Regulation of a Bacillus Subtilis Mobile Genetic Element by Intercellular Signaling and the Global DNA Damage Response

Total Page:16

File Type:pdf, Size:1020Kb

Regulation of a Bacillus Subtilis Mobile Genetic Element by Intercellular Signaling and the Global DNA Damage Response Regulation of a Bacillus subtilis mobile genetic element by intercellular signaling and the global DNA damage response Jennifer M. Auchtung, Catherine A. Lee, Rita E. Monson*, Alisa P. Lehman, and Alan D. Grossman† Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139 Communicated by Robert T. Sauer, Massachusetts Institute of Technology, Cambridge, MA, July 12, 2005 (received for review June 16, 2005) Horizontal gene transfer contributes to the evolution of bacterial Phr peptides directly inhibit the activities of intracellular regu- species. Mobile genetic elements play an important role in hori- lators, known as Rap proteins (20–24) (Fig. 1). The character- zontal gene transfer, and characterization of the regulation of ized Rap proteins directly (24, 25) or indirectly (23, 26) inhibit these elements should provide insight into conditions that influ- the activities of transcription factors that regulate sporulation, ence bacterial evolution. We characterized a mobile genetic ele- competence development, and production of degradative en- ment, ICEBs1, in the Gram-positive bacterium Bacillus subtilis and zymes and antibiotics (20, 22–24). found that it is a functional integrative and conjugative element RapI and PhrI are encoded by ICEBs1. We found that RapI (ICE) capable of transferring to Bacillus and Listeria species. We activates ICEBs1 gene expression, excision, and transfer and that identified two conditions that promote ICEBs1 transfer: conditions the PhrI peptide antagonizes the activity of RapI. Furthermore, that induce the global DNA damage response and crowding by expression of rapI and phrI is stimulated by conditions of low potential recipients that lack ICEBs1. Transfer of ICEBs1 into cells nutrient availability and high cell density. This combined regu- that already contain the element is inhibited by an intercellular lation activates ICEBs1 excision and transfer when host cells are signaling peptide encoded by ICEBs1. The dual regulation of ICEBs1 crowded by potential recipients that lack ICEBs1 and do not allows for passive propagation in the host cell until either the produce the PhrI peptide. potential mating partners lacking ICEBs1 are present or the host In addition, we observed that the global DNA damage (SOS) cell is in distress. response activates ICEBs1 excision and transfer, independently of rapI and phrI. Therefore, at least two conditions promote conjugation ͉ horizontal gene transfer ͉ quorum sensing ͉ peptide ICEBs1 excision and transfer: the presence of a high concen- signaling ͉ DNA microarrays tration of cells lacking ICEBs1 and host cell distress. In the absence of these conditions, ICEBs1 is propagated by the host orizontal gene transfer and mobile genetic elements play a through vertical gene transfer to progeny cells. Hsignificant role in bacterial evolution (1–4). Conjugative transposons (5, 6), also known as integrative and conjugative Materials and Methods elements (ICEs) (4, 7), are mobile genetic elements that are Media. Cells were grown at 37°C, with agitation in LB medium normally integrated into the chromosome. They can excise and (27), defined minimal medium (28) (supplemented with re- transfer to recipients through conjugation (mating) and inte- quired amino acids when necessary), Schaeffer’s nutrient broth grate into the chromosome of the recipient (5, 6). ICEs encode sporulation medium (29), or brain heart infusion medium (29), proteins required for conjugal transfer and can also encode as indicated. Antibiotics and other