canada; 18 Melanie L. DeVore , Department of Biological & Environmental Sciences, Georgia 19 College & State University, 135 Herty Hall, Milledgeville, GA 31061 USA 20 21 22 23 Corresponding author: David R. Greenwood (email: [email protected]) 1 https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 70 24 A review of paleobotanical studies of the Early Eocene Okanagan (Okanogan) 25 Highlands floras of British Columbia, Canada and Washington, USA.
    [Show full text]
  • Mineralogy of the Peraluminous Spruce Pine Plutonic Suite
    MINERALOGY OF THE PERALUMINOUS SPRUCE PINE PLUTONIC SUITE, MITCHELL, AVERY, AND YANCEY COUNTIES, NORTH CAROLINA by William Brian Veal (Under the Direction of Samuel E. Swanson) ABSTRACT The Spruce Pine plutonic suite consists of numerous Devonian (390-410 ma) peraluminous granitic plutons, dikes, sills, and associated pegmatites. The mineralogy of pegmatites and host granodiorites from seven locations was studied to determine the extent of fractionation of the pegmatites relative to the granodiorite. Garnets in the plutons are almandine- spessartine and some display epitaxial overgrowths of grossular garnet. Similar garnets are found in the pegmatites. Pegmatitic muscovite contains several percent iron and is compositionally similar to muscovite from the host granodiorite. Feldspars in the granodiorites and pegmatites are compositionally similar (plagioclase Ab69-98; k-feldspar Or95-98). The lack of compositional variation between minerals in pegmatites and host granodiorites indicates the pegmatites were not the result of extreme fractionation and indicates that pegmatite mineralogy can be used to characterize the mineralogy of an entire granodiorite body. INDEX WORDS: Spruce Pine, Pegmatites, Granodiorite, Garnet, Muscovite, Feldspar MINERALOGY OF THE PERALUMINOUS SPRUCE PINE PLUTONIC SUITE, MITCHELL, AVERY, AND YANCEY COUNTIES, NORTH CAROLINA by WILLIAM BRIAN VEAL B.S., Georgia Southwestern State University, 2002 A Thesis Submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2004 © 2004 William Brian Veal All Rights Reserved MINERALOGY OF THE PERALUMINOUS SPRUCE PINE PLUTONIC SUITE, MITCHELL, AVERY, AND YANCEY COUNTIES, NORTH CAROLINA by WILLIAM BRIAN VEAL Major Professor: Samual E. Swanson Committee: Michael F.
    [Show full text]
  • Textures and Structures of Igneous Rocks
    UNIT 2 TEXTURES AND STRUCTURES OF IGNEOUS ROCKS Structure______________________________________________ 2.1 Introduction 2.4 Forms of Igneous Rocks Expected Learning Outcomes Sill 2.2 Textures of Igneous Rocks Dyke Crystallinity Laccolith Granularity Bysmalith Shape of the Crystals Lopolith Mutual Relationship between Crystal and Phacolith Non-Crystalline Material Chonolith Intergrowth Textures Volcanic Neck Exsolution Textures Batholith Miscellaneous Textures Stock 2.3 Structures of Igneous Rocks Boss Vesicular and Amygdaloidal Structures 2.5 Summary Scoriaceous and Pumiceous Structures 2.6 Activity Lava Tunnels 2.7 Terminal Questions Blocky and Ropy Lava 2.8 References Platy and Sheet Structure 2.9 Further/Suggested Readings Pillow Lava 2.10 Answers Columnar/Prismatic Structure Lava Flow Structure Rift and Grain Perlitic Structure Rapakivi Structure Xenoliths ……………………………………………………………………………………………….…....Block 1 Igneous Petrology.......…-I 2.1 INTRODUCTION You have been introduced to the igneous rocks in the previous unit. You have also learnt that the slow cooling of magma takes place in the deeper parts of the Earth and large size crystals are formed. On the contrary, magma undergoing rapid cooling in shallower depth or on the surface of the Earth yielded fine grained crystals. The rapid cooling of lava/melt molten rock on the surface of the Earth produces fine grained minerals or glass. The igneous rocks vary in grain size from very coarse, medium to fine grained or even glassy in hand specimen and under the microscope. Thus, igneous rocks display variety of textures. Thus, the term texture refers to physical appearance of a rock. In this unit we will discuss textures and structures of igneous rocks.
    [Show full text]
  • Subsurface Geology of the Cochran Pegmatite, Cherokee-P…
    SUBSURFACE GEOLOGY OF THE COCHRAN PEGMATITE, CHEROKEE-PICKENS DISTRICT, GEORGIA Alexander J. Gunow Gregory N. Bonn Bruce J. O'Connor Georgia Department of Natural Resources Environmental Protection Division Georgia Geologic Survey GEOLOGIC REPORT 5 Subsurface Geology of the Cochran Pegmatite, Cherokee-Pickens District, Georgia Alexander J. Gunow Gregory N. Bonn Bruce J. O'Connor Georgia Department of Natural Resources Joe D. Tanner, Commissioner Environmental Protection Division Harold F. Reheis, Director Georgia Geologic Survey William H. McLemore, State Geologist Atlanta 1992 Geologic Report 5 TABLE OF CONTENTS Page Abstract ..................................................................................................... 1 Introduction ............................................................................................. 2 General r>escription ................................................................................ 3 Results ....................................................................................................... 6 Discussion................................................................................................. 9 References ................................................................................................. 10 Appendices ........................................................................................... .... 11 A. Drill Hole Information and Mineralogy ......................... 11 B. Lithologic r>escription of Drill Core ............................... 17 LIST OF ILLUSTRATIONS
    [Show full text]
  • Geologic Map of the Idaho Parts of the Orofino and Clarkston 30 X 60
    IDAHO GEOLOGICAL SURVEY GEOLOGIC MAP 48 MOSCOW-BOISE-POCATELLO WWW.IDAHOGEOLOGY.ORG KAUFFMAN AND OTHERS B 55 49 52 65 120 Taw Tim 30 22 Tim 47 56 36 85 84 57 44 28 Mzao 369 Qls 55 Tgr Taw Tpr Taw Qls Tim 198 Tli Qls Qls Qls Tim 48 25 62 Qaf Qal Qls Tli Taw? 1 Taw Twe 464 Taw Tgr Tgr2 23 OD Qls Tim Qal Tim 14 85 Tim Qal 29 60 Mzgo 168 1 Tli Tif COTTONWO Tgr1 Tim KJdg Qal KJqd 55 KJqdg Tgr Tgr KJbtg? Mzgo Taw 33 35 27 62 KJdg KJdg Qaf 43 40 Mzcso 1 1 Mzqo Mzqo? Qls Qal 5 Tgn CREEK Tim 15 Qag KJqd Kbtog 73 Qls 56 Qag 84 Qls Tim Mzgo Tli Zss Twe? 45 Taw Qls Tpr 1 Tim 18 Tgr2 5-8 KJdg 13 42 Qls 80 Tpr Tgr Tpr Qal Tgn1 Qls Tli 48 58 Kbtog Tim 400 40 2 Tgr2 FAULT Taw Tim? 58 54 Qls Kbtog 51 Tim Qls Qls 50 Mzqo 50 50 32 192 Tgr Tgr1 Tli Qls 75 86 70 Qls Tcsc 45 65 55 Mzqo Qls 170 1 242 Tgr1 Tli Qal Tim? Twe 60 65 Tpd 460 Tli LEWISTON Qls 219 Ktr 35 KJdg 55 54 62 Kbtog Tli? Qls Tgr Qal 4 Tgr1 Tli KJqd Twe? Kbtog 0 Mzmo 55 55 Ktt 40 1 Tim Tgn Tpr Tgr Qls Tgr Qls 35 Qls Tgn ? 39 Qls Ktt Tgr1 Qls Qls Qls HILL 3 1 241 Qls 1 1 80 35 35 36 JPg Qal 1 18 Twe Tpr Qls Tgn1 Qls Qls Tgn 30 61 Taw Ktt 55 Qls Qls Taw 1 Tim Qls Qls 35 Qls Tim 52 55 80 Tli Qls 45 50 45 60 55 Mzgo Tli ANTICLINE Tgr Tim Tgn1 Tif Tgr Tpr Qls Tgn Tgr1 56 Kbtog 60 50 Qal 67 2 Tgr2 2 Tgr1 1 Qls 309 Qls 82 Taw 50 Qls? Tli 6 Tgr2 Tgr Tgr Qls JPg 58 393 Mzgo Mzqo Qls 123 25 Tpr 204 1 1 Qls 40 Twe Tgr 58 65 43 Tli 50 80 Tli 4 1 47 38 65 40 Qls Taw 3 Tli Tli Twe 44 387 Tli Qls 65 85 124 Tpr Tim Tgr 2 Tli 269 JPg Tgn1 347 Mzgo 55 450 Tpr Qls 2 224 2-5 Tli Tli Qls 2-4 JPg? Qls Tgr Qls Qls
    [Show full text]