82 Hylodes Phyllodes (Amphibia, Anura, Hylodidae)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Amphibians in Zootaxa: 20 Years Documenting the Global Diversity of Frogs, Salamanders, and Caecilians
Zootaxa 4979 (1): 057–069 ISSN 1175-5326 (print edition) https://www.mapress.com/j/zt/ Review ZOOTAXA Copyright © 2021 Magnolia Press ISSN 1175-5334 (online edition) https://doi.org/10.11646/zootaxa.4979.1.9 http://zoobank.org/urn:lsid:zoobank.org:pub:972DCE44-4345-42E8-A3BC-9B8FD7F61E88 Amphibians in Zootaxa: 20 years documenting the global diversity of frogs, salamanders, and caecilians MAURICIO RIVERA-CORREA1*+, DIEGO BALDO2*+, FLORENCIA VERA CANDIOTI3, VICTOR GOYANNES DILL ORRICO4, DAVID C. BLACKBURN5, SANTIAGO CASTROVIEJO-FISHER6, KIN ONN CHAN7, PRISCILLA GAMBALE8, DAVID J. GOWER9, EVAN S.H. QUAH10, JODI J. L. ROWLEY11, EVAN TWOMEY12 & MIGUEL VENCES13 1Grupo Herpetológico de Antioquia - GHA and Semillero de Investigación en Biodiversidad - BIO, Universidad de Antioquia, Antioquia, Colombia [email protected]; https://orcid.org/0000-0001-5033-5480 2Laboratorio de Genética Evolutiva, Instituto de Biología Subtropical (CONICET-UNaM), Facultad de Ciencias Exactas Químicas y Naturales, Universidad Nacional de Misiones, Posadas, Misiones, Argentina [email protected]; https://orcid.org/0000-0003-2382-0872 3Unidad Ejecutora Lillo, Consejo Nacional de Investigaciones Científicas y Técnicas - Fundación Miguel Lillo, 4000 San Miguel de Tucumán, Argentina [email protected]; http://orcid.org/0000-0002-6133-9951 4Laboratório de Herpetologia Tropical, Universidade Estadual de Santa Cruz, Departamento de Ciências Biológicas, Rodovia Jorge Amado Km 16 45662-900 Ilhéus, Bahia, Brasil [email protected]; https://orcid.org/0000-0002-4560-4006 5Florida Museum of Natural History, University of Florida, 1659 Museum Road, Gainesville, Florida, 32611, USA [email protected]; https://orcid.org/0000-0002-1810-9886 6Laboratório de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Av. -
Body Length of Hylodes Cf. Ornatus and Lithobates Catesbeianus Tadpoles
Body length of Hylodes cf. ornatus and Lithobates catesbeianus tadpoles, depigmentation of mouthparts, and presence of Batrachochytrium dendrobatidis are related Vieira, CA.a,b, Toledo, LF.b*, Longcore, JE.c and Longcore, JR.d aLaboratório de Antígenos Bacterianos II, Departamento Microbiologia e Imunologia, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP, CP 6109, Campinas, SP, Brazil bMuseu de Zoologia “Prof. Adão José Cardoso”, Instituto de Biologia, Universidade Estadual de Campinas – UNICAMP, CP 6109, CEP 13083‑970, Campinas, SP, Brazil cSchool of Biology and Ecology, University of Maine, Orono, Maine 04469 USA d151 Bennoch Road, Orono, Maine 04473 USA *e‑mail: [email protected] Received November 28, 2011 – Accepted March 16, 2012 – Distributed February 28, 2013 (With 1 figure) Abstract A fungal pathogen Batrachochytrium dendrobatidis (Bd), which can cause morbidity and death of anurans, has affected amphibian populations on a worldwide basis. Availability of pure cultures of Bd isolates is essential for experimental studies to understand the ecology of this pathogen. We evaluated the relationships of body length of Hylodes cf. ornatus and Lithobates catesbeianus tadpoles to depigmentation of mouthparts and determined if dekeratinization indicated an infection by Batrachochytrium dendrobatidis. A strong association existed for both species, one from South America (Brazil: São Paulo) and one from North America (USA: Maine). We believe it prudent not to kill adult amphibians if avoidable, thus obtaining tissue for isolating Bd from tadpoles is reasonable because infected specimens of some species can be selectively collected based on depigmentation of mouthparts. Keywords: Batrachochytrium dendrobatidis, depigmentation, Hylodes cf. ornatus, Lithobates catesbeianus, tadpole. Tamanho do corpo, despigmentação das partes bucais e presença de Batrachochytrium dendrobatidis estão relacionados em Hylodes cf. -
Biology and Impacts of Pacific Island Invasive Species. 8
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln USDA National Wildlife Research Center - Staff U.S. Department of Agriculture: Animal and Publications Plant Health Inspection Service 2012 Biology and Impacts of Pacific Island Invasive Species. 8. Eleutherodactylus planirostris, the Greenhouse Frog (Anura: Eleutherodactylidae) Christina A. Olson Utah State University, [email protected] Karen H. Beard Utah State University, [email protected] William C. Pitt National Wildlife Research Center, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/icwdm_usdanwrc Olson, Christina A.; Beard, Karen H.; and Pitt, William C., "Biology and Impacts of Pacific Island Invasive Species. 8. Eleutherodactylus planirostris, the Greenhouse Frog (Anura: Eleutherodactylidae)" (2012). USDA National Wildlife Research Center - Staff Publications. 1174. https://digitalcommons.unl.edu/icwdm_usdanwrc/1174 This Article is brought to you for free and open access by the U.S. Department of Agriculture: Animal and Plant Health Inspection Service at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in USDA National Wildlife Research Center - Staff Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. Biology and Impacts of Pacific Island Invasive Species. 8. Eleutherodactylus planirostris, the Greenhouse Frog (Anura: Eleutherodactylidae)1 Christina A. Olson,2 Karen H. Beard,2,4 and William C. Pitt 3 Abstract: The greenhouse frog, Eleutherodactylus planirostris, is a direct- developing (i.e., no aquatic stage) frog native to Cuba and the Bahamas. It was introduced to Hawai‘i via nursery plants in the early 1990s and then subsequently from Hawai‘i to Guam in 2003. The greenhouse frog is now widespread on five Hawaiian Islands and Guam. -
(Hylodes Magalhaesi: Leptodactylidae) Infected by Batrachochytrium Dendrobatidis: a Conservation Concern
Copyright: © 2006 Toledo et al. This is an open-access article distributed under the terms of the Creative Amphibian and Reptile Conservation 4(1):17-21. Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. DOI: 10.1514/journal.arc.0040017 (7300KB PDF) A Brazilian anuran (Hylodes magalhaesi: Leptodactylidae) infected by Batrachochytrium dendrobatidis: a conservation concern L. F. TOLEDO1,5, C. F. B. HADDAD1, A. C. O. Q. CARNAVAL2,3, AND F. B. BRITTO4 1Departamento de Zoologia, Instituto de Biociências, Unesp, Rio Claro, São Paulo, Caixa Postal 199, CEP 13506-970, BRAZIL 2The Field Museum, 1400 South Lake Shore Drive, Chicago, Illinois 60605, USA 3Museum of Vertebrate Zoology, Valley Life Science Building, University of California, Berkeley, California 94720, USA 4Departamento de Biologia, Instituto de Biociências, Unesp, Rio Claro, São Paulo, Caixa Postal 199, CEP 13506-970, BRAZIL Abstract.—Several studies have associated the chytrid fungus Batrachochytrium dendrobatidis with anuran population declines worldwide. To date, the fungus has been found in Africa, the Americas, Australia, and Europe. However, it has never been reported to occur in the Atlantic forest or Brazil. Based on morphologi- cal, histological, and molecular data, we encountered evidence of B. dendrobatidis infection in a high-altitude stream-dwelling Brazilian anuran species, Hylodes magalhaesi (Leptodactylidae). One population (Municipality of Camanducaia, State of Minas Gerais) was surveyed from 2001 to 2005. Tadpoles lacking teeth were observed and collected in 2004. Histological and molecular analyses identified infection by B. dendro- batidis. Although infected tadpoles seem nowadays to co-exist with the disease, our results are alarming due to the highly endangered situation of the Brazilian Atlantic forest and its fauna. -
ESPÉCIES II OFICINA Site-2
FAMÍLIA ESPÉCIE Adelophryne glandulata Lourenço-De-Moraes, Ferreira, Eleutherodactylidae Fouquet & Bastos, 2014 Adelophryne meridionalis Santana, Fonseca, Neves & Eleutherodactylidae Carvalho, 2013 "2012" Aromobatidae Allobates capixaba (Bokermann, 1967) Aromobatidae Allobates olfersioides (A. Lutz, 1925) Aparasphenodon pomba Assis, Santana, Da Silva, Quintela Hylidae & Feio, 2013 Hylidae Aplastodiscus flumineus (Cruz & Peixoto, 1985 "1984") Hylidae Aplastodiscus musicus (B. Lutz, 1948) Boana cambui ( Pinheiro, Pezzuti, Leite, Garcia, Haddad & Hylidae Faivovich, 2016) Hylidae Boana cymbalum (Bokerman, 1963) Hylidae Boana secedens (B. Lutz, 1963) Hylidae Bokermannohyla ahenea (Napoli & Caramaschi, 2004) Hylidae Bokermannohyla claresignata (A. Lutz & B. Lutz, 1939) Hylidae Bokermannohyla clepsydra (A. Lutz, 1925) Hylidae Bokermannohyla feioi (Napoli & Caramaschi, 2004) Hylidae Bokermannohyla gouveai (Peixoto & Cruz, 1992) Hylidae Bokermannohyla izecksohni (Jim & Caramaschi, 1979) Bokermannohyla vulcaniae (Vasconcelos & Giaretta, 2004 Hylidae "2003") Brachycephalidae Brachycephalus alipioi Pombal & Gasparini, 2006 Brachycephalidae Brachycephalus atelopoide Miranda-Ribeiro, 1920 Brachycephalidae Brachycephalus bufonoides Miranda-Ribeiro, 1920 Brachycephalus crispus Condez, Clemente-Carvalho & Brachycephalidae Haddad, 2014 Brachycephalidae Brachycephalus didactylus (Izecksohn, 1971) Brachycephalidae Brachycephalus garbeanus Miranda-Ribeiro, 1920 Brachycephalus guarani Clemente-Carvalho, Giaretta, Brachycephalidae Condez, Haddad & dos Reis, -
Instituto De Biociências – Rio Claro Programa De Pós
UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” unesp INSTITUTO DE BIOCIÊNCIAS – RIO CLARO PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS (ZOOLOGIA) ANFÍBIOS DA SERRA DO MAR: DIVERSIDADE E BIOGEOGRAFIA LEO RAMOS MALAGOLI Tese apresentada ao Instituto de Biociências do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de doutor em Ciências Biológicas (Zoologia). Agosto - 2018 Leo Ramos Malagoli ANFÍBIOS DA SERRA DO MAR: DIVERSIDADE E BIOGEOGRAFIA Tese apresentada ao Instituto de Biociências do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de doutor em Ciências Biológicas (Zoologia). Orientador: Prof. Dr. Célio Fernando Baptista Haddad Co-orientador: Prof. Dr. Ricardo Jannini Sawaya Rio Claro 2018 574.9 Malagoli, Leo Ramos M236a Anfíbios da Serra do Mar : diversidade e biogeografia / Leo Ramos Malagoli. - Rio Claro, 2018 207 f. : il., figs., gráfs., tabs., fots., mapas Tese (doutorado) - Universidade Estadual Paulista, Instituto de Biociências de Rio Claro Orientador: Célio Fernando Baptista Haddad Coorientador: Ricardo Jannini Sawaya 1. Biogeografia. 2. Anuros. 3. Conservação. 4. Diversidade funcional. 5. Elementos bióticos. 6. Mata Atlântica. 7. Regionalização. I. Título. Ficha Catalográfica elaborada pela STATI - Biblioteca da UNESP Campus de Rio Claro/SP - Ana Paula Santulo C. de Medeiros / CRB 8/7336 “To do science is to search for repeated patterns, not simply to accumulate facts, and to do the science of geographical ecology is to search for patterns of plant and animal life that can be put on a map. The person best equipped to do this is the naturalist.” Geographical Ecology. Patterns in the Distribution of Species Robert H. -
A New Species of Giant Torrent Frog, Genus Megaelosia, from the Atlantic Rain Forest of Espı´Rito Santo, Brazil (Amphibia: Leptodactylidae)
Journal of Herpetology, Vol. 37, No. 3, pp. 453–460, 2003 Copyright 2003 Society for the Study of Amphibians and Reptiles A New Species of Giant Torrent Frog, Genus Megaelosia, from the Atlantic Rain Forest of Espı´rito Santo, Brazil (Amphibia: Leptodactylidae) 1 2 3 JOSE´ P. P OMBAL JR., GUSTAVO M. PRADO, AND CLARISSA CANEDO Departamento de Vertebrados, Museu Nacional/UFRJ, Quinta da Boa Vista, 20940-040 Rio de Janeiro, Rio de Janeiro, Brasil ABSTRACT.—Herein is described a new species of leptodactylid frog from Pedra Azul, Municipality of Domingos Martins, State of Espı´rito Santo, southeastern Brazil. The new species is a member of the genus Megaelosia, and is characterized by large size; fold of fifth toe not reaching outer metatarsal tubercle; snout rounded in dorsal view and slightly protruding in lateral view; tympanum moderately small; finger tips with scutes fused to the subunguis and toe tips with a pair of scutes free of the subunguis; dorsal skin texture smooth; skin of the flanks without large granules; belly and throat predominantly gray with many, small yellow blotches; and distinct bilateral vocal sacs in males. The tadpole is described. The new species is the northern limit for the genus Megaelosia, and reinforces the high endemism and richness of the anuran fauna from Santa Teresa region, State of Espı´rito Santo, Brazil. The subfamily Hylodinae Gu¨ nther, 1859 MATERIALS AND METHODS (Leptodactylidae) is composed of three genera: Specimens used in the description or examined Crossodactylus Dume´ril and Bibron, 1841; Hylodes for comparisons are housed in the Adolpho Lutz Fitzinger, 1826; and Megaelosia Miranda-Ribeiro, collection, deposited in Museu Nacional, Rio de 1923 (Lynch, 1971; Frost, 1985). -
Visual Signaling in Anuran Amphibians
.. Hödl, W. and Amezquita, A. (2001). Visual signaling in anuran amphibians. In: Anuran communication, (M.J. Ryan, ed.). .. Smithsonian lust. Press, Washington. Pp. 121-141. 10 WALTER HÖDL AND ADOLFO AMEZQUITA Visual Signaling in Anuran Amphibians lntroduction cation. social behavior, or natural history. visual signaling was either not considered or was treated as a minor subject Acoustic communication plays a fundamental role in an- (Wells 1977a, 1977b; Arak 1983; Duellman and Trueb 1986; uran reproduction and thus is involved in evolutionary Rand 1988; Halliday and Tejedo 1995; Stebbins and Cohen processes such as mate recognition. reproductive isolation. 1995; Sullivan et al. 1995). The most detailed review ofthe speciation. and character displacement (Wells 1977a. 1977b. subject is now more than 20 years old (Wells 1977b). Never- 1988;Rand 1988;Gerhardt and Schwartz 1995;Halliday and theless some authors have discussed the possible evolution- Tejedo 1995;Sullivan et al. 1995).Visual cues. however. have ary link between visual signaling and the reproductive ecol- been thought to function only during dose-range inter- ogy of species, such as reproduction associated with streams actions (Wells 1977c; Duellman and Trueb 1986). Visual sig- (Heyer et aI. 1990; Lindquist and Hetherington 1996. 1998; naling is predicted to be predominantly employed by diur- Hödl et al. 1997;Haddad and Giaretta 1999) or reproduction nal species at sites with an unobstructed view (Endler 1992). within feeding territories (Wells 1977c). Diurnality. however. is not common for the majority offrog Our aim in this review is (1) to propose a dassmcation of species. Thus vocalizations. which are highly efficient for reported behavioral patterns of visual signaling in frags; (2) communicating at night or in dense vegetation, are by far to describe the diversity of visual signals among living an- the best studied anuran signals (Duellman and Trueb 1986; uran taxa; and (3) to apply a comparative approach to explor- Fritzsch et aI. -
The Occurrence of Batrachochytrium Dendrobatidis in Brazil and the Inclusion of 17 New Cases of Infection
South American Journal of Herpetology, 1(3), 2006, 185-191 © 2006 Brazilian Society of Herpetology THE OCCURRENCE OF BATRACHOCHYTRIUM DENDROBATIDIS IN BRAZIL AND THE INCLUSION OF 17 NEW CASES OF INFECTION LUÍS FELIPE TOLEDO1,3; FÁBIO B. BRITTO2; OLÍVIA G.S. ARAÚJO1; LUÍS M.O. GIASSON1 AND CÉLIO F.B. HADDAD1 1 Departamento de Zoologia, Instituto de Biociências, Unesp, Rio Claro, São Paulo, Caixa Postal 199, CEP 13506-970, Brasil. 2 Departamento de Biologia, Instituto de Biociências, Unesp, Rio Claro, São Paulo, Caixa Postal 199, CEP 13506-970, Brasil. 3 Correspondig author: [email protected] ABSTRACT: Several studies have associated the chytrid fungus Batrachochytrium dendrobatidis with worldwide anuran population declines. Recently, six species have been reported to be infected by chytridiomycosis in Brazil, presenting a wide range of distribution, of about 2,400 km over the Atlantic Forest. However, in a country such as Brazil, information about this disease is still beginning to accumulate. Based on morphological and histological data, we found evidence of B. dendrobatidis infection in 16 Brazilian anuran species, members of the families Cycloramphidae and Hylidae. We analyzed tadpoles lacking teeth that were collected from 1964 to 2005, to seek for chytridiomycosis. Our results extend the distribution of the fungus in Brazil ca. 630 km southward (straight-line distance), reaching the southernmost limits of the Atlantic rainforest. We also speculate about its distribution in the Cerrado and Pantanal. KEYWORDS: Chytrid fungus, Batrachochytrium dendrobatidis, anurans, Brazil, conservation INTRODUCTION anuran collection (CFBH), Departamento de Zoolo- gia, Instituto de Biociências, Universidade Estadual Anuran chytridiomycosis, an emerging infectious Paulista, Rio Claro, state of São Paulo, Brazil. -
The IUCN Amphibians Initiative: a Record of the 2001-2008 Amphibian Assessment Efforts for the IUCN Red List
The IUCN Amphibians Initiative: A record of the 2001-2008 amphibian assessment efforts for the IUCN Red List Contents Introduction ..................................................................................................................................... 4 Amphibians on the IUCN Red List - Home Page ................................................................................ 5 Assessment process ......................................................................................................................... 6 Partners ................................................................................................................................................................. 6 The Central Coordinating Team ............................................................................................................................ 6 The IUCN/SSC – CI/CABS Biodiversity Assessment Unit........................................................................................ 6 An Introduction to Amphibians ................................................................................................................................. 7 Assessment methods ................................................................................................................................................ 7 1. Data Collection .................................................................................................................................................. 8 2. Data Review ................................................................................................................................................... -
Hybrids of Amphibian Chytrid Show High Virulence in Native Hosts S
www.nature.com/scientificreports OPEN Hybrids of amphibian chytrid show high virulence in native hosts S. E. Greenspan1, C. Lambertini2, T. Carvalho2, T. Y. James3, L. F. Toledo 2, C. F. B. Haddad4 & C. G. Becker1 Received: 4 April 2018 Hybridization of parasites can generate new genotypes with high virulence. The fungal amphibian Accepted: 6 June 2018 parasite Batrachochytrium dendrobatidis (Bd) hybridizes in Brazil’s Atlantic Forest, a biodiversity Published: xx xx xxxx hotspot where amphibian declines have been linked to Bd, but the virulence of hybrid genotypes in native hosts has never been tested. We compared the virulence (measured as host mortality and infection burden) of hybrid Bd genotypes to the parental lineages, the putatively hypovirulent lineage Bd-Brazil and the hypervirulent Global Pandemic Lineage (Bd-GPL), in a panel of native Brazilian hosts. In Brachycephalus ephippium, the hybrid exceeded the virulence (host mortality) of both parents, suggesting that novelty arising from hybridization of Bd is a conservation concern. In Ischnocnema parva, host mortality in the hybrid treatment was intermediate between the parent treatments, suggesting that this species is more vulnerable to the aggressive phenotypes associated with Bd-GPL. Dendropsophus minutus showed low overall mortality, but infection burdens were higher in frogs treated with hybrid and Bd-GPL genotypes than with Bd-Brazil genotypes. Our experiment suggests that Bd hybrids have the potential to increase disease risk in native hosts. Continued surveillance is needed to track potential spread of hybrid genotypes and detect future genomic shifts in this dynamic disease system. Te host-parasite dynamic is a classic example of an evolutionary arms race; hosts face pressure to evolve defenses against parasites, while parasites face pressure to overcome host defenses1,2. -
Evaluating Methods for Phylogenomic Analyses, and a New Phylogeny for a Major Frog Clade
Molecular Phylogenetics and Evolution 119 (2018) 128–143 Contents lists available at ScienceDirect Molecular Phylogenetics and Evolution journal homepage: www.elsevier.com/locate/ympev Evaluating methods for phylogenomic analyses, and a new phylogeny for a MARK major frog clade (Hyloidea) based on 2214 loci ⁎ Jeffrey W. Streichera,b, , Elizabeth C. Millera, Pablo C. Guerreroc,d, Claudio Corread, Juan C. Ortizd, Andrew J. Crawforde, Marcio R. Pief, John J. Wiensa a Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ 85721, USA b Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK c Institute of Ecology and Biodiversity, Faculty of Sciences, University of Chile, 780-0024 Santiago, Chile d Facultad de Ciencias Naturales & Oceanográficas, Universidad de Concepción, Concepción, Chile e Department of Biological Sciences, Universidad de los Andes, A.A. 4976 Bogotá, Colombia f Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Paraná, Brazil ARTICLE INFO ABSTRACT Keywords: Phylogenomic approaches offer a wealth of data, but a bewildering diversity of methodological choices. These Amphibia choices can strongly affect the resulting topologies. Here, we explore two controversial approaches (binning Anura genes into “supergenes” and inclusion of only rapidly evolving sites), using new data from hyloid frogs. Hyloid Biogeography frogs encompass ∼53% of frog species, including true toads (Bufonidae), glassfrogs (Centrolenidae), poison Naive binning frogs (Dendrobatidae), and treefrogs (Hylidae). Many hyloid families are well-established, but relationships Phylogenomics among these families have remained difficult to resolve. We generated a dataset of ultraconserved elements Statistical binning (UCEs) for 50 ingroup species, including 18 of 19 hyloid families and up to 2214 loci spanning > 800,000 aligned base pairs.