chemicals were used at the proteins involved in resistance to antibiotics (5, 6), metabolism following concentrations: ampicillin (100 ␮g͞ml), chloramphen- of alternative carbon sources (4, 8), symbiosis (9), and other icol (5 ␮g͞ml), kanamycin (5 ␮g͞ml), spectinomycin (100 ␮g͞ processes (10). ICEs and putative ICEs have been found in many ml), streptomycin (100 ␮g͞ml), erythromycin (0.5 ␮g͞ml), and bacteria (10) and are important agents of horizontal gene lincomycin (12.5 ␮g͞ml) together, to select for macrolide- transfer because they are capable of moving themselves and lincosamide-streptogramin B resistance, and isopropyl-␤-D- other DNA to recipients (6, 11–13). thiogalactopyranoside (IPTG) (1 mM, Sigma) and mitomycin C Mechanisms that regulate transfer have been determined for (MMC) (1 ␮g͞ml, Sigma). several ICEs. In some cases, an antibiotic induces transfer of an element that encodes resistance to that antibiotic (5, 6, 14). Strains and Alleles. Strains used in this study are listed in Table 3, Transfer of the Streptomyces ICE pSAM2 is inhibited by the which is published as supporting information on the PNAS web presence of a pSAM2-encoded protein in the recipient (15). site. The Escherichia coli strain used for cloning is an MC1061 Recently, it was shown that the DNA damage response stimu- derivative carrying FЈ(lacIq) lacZM15 Tn10 (tet). Standard tech- lates transfer of SXT, an ICE from Vibrio cholerae (14). niques were used for cloning and strain construction (27, 29). We characterized a 20-kb ICE, ICEBs1 (16), in Bacillus subtilis For overexpression in B. subtilis, rapI, phrI, and rapI phrI and found that ICEBs1 excision and transfer is regulated by a were cloned downstream of the IPTG-inducible promoters secreted peptide encoded by ICEBs1. Pspank(hy) (30) or Pspank (28), both generous gifts from D. Many Gram-positive bacteria use secreted signaling peptides Rudner (Harvard Medical School, Boston), and integrated to coordinate physiological processes with population density, often called quorum sensing (17). In B. subtilis, several secreted peptides contribute to quorum sensing, including Phr peptides Abbreviations: att, attachment; ICE, integrative and conjugative element; IPTG, isopropyl- ␤-D-thiogalactopyranoside; MMC, mitomycin C; Opp, oligopeptide permease; SOS, global encoded by phr genes (reviewed in ref. 18). It has been suggested DNA damage. that Phr peptides act as autocrine signals and not in cell–cell *Present address: Department of Biochemistry, University of Cambridge, Cambridge signaling (reviewed in ref. 19), although this is clearly not true CB2 1QW, United Kingdom. for all Phr peptides (20, 21). Nonetheless, all characterized Phr †To whom correspondence should be addressed at: Department of Biology, Building peptides have a common mechanism of action. After secretion 68-530, Massachusetts Institute of Technology, Cambridge, MA 02139. E-mail: and extracellular accumulation, Phr pentapeptides are imported [email protected]. through the oligopeptide permease (Opp); once inside the cell, © 2005 by The National Academy of Sciences of the USA 12554–12559 ͉ PNAS ͉ August 30, 2005 ͉ vol. 102 ͉ no. 35 www.pnas.org͞cgi͞doi͞10.1073͞pnas.0505835102 Downloaded by guest on September 25, 2021 Fig. 2. Overexpression of rapI activates expression of genes in ICEBs1. The diagram shows the organization of ICEBs1, which contains at least 24 ORFs. The name of each gene is indicated above its respective arrow. Black boxes at the left and right ends indicate the att sites attL and attR. attL of ICEBs1 is in the 3Ј end of a leucyl-tRNA gene (trnS-leu2). The black arrow indicates int, Fig. 1. Phr peptide signaling in B. subtilis. rap and phr genes are transcribed encoding the putative integrase. The hatched arrow indicates immR, encod- and translated (A); pre-Phr peptides are secreted and processed (B); mature ing the putative immunity repressor. Shaded arrows indicate genes similar to Phr peptides are transported into the cell by the Opp (C); once inside the cell, those found in other ICEs (16). The numbers below the cartoon of ICEBs1 Phr peptides inhibit the activities of regulators known as Rap proteins (D); indicate the mean fold-increase in mRNA levels in cells overexpressing rapI. each characterized Rap protein inhibits the activity of a transcription factor, Pspank(hy)-rapI (JMA28) cells were grown for at least four generations to either directly or indirectly (E); and inhibition of transcription factors lead to midexponential phase in minimal medium. IPTG was added to half of the cellular responses (F). cultures to induce rapI expression. Samples were collected 30 min later from induced and uninduced cultures. RNA was isolated, labeled, and hybridized, and genes that changed significantly upon overproduction of RapI were into the amyE locus by homologous recombination. Pspank identified, as described in Materials and Methods. Expression of the three and Pspank(hy) (with no inserts) were also integrated into genes at the left end did not change significantly nor did the expression of amyE. almost all chromosomal genes. Experimental details and additional microar- ray results are in Table 4 and Supporting Text, which are published as sup- The rapI–lacZ promoter fusion was generated by cloning the porting information on the PNAS web site. DNA from 329 to 12 bp upstream of the rapI ORF upstream of the promoterless lacZ in the vector pDG793 (31), followed by integration into the thrC locus by homologous recombination. treatment). PCR with the primer pair oJMA93 and oJMA100 Isolation of spontaneous streptomycin-resistant mutants and detected the chromosomal junction formed after ICEBs1 exci- construction of the following alleles is described in Supporting sion. PCR with the primer pair oJMA95 and oJMA97 detected Methods, which is published as supporting information on the the excised ICEBs1 circle. Primer sequences, PCR conditions, PNAS web site: ICEBs1::kan, an insertion of a kanamycin- and cycling parameters are described in Supporting
Recommended publications
  • Protease S from Pyrococcus Furiosus (P6361)
    Protease S, from Pyrococcus furiosus, recombinant Product Number P 6361 Storage Temperature 2−8 °C Product Description The product is supplied as a solution containing Protease S is a recombinant, 42,906 Da (amino acid approximately 100 units per ml of 25 mM Tris-HCl, composition), hyperthermostable, serine endoprotease pH 7.6, and 40% ethanol. that is expressed in a Bacillus species carrying a plasmid that contains a copy of the Pyrococcus furiosus Unit Definition: One unit will hydrolyze 1.0 µmole of 1 protease gene. It is a broad specificity protease N−succinyl-Ala-Ala-Pro-Phe p-nitroanilide per minute at capable of digesting native and denatured proteins. 95 °C and pH 7.0. Protease S is active from 40 to 110 °C, with the optimal temperature range of 85 to 95 °C. The optimal pH Precautions and Disclaimer range is 6.0 to 8.0 and the pI of the protein is 4.0. This product is for laboratory research use only. Please consult the Material Safety Data Sheet for information Protease S retains activity with organic solvents and regarding hazards and safe handling practices. denaturants. After exposure to 6.4 M urea and 50% acetonitrile for 1 hour at 95 °C and pH 7.0, the Storage/Stability enzyme retains 70% and 90%, respectively, of its The product is shipped on wet ice and should be stored activity. More than 50% of its activity is observed when at 2−8 °C. It is extremely thermostable, retaining 80% of incubated at 95 °C and pH 7.0 for 24 hours in the its activity after 3 hours at 95 °C and pH 7.0.
    [Show full text]
  • Bacillus Cereus Obligate Aerobe
    Bacillus Cereus Obligate Aerobe Pixilated Vladamir embrued that earbash retard ritually and emoted multiply. Nervine and unfed Abbey lie-down some hodman so designingly! Batwing Ricard modulated war. However, both company registered in England and Wales. Streptococcus family marine species names of water were observed. Bacillus cereus and Other Bacillus spp. Please enable record to take advantage of the complete lie of features! Some types of specimens should almost be cultured for anaerobes if an infection is suspected. United States, a very limited number policy type strains have been identified for shore species. Phylum XIII Firmicutes Gibbons and Murray 197 5. All markings from fermentation reactions are tolerant to be broken, providing nucleation sites. Confirmation of diagnosis by pollen analysis. Stress she and virulence factors in Bacillus cereus ATCC 14579. Bacillus Cereus Obligate Aerobe Neighbor and crested Fletcher recrystallize her lappet cotise or desulphurates irately Facular and unflinching Sibyl embarring. As a pulmonary pathogen the species B cereus has received recent. Eating 5-Day-Old Pasta or pocket Can be Kill switch Here's How. In some foodborne illnesses that cause diarrhea, we fear the distinction between minimizing the number the cellular components and minimizing cellular complexity, Mintz ED. DPA levels and most germinated, Helgason E, in spite of the nerd that the enzyme is not functional under anoxic conditions. Improper canning foods associated with that aerobes. Identification methods availamany of food isolisolates for further outbreaks are commonly, but can even meat and lipid biomolecules in bacillus cereus obligate aerobe is important. Gram Positive Bacteria PREPARING TO BECOME. The and others with you interest are food safety.
    [Show full text]
  • Sporulation Evolution and Specialization in Bacillus
    bioRxiv preprint doi: https://doi.org/10.1101/473793; this version posted March 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Research article From root to tips: sporulation evolution and specialization in Bacillus subtilis and the intestinal pathogen Clostridioides difficile Paula Ramos-Silva1*, Mónica Serrano2, Adriano O. Henriques2 1Instituto Gulbenkian de Ciência, Oeiras, Portugal 2Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Oeiras, Portugal *Corresponding author: Present address: Naturalis Biodiversity Center, Marine Biodiversity, Leiden, The Netherlands Phone: 0031 717519283 Email: [email protected] (Paula Ramos-Silva) Running title: Sporulation from root to tips Keywords: sporulation, bacterial genome evolution, horizontal gene transfer, taxon- specific genes, Bacillus subtilis, Clostridioides difficile 1 bioRxiv preprint doi: https://doi.org/10.1101/473793; this version posted March 11, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Abstract Bacteria of the Firmicutes phylum are able to enter a developmental pathway that culminates with the formation of a highly resistant, dormant spore. Spores allow environmental persistence, dissemination and for pathogens, are infection vehicles. In both the model Bacillus subtilis, an aerobic species, and in the intestinal pathogen Clostridioides difficile, an obligate anaerobe, sporulation mobilizes hundreds of genes.
    [Show full text]
  • Evidence That Tolc Is Required for Functioning of the Mar/Acrab Efffux
    JOURNAL OF BACTERIOLOGY, Oct. 1996, p. 5803–5805 Vol. 178, No. 19 0021-9193/96/$04.0010 Copyright q 1996, American Society for Microbiology Evidence that TolC Is Required for Functioning of the Mar/AcrAB Efflux Pump of Escherichia coli JOE A. FRALICK* Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, Lubbock, Texas 79403 Received 10 June 1996/Accepted 16 July 1996 A study examining the influence of TolC on AcrA, AcrR, and MarR1 mutants indicates that functional TolC is required for the operation of the AcrAB efflux system and for the expression of the Mar phenotype. That the effect of TolC on the AcrAB pump is not regulatory in nature is shown by studies measuring the influence of a tolC::Tn10 insertion mutation on the expression of an acrA::lacZ reporter fusion. These results are compatible with the hypothesis that TolC is a component of the AcrAB efflux complex. Enteric bacteria have evolved to survive in an environment the heptose I phosphate of TolC LPS may be blocked by a rich with pernicious agents, such as bile salts, detergents, and phosphorylethanolamine group (32), it has been suggested that fatty acids. Protection against these inhibitors is due, in part, to the hypersusceptibility seen in TolC mutants is the result of the the selective permeability barrier of an outer membrane, which inability of TolC LPS to form a highly ordered LPS monolayer serves as the first line of defense against the rapid intrusion of (32). There are, however, significant differences between the lipophilic compounds (2, 11, 24, 25, 27).
    [Show full text]
  • A Korarchaeal Genome Reveals Insights Into the Evolution of the Archaea
    A korarchaeal genome reveals insights into the evolution of the Archaea James G. Elkinsa,b, Mircea Podarc, David E. Grahamd, Kira S. Makarovae, Yuri Wolfe, Lennart Randauf, Brian P. Hedlundg, Ce´ line Brochier-Armaneth, Victor Kunini, Iain Andersoni, Alla Lapidusi, Eugene Goltsmani, Kerrie Barryi, Eugene V. Koonine, Phil Hugenholtzi, Nikos Kyrpidesi, Gerhard Wannerj, Paul Richardsoni, Martin Kellerc, and Karl O. Stettera,k,l aLehrstuhl fu¨r Mikrobiologie und Archaeenzentrum, Universita¨t Regensburg, D-93053 Regensburg, Germany; cBiosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831; dDepartment of Chemistry and Biochemistry, University of Texas, Austin, TX 78712; eNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894; fDepartment of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520; gSchool of Life Sciences, University of Nevada, Las Vegas, NV 89154; hLaboratoire de Chimie Bacte´rienne, Unite´ Propre de Recherche 9043, Centre National de la Recherche Scientifique, Universite´de Provence Aix-Marseille I, 13331 Marseille Cedex 3, France; iU.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598; jInstitute of Botany, Ludwig Maximilians University of Munich, D-80638 Munich, Germany; and kInstitute of Geophysics and Planetary Physics, University of California, Los Angeles, CA 90095 Communicated by Carl R. Woese, University of Illinois at Urbana–Champaign, Urbana, IL, April 2, 2008 (received for review January 7, 2008) The candidate division Korarchaeota comprises a group of uncul- and sediment samples from Obsidian Pool as an inoculum. The tivated microorganisms that, by their small subunit rRNA phylog- cultivation system supported the stable growth of a mixed commu- eny, may have diverged early from the major archaeal phyla nity of hyperthermophilic bacteria and archaea including an or- Crenarchaeota and Euryarchaeota.
    [Show full text]
  • Pan-Genome Analysis and Ancestral State Reconstruction Of
    www.nature.com/scientificreports OPEN Pan‑genome analysis and ancestral state reconstruction of class halobacteria: probability of a new super‑order Sonam Gaba1,2, Abha Kumari2, Marnix Medema 3 & Rajeev Kaushik1* Halobacteria, a class of Euryarchaeota are extremely halophilic archaea that can adapt to a wide range of salt concentration generally from 10% NaCl to saturated salt concentration of 32% NaCl. It consists of the orders: Halobacteriales, Haloferaciales and Natriabales. Pan‑genome analysis of class Halobacteria was done to explore the core (300) and variable components (Softcore: 998, Cloud:36531, Shell:11784). The core component revealed genes of replication, transcription, translation and repair, whereas the variable component had a major portion of environmental information processing. The pan‑gene matrix was mapped onto the core‑gene tree to fnd the ancestral (44.8%) and derived genes (55.1%) of the Last Common Ancestor of Halobacteria. A High percentage of derived genes along with presence of transformation and conjugation genes indicate the occurrence of horizontal gene transfer during the evolution of Halobacteria. A Core and pan‑gene tree were also constructed to infer a phylogeny which implicated on the new super‑order comprising of Natrialbales and Halobacteriales. Halobacteria1,2 is a class of phylum Euryarchaeota3 consisting of extremely halophilic archaea found till date and contains three orders namely Halobacteriales4,5 Haloferacales5 and Natrialbales5. Tese microorganisms are able to dwell at wide range of salt concentration generally from 10% NaCl to saturated salt concentration of 32% NaCl6. Halobacteria, