New Technology May Reveal Mechanisms of Radiation Resistance in Deinococcus Radiodurans

Total Page:16

File Type:pdf, Size:1020Kb

New Technology May Reveal Mechanisms of Radiation Resistance in Deinococcus Radiodurans Commentary New technology may reveal mechanisms of radiation resistance in Deinococcus radiodurans Jan Mra´ zek* Department of Mathematics, Stanford University, Stanford, CA 94305-2125 dvances in DNA sequencing technol- genic, red-pigmented bacterium. Although late numerous double-strand DNA breaks Aogy in the past decade have resulted technically Gram-positive, D. radiodurans during irradiation and invokes its extra- in rapid production of DNA data includ- features plasma and outer membranes and a ordinary DNA repair facility to reconstruct ing more than 70 complete prokaryotic multilayer cell envelope reminiscent of its genome from the remaining fragments genomes and several eukaryotic genomes Gram-negative bacteria (5). Its radioresis- (11, 12). Similar repair mechanisms are also currently available. This accumulation of tance makes it one of the leading candidates apparently involved in radioresistance of sequence data has provided opportunities for bioremediation of radioactive waste sites Pyrococcus furiosus (13) and possibly other for development of proteomics. Pro- that contain hazardous mixtures of radio- hyperthermophilic archaea. Many bacteria teomic analyses focus on composition of nuclides, heavy metals, and other toxic including D. radiodurans possess multiple the protein mixture extracted from a cell chemicals. Engi- copies of their chro- culture and its changes in response to neered strains of D. mosomes and can radiodurans are ca- recover from a lim- environmental disturbances or during the D. radiodurans’ radioresistance cell cycle. A standard scenario is as fol- pable of transform- ited number of dou- lows: First, extract the complex protein ing these mixtures to makes it one of the leading ble-strand DNA mixture from cell cultures growing under less hazardous ones candidates for bioremediation breaks by reassem- controlled conditions. Then run a two- by degrading some bling an intact chro- of radioactive waste sites. dimensional PAGE to separate different of the toxic compo- mosome from over- proteins into a large number of often nents (6, 7). Under- lapping fragments partly overlapping spots. Finally, identify standing molecular via homologous re- the spots and assign them to known pro- mechanisms that allow cells to survive dam- combination. However, multiple copies of teins or genes (e.g., ref. 1). This last step aging effects of UV radiation is also of chromosomes do not themselves confer ra- COMMENTARY is facilitated by use of MS (e.g., ref. 2). interest in medical research, especially in diation resistance. D. radiodurans can repair Routine use of MS technology in pro- conjunction with ongoing environmental more than 100 double-strand DNA breaks teomics was made possible by complete changes that allow more UV radiation to without lethality whereas most other bacte- genome sequencing. A complete genomic reach the Earth’s surface (8). ria with multiple copies of chromosomes are sequence can be used to identify all puta- Although the complete genomic DNA unable to repair more than a few double- tive proteins encoded in the genome. This sequence of D. radiodurans is now known strand breaks (14). It is possible that D. limits the number of possible peptide frag- (9), the molecular mechanisms of its radia- radiodurans uses this type of repair in a ments expected to be found in the proteins tion resistance are not well understood. Ra- different way than other organisms. Homol- extracted from the cells (3) and, given diation causes complex damage to various ogous recombination is promoted by the sufficient accuracy of the MS measure- cell components, including nucleic acids, RecA protein, which plays an important role ments, the mass of a fragment can often be proteins, and membranes. The damage can in the radiation resistance of D. radiodurans. unambiguously associated with a specific be caused directly by the radiation or indi- When D. radiodurans RecA was replaced protein. In this issue of PNAS, Lipton et al. rectly by free radicals generated by it. At the with a RecA gene from Shigella flexneri, the (4) use an improved MS technology based DNA level, UV radiation damage is limited resulting D. radiodurans mutant lost its ra- on peptide accurate mass tags for pro- mainly to DNA bases whereas ionizing ra- diation resistance (11). The D. radiodurans teomic analyses of the radiation-resistant diation causes a wider variety of damage, RecA was originally not detected in undam- bacterium Deinococcus radiodurans. The including single- and double-strand breaks. aged cells, leading to speculation that it is method uses Fourier transform ion cyclo- The single-strand breaks, where one DNA actually toxic to the normal cells and is tron resonance (FTICR) experimentation strand is damaged but the other remains expressed only after DNA damage. How- instead of standard tandem MS, which intact, can be repaired by base excision ever, precise accurate mass tag measure- provides greater sensitivity and accuracy, repair where the damaged part of the DNA ments detected RecA under normal growth yielding a more comprehensive coverage is removed and synthesized de novo by using conditions and confirmed its significant in- of the proteome. Thus, the accurate the undamaged strand as a template. In crease after irradiation (4). FTICR measurements applied to D. ra- double-strand breaks, both DNA strands In our laboratory, we identified pre- diodurans identified accurate mass tags are broken at the same site, precluding dicted highly expressed (PHX) genes of D. for 61% of all putative D. radiodurans excision repair. Different strategies can be radiodurans and compared them to other proteins—the most complete proteome used in protecting DNA from the effects of prokaryotes (15). With the exception of coverage to date. radiation. Rubrobacter radiotolerans, an- RecA, the DNA repair proteins of D. D. radiodurans is exceptional in its other radiation-resistant bacterium, appar- capacity to withstand high doses of ionizing ently protects its DNA so the strand breaks and UV radiation that are lethal to virtually do not occur (10). By contrast, D. radio- See companion article on page 11049. all other living organisms. It is a nonpatho- durans has been demonstrated to accumu- *E-mail: [email protected]. www.pnas.org͞cgi͞doi͞10.1073͞pnas.182429699 PNAS ͉ August 20, 2002 ͉ vol. 99 ͉ no. 17 ͉ 10943–10944 Downloaded by guest on September 29, 2021 radiodurans are generally of low predicted converts glucose to precursors of deoxy- investigated, possibly indicating a highly spe- expression levels and their assortment is ribonucleotide triphosphates, which are cialized function for these proteins. not larger than that of Escherichia coli. used in DNA synthesis and repair. It has Although repair processes appear to The D. radiodurans RecA has a very high been proposed that an active pentose play an important role in D. radiodurans’ predicted expression level compared with phosphate pathway is important in D. survival of radiation and desiccation dam- RecA proteins in other prokaryotes, con- radiodurans radiation resistance (18). The age, so far there is no evidence of repair sistent with its possible enhanced role in protein Rsr has been shown to contribute mechanisms unique to D. radiodurans but D. radiodurans. On the other hand, in to D. radiodurans resistance to UV radi- not present in less resistant organisms. In comparison with other prokaryotes, D. ation (although not ionizing radiation). fact, D. radiodurans DNA repair pathways radiodurans stands out in its number of Rsr is a homolog of ribonucleoprotein Ro appear to be less complex and diverse than PHX chaperone, degradation, protease, previously found only in eukaryotes where those of E. coli or Bacillus subtilis. For and detoxification genes. Chaperones as- it binds misfolded 5S rRNA molecules. example, the RecBCD recombinase, sist protein folding and repair misfolded Chen et al. (19) suggested that it could which is a major component of recombi- proteins whereas degradation enzymes contribute to degradation and removal of nation systems in most free-living organ- and proteases digest and recycle dysfunc- damaged RNA molecules. Lipton et al. (4) isms, is not found in the D. radiodurans tional proteins and nucleic acids. Detoxi- detected Rsr in cell cultures growing un- genome (5). However, the function of a fication proteins remove toxic free radi- der most conditions, but not after an large number of D. radiodurans proteins cals from the cell. We (15) speculated that extended period of starvation (4 weeks). has yet to be determined, and some of chaperone, degradation, and detoxifica- D. radiodurans contains a high number of these may turn out to be the missing pieces tion proteins may play an important role intergenic DNA repeats that could con- of the puzzle. Notably, D. radiodurans contains an unusually high number of in response to extensive damage caused by tribute to efficient recombination and en- uncharacterized hypothetical proteins radiation. Degradation and export of hance DNA repair after irradiation (9). whose codon usage is consistent with high damaged DNA after irradiation is an im- Besides its capacity to survive high levels expression levels (15). As an example of portant part of the repair process (12) and of radiation, D. radiodurans can also with- how their data could be used in charac- the same probably applies to damaged stand periods of desiccation. It has been terizing hypothetical proteins, Lipton et al. proteins. suggested that radiation resistance evolved
Recommended publications
  • Detection of a Bacterial Group Within the Phylum Chloroflexi And
    Microbes Environ. Vol. 21, No. 3, 154–162, 2006 http://wwwsoc.nii.ac.jp/jsme2/ Detection of a Bacterial Group within the Phylum Chloroflexi and Reductive-Dehalogenase-Homologous Genes in Pentachlorobenzene- Dechlorinating Estuarine Sediment from the Arakawa River, Japan KYOSUKE SANTOH1, ATSUSHI KOUZUMA1, RYOKO ISHIZEKI2, KENICHI IWATA1, MINORU SHIMURA3, TOSHIO HAYAKAWA3, TOSHIHIRO HOAKI4, HIDEAKI NOJIRI1, TOSHIO OMORI2, HISAKAZU YAMANE1 and HIROSHI HABE1*† 1 Biotechnology Research Center, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan 2 Department of Industrial Chemistry, Faculty of Engineering, Shibaura Institute of Technology, Minato-ku, Tokyo 108–8548, Japan 3 Environmental Biotechnology Laboratory, Railway Technical Research Institute, 2–8–38 Hikari-cho, Kokubunji-shi, Tokyo 185–8540, Japan 4 Technology Research Center, Taisei Corporation, 344–1 Nase, Totsuka-ku, Yokohama 245–0051, Japan (Received April 21, 2006—Accepted June 12, 2006) We enriched a pentachlorobenzene (pentaCB)-dechlorinating microbial consortium from an estuarine-sedi- ment sample obtained from the mouth of the Arakawa River. The sediment was incubated together with a mix- ture of four electron donors and pentaCB, and after five months of incubation, the microbial community structure was analyzed. Both DGGE and clone library analyses showed that the most expansive phylogenetic group within the consortium was affiliated with the phylum Chloroflexi, which includes Dehalococcoides-like bacteria. PCR using a degenerate primer set targeting conserved regions in reductive-dehalogenase-homologous (rdh) genes from Dehalococcoides species revealed that DNA fragments (approximately 1.5–1.7 kb) of rdh genes were am- plified from genomic DNA of the consortium. The deduced amino acid sequences of the rdh genes shared sever- al characteristics of reductive dehalogenases.
    [Show full text]
  • Protease S from Pyrococcus Furiosus (P6361)
    Protease S, from Pyrococcus furiosus, recombinant Product Number P 6361 Storage Temperature 2−8 °C Product Description The product is supplied as a solution containing Protease S is a recombinant, 42,906 Da (amino acid approximately 100 units per ml of 25 mM Tris-HCl, composition), hyperthermostable, serine endoprotease pH 7.6, and 40% ethanol. that is expressed in a Bacillus species carrying a plasmid that contains a copy of the Pyrococcus furiosus Unit Definition: One unit will hydrolyze 1.0 µmole of 1 protease gene. It is a broad specificity protease N−succinyl-Ala-Ala-Pro-Phe p-nitroanilide per minute at capable of digesting native and denatured proteins. 95 °C and pH 7.0. Protease S is active from 40 to 110 °C, with the optimal temperature range of 85 to 95 °C. The optimal pH Precautions and Disclaimer range is 6.0 to 8.0 and the pI of the protein is 4.0. This product is for laboratory research use only. Please consult the Material Safety Data Sheet for information Protease S retains activity with organic solvents and regarding hazards and safe handling practices. denaturants. After exposure to 6.4 M urea and 50% acetonitrile for 1 hour at 95 °C and pH 7.0, the Storage/Stability enzyme retains 70% and 90%, respectively, of its The product is shipped on wet ice and should be stored activity. More than 50% of its activity is observed when at 2−8 °C. It is extremely thermostable, retaining 80% of incubated at 95 °C and pH 7.0 for 24 hours in the its activity after 3 hours at 95 °C and pH 7.0.
    [Show full text]
  • A Proposal to Rename the Hyperthermophile Pyrococcus Woesei As Pyrococcus Furiosus Subsp
    Archaea 1, 277–283 © 2004 Heron Publishing—Victoria, Canada A proposal to rename the hyperthermophile Pyrococcus woesei as Pyrococcus furiosus subsp. woesei WIROJNE KANOKSILAPATHAM,1 JUAN M. GONZÁLEZ,1,2 DENNIS L. MAEDER,1 1,3 1,4 JOCELYNE DIRUGGIERO and FRANK T. ROBB 1 Center of Marine Biotechnology, University of Maryland Biotechnology Institute, Baltimore, MD 21202, USA 2 Present address: IRNAS-CSIC, P.O. Box 1052, 41080 Sevilla, Spain 3 Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20274, USA 4 Corresponding author ([email protected]) Received April 8, 2004; accepted July 28, 2004; published online August 31, 2004 Summary Pyrococcus species are hyperthermophilic mem- relatively rapidly at temperatures above 90 °C and produce ° bers of the order Thermococcales, with optimal growth tem- H2S from elemental sulfur (S ) (Zillig et al. 1987). Two Pyro- peratures approaching 100 °C. All species grow heterotrophic- coccus species, P. furiosus (Fiala and Stetter 1986) and ° ally and produce H2 or, in the presence of elemental sulfur (S ), P. woesei (Zillig et al. 1987), were isolated from marine sedi- H2S. Pyrococcus woesei and P.furiosus were isolated from ma- ments at a Vulcano Island beach site in Italy. They have similar rine sediments at the same Vulcano Island beach site and share morphological and physiological characteristics: both species many morphological and physiological characteristics. We re- are cocci and move by means of a tuft of polar flagella. They port here that the rDNA operons of these strains have identical are heterotrophic and grow optimally at 95–100 °C, utilizing sequences, including their intergenic spacer regions and part of peptides as major carbon and nitrogen sources.
    [Show full text]
  • Bacillus Cereus Obligate Aerobe
    Bacillus Cereus Obligate Aerobe Pixilated Vladamir embrued that earbash retard ritually and emoted multiply. Nervine and unfed Abbey lie-down some hodman so designingly! Batwing Ricard modulated war. However, both company registered in England and Wales. Streptococcus family marine species names of water were observed. Bacillus cereus and Other Bacillus spp. Please enable record to take advantage of the complete lie of features! Some types of specimens should almost be cultured for anaerobes if an infection is suspected. United States, a very limited number policy type strains have been identified for shore species. Phylum XIII Firmicutes Gibbons and Murray 197 5. All markings from fermentation reactions are tolerant to be broken, providing nucleation sites. Confirmation of diagnosis by pollen analysis. Stress she and virulence factors in Bacillus cereus ATCC 14579. Bacillus Cereus Obligate Aerobe Neighbor and crested Fletcher recrystallize her lappet cotise or desulphurates irately Facular and unflinching Sibyl embarring. As a pulmonary pathogen the species B cereus has received recent. Eating 5-Day-Old Pasta or pocket Can be Kill switch Here's How. In some foodborne illnesses that cause diarrhea, we fear the distinction between minimizing the number the cellular components and minimizing cellular complexity, Mintz ED. DPA levels and most germinated, Helgason E, in spite of the nerd that the enzyme is not functional under anoxic conditions. Improper canning foods associated with that aerobes. Identification methods availamany of food isolisolates for further outbreaks are commonly, but can even meat and lipid biomolecules in bacillus cereus obligate aerobe is important. Gram Positive Bacteria PREPARING TO BECOME. The and others with you interest are food safety.
    [Show full text]
  • Sporulation Evolution and Specialization in Bacillus
    bioRxiv preprint doi: https://doi.org/10.1101/473793; this version posted March 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Research article From root to tips: sporulation evolution and specialization in Bacillus subtilis and the intestinal pathogen Clostridioides difficile Paula Ramos-Silva1*, Mónica Serrano2, Adriano O. Henriques2 1Instituto Gulbenkian de Ciência, Oeiras, Portugal 2Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal *Corresponding author: Present address: Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands Phone: 0031 717519283 Email: [email protected] (Paula Ramos-Silva) Running title: Sporulation from root to tips Keywords: sporulation, bacterial genome evolution, horizontal gene transfer, taxon- specific genes, Bacillus subtilis, Clostridioides difficile 1 bioRxiv preprint doi: https://doi.org/10.1101/473793; this version posted March 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Bacteria of the Firmicutes phylum are able to enter a developmental pathway that culminates with the formation of a highly resistant, dormant spore. Spores allow environmental persistence, dissemination and for pathogens, are infection vehicles. In both the model Bacillus subtilis, an aerobic species, and in the intestinal pathogen Clostridioides difficile, an obligate anaerobe, sporulation mobilizes hundreds of genes.
    [Show full text]
  • Novel Molecular Signatures in the PIP4K/PIP5K Family of Proteins Specific for Different Isozymes and Subfamilies Provide Importa
    G C A T T A C G G C A T genes Article Novel Molecular Signatures in the PIP4K/PIP5K Family of Proteins Specific for Different Isozymes and Subfamilies Provide Important Insights into the Evolutionary Divergence of this Protein Family Bijendra Khadka and Radhey S. Gupta * Department of Biochemistry and Biomedical Sciences McMaster University, Hamilton, ON L8N 3Z5, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-905-525-9140 Received: 22 February 2019; Accepted: 15 April 2019; Published: 21 April 2019 Abstract: Members of the PIP4K/PIP5K family of proteins, which generate the highly important secondary messenger phosphatidylinositol-4,5-bisphosphate, play central roles in regulating diverse signaling pathways. In eukaryotic organisms, multiple isozymes and subfamilies of PIP4K/PIP5K proteins are found and it is of much interest to understand their evolution and species distribution and what unique molecular and biochemical characteristics distinguish specific isozymes and subfamilies of proteins. We report here the species distribution of different PIP4K/PIP5K family of proteins in eukaryotic organisms and phylogenetic analysis based on their protein sequences. Our results indicate that the distinct homologs of both PIP4K and PIP5K are found in different organisms belonging to the Holozoa clade of eukaryotes, which comprises of various metazoan phyla as well as their close unicellular relatives Choanoflagellates and Filasterea. In contrast, the deeper-branching eukaryotic lineages, as well as plants and fungi, contain only a single homolog of the PIP4K/PIP5K proteins. In parallel, our comparative analyses of PIP4K/PIP5K protein sequences have identified six highly-specific molecular markers consisting of conserved signature indels (CSIs) that are uniquely shared by either the PIP4K or PIP5K proteins, or both, or specific subfamilies of these proteins.
    [Show full text]
  • The First Recorded Incidence of Deinococcus Radiodurans R1 Biofilm
    bioRxiv preprint doi: https://doi.org/10.1101/234781; this version posted December 15, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 The first recorded incidence of Deinococcus radiodurans R1 biofilm 2 formation and its implications in heavy metals bioremediation 3 4 Sudhir K. Shukla1,2, T. Subba Rao1,2,* 5 6 Running title : Deinococcus radiodurans R1 biofilm formation 7 8 1Biofouling & Thermal Ecology Section, Water & Steam Chemistry Division, 9 BARC Facilities, Kalpakkam, 603 102 India 10 11 2Homi Bhabha National Institute, Mumbai 400094, India 12 13 *Corresponding Author: T. Subba Rao 14 Address: Biofouling & Thermal Ecology Section, Water & Steam Chemistry Division, 15 BARC Facilities, Kalpakkam, 603 102 India 16 E-mail: [email protected] 17 Phone: +91 44 2748 0203, Fax: +91 44 2748 0097 18 1 bioRxiv preprint doi: https://doi.org/10.1101/234781; this version posted December 15, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 Significance and Impact of this Study 20 This is the first ever recorded study on the Deinococcus radiodurans R1 biofilm. This 21 organism, being the most radioresistant micro-organism ever known, has always been 22 speculated as a potential bacterium to develop a bioremediation process for radioactive heavy 23 metal contaminants. However, the lack of biofilm forming capability proved to be a bottleneck 24 in developing such technology. This study records the first incidence of biofilm formation in a 25 recombinant D.
    [Show full text]
  • A Korarchaeal Genome Reveals Insights Into the Evolution of the Archaea
    A korarchaeal genome reveals insights into the evolution of the Archaea James G. Elkinsa,b, Mircea Podarc, David E. Grahamd, Kira S. Makarovae, Yuri Wolfe, Lennart Randauf, Brian P. Hedlundg, Ce´ line Brochier-Armaneth, Victor Kunini, Iain Andersoni, Alla Lapidusi, Eugene Goltsmani, Kerrie Barryi, Eugene V. Koonine, Phil Hugenholtzi, Nikos Kyrpidesi, Gerhard Wannerj, Paul Richardsoni, Martin Kellerc, and Karl O. Stettera,k,l aLehrstuhl fu¨r Mikrobiologie und Archaeenzentrum, Universita¨t Regensburg, D-93053 Regensburg, Germany; cBiosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; dDepartment of Chemistry and Biochemistry, University of Texas, Austin, TX 78712; eNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894; fDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520; gSchool of Life Sciences, University of Nevada, Las Vegas, NV 89154; hLaboratoire de Chimie Bacte´rienne, Unite´ Propre de Recherche 9043, Centre National de la Recherche Scientifique, Universite´de Provence Aix-Marseille I, 13331 Marseille Cedex 3, France; iU.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598; jInstitute of Botany, Ludwig Maximilians University of Munich, D-80638 Munich, Germany; and kInstitute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095 Communicated by Carl R. Woese, University of Illinois at Urbana–Champaign, Urbana, IL, April 2, 2008 (received for review January 7, 2008) The candidate division Korarchaeota comprises a group of uncul- and sediment samples from Obsidian Pool as an inoculum. The tivated microorganisms that, by their small subunit rRNA phylog- cultivation system supported the stable growth of a mixed commu- eny, may have diverged early from the major archaeal phyla nity of hyperthermophilic bacteria and archaea including an or- Crenarchaeota and Euryarchaeota.
    [Show full text]
  • High-Fidelity Amplification Using a Thermostable DNA Polymerase Isolated from P’~Ococcusfuriosus
    Gette, 108 (1991) 1-6 8 1991 Elsevier Science Publishers B.V. All rights reserved. 0378-l 119/91/SO3.50 GENE 06172 High-fidelity amplification using a thermostable DNA polymerase isolated from P’~OCOCCUSfuriosus (Polymerase chain reaction; mutation frequency; lack; proofreading; 3’40-5 exonuclease; recombinant DNA; archaebacteria) Kelly S. Lundberg”, Dan D. Shoemaker*, Michael W.W. Adamsb, Jay M. Short”, Joseph A. Serge* and Eric J. Mathur” “ Division of Research and Development, Stratagene, Inc., La Jolla, CA 92037 (U.S.A.), and h Centerfor Metalloen~~vme Studies, University of Georgia, Athens, GA 30602 (U.S.A.) Tel. (404/542-2060 Received by M. Salas: 16 May 1991 Revised/Accepted: 11 August/l3 August 1991 Received at publishers: 17 September 1991 -.-- SUMMARY A thermostable DNA polymerase which possesses an associated 3’-to-5’ exonuclease (proofreading) activity has been isolated from the hyperthermophilic archaebacterium, Pyrococcus furiosus (Pfu). To test its fidelity, we have utilized a genetic assay that directly measures DNA polymerase fidelity in vitro during the polymerase chain reaction (PCR). Our results indicate that PCR performed with the DNA polymerase purified from P. furiosus yields amplification products containing less than 10s.~ of the number of mutations obtained from similar amplifications performed with Tuq DNA polymerase. The PCR fidelity assay is based on the ampli~cation and cloning of lad, lac0 and IacZor gene sequences (IcrcIOZa) using either ffil or 7ii~irqDNA poIymerase. Certain mutations within the lucf gene inactivate the Lac repressor protein and permit the expression of /?Gal. When plated on a chromogenic substrate, these Lacl - mutants exhibit a blue-plaque phenotype.
    [Show full text]
  • Pan-Genome Analysis and Ancestral State Reconstruction Of
    www.nature.com/scientificreports OPEN Pan‑genome analysis and ancestral state reconstruction of class halobacteria: probability of a new super‑order Sonam Gaba1,2, Abha Kumari2, Marnix Medema 3 & Rajeev Kaushik1* Halobacteria, a class of Euryarchaeota are extremely halophilic archaea that can adapt to a wide range of salt concentration generally from 10% NaCl to saturated salt concentration of 32% NaCl. It consists of the orders: Halobacteriales, Haloferaciales and Natriabales. Pan‑genome analysis of class Halobacteria was done to explore the core (300) and variable components (Softcore: 998, Cloud:36531, Shell:11784). The core component revealed genes of replication, transcription, translation and repair, whereas the variable component had a major portion of environmental information processing. The pan‑gene matrix was mapped onto the core‑gene tree to fnd the ancestral (44.8%) and derived genes (55.1%) of the Last Common Ancestor of Halobacteria. A High percentage of derived genes along with presence of transformation and conjugation genes indicate the occurrence of horizontal gene transfer during the evolution of Halobacteria. A Core and pan‑gene tree were also constructed to infer a phylogeny which implicated on the new super‑order comprising of Natrialbales and Halobacteriales. Halobacteria1,2 is a class of phylum Euryarchaeota3 consisting of extremely halophilic archaea found till date and contains three orders namely Halobacteriales4,5 Haloferacales5 and Natrialbales5. Tese microorganisms are able to dwell at wide range of salt concentration generally from 10% NaCl to saturated salt concentration of 32% NaCl6. Halobacteria, as the name suggests were once considered a part of a domain "Bacteria" but with the discovery of the third domain "Archaea" by Carl Woese et al.7, it became part of Archaea.
    [Show full text]
  • Protection of Chemolithoautotrophic Bacteria Exposed to Simulated
    Protection Of Chemolithoautotrophic Bacteria Exposed To Simulated Mars Environmental Conditions Felipe Gómez, Eva Mateo-Martí, Olga Prieto-Ballesteros, Jose Martín-Gago, Ricardo Amils To cite this version: Felipe Gómez, Eva Mateo-Martí, Olga Prieto-Ballesteros, Jose Martín-Gago, Ricardo Amils. Pro- tection Of Chemolithoautotrophic Bacteria Exposed To Simulated Mars Environmental Conditions. Icarus, Elsevier, 2010, 209 (2), pp.482. 10.1016/j.icarus.2010.05.027. hal-00676214 HAL Id: hal-00676214 https://hal.archives-ouvertes.fr/hal-00676214 Submitted on 4 Mar 2012 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Accepted Manuscript Protection Of Chemolithoautotrophic Bacteria Exposed To Simulated Mars En‐ vironmental Conditions Felipe Gómez, Eva Mateo-Martí, Olga Prieto-Ballesteros, Jose Martín-Gago, Ricardo Amils PII: S0019-1035(10)00220-4 DOI: 10.1016/j.icarus.2010.05.027 Reference: YICAR 9450 To appear in: Icarus Received Date: 11 August 2009 Revised Date: 14 May 2010 Accepted Date: 28 May 2010 Please cite this article as: Gómez, F., Mateo-Martí, E., Prieto-Ballesteros, O., Martín-Gago, J., Amils, R., Protection Of Chemolithoautotrophic Bacteria Exposed To Simulated Mars Environmental Conditions, Icarus (2010), doi: 10.1016/j.icarus.2010.05.027 This is a PDF file of an unedited manuscript that has been accepted for publication.
    [Show full text]
  • Tackling the Methanopyrus Kandleri Paradox Céline Brochier*, Patrick Forterre† and Simonetta Gribaldo†
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by PubMed Central Open Access Research2004BrochieretVolume al. 5, Issue 3, Article R17 Archaeal phylogeny based on proteins of the transcription and comment translation machineries: tackling the Methanopyrus kandleri paradox Céline Brochier*, Patrick Forterre† and Simonetta Gribaldo† Addresses: *Equipe Phylogénomique, Université Aix-Marseille I, Centre Saint-Charles, 13331 Marseille Cedex 3, France. †Institut de Génétique et Microbiologie, CNRS UMR 8621, Université Paris-Sud, 91405 Orsay, France. reviews Correspondence: Céline Brochier. E-mail: [email protected] Published: 26 February 2004 Received: 14 November 2003 Revised: 5 January 2004 Genome Biology 2004, 5:R17 Accepted: 21 January 2004 The electronic version of this article is the complete one and can be found online at http://genomebiology.com/2004/5/3/R17 reports © 2004 Brochier et al.; licensee BioMed Central Ltd. This is an Open Access article: verbatim copying and redistribution of this article are permitted in all media for any purpose, provided this notice is preserved along with the article's original URL. ArchaealPhylogeneticsequencedusingrespectively). two phylogeny concatenated genomes, analysis based it of is datasetsthe now on Archaea proteinspossible consisting has ofto been thetest of transcription alternative mainly14 proteins established approach involv and translationed byes in 16S bytranscription rRNAusing machineries: largesequence andsequence 53comparison.tackling ribosomal datasets. the Methanopyrus Withproteins We theanalyzed accumulation(3,275 archaealkandleri and 6,377 of phyparadox comp positions,logenyletely Abstract deposited research Background: Phylogenetic analysis of the Archaea has been mainly established by 16S rRNA sequence comparison. With the accumulation of completely sequenced genomes, it is now possible to test alternative approaches by using large sequence datasets.
    [Show full text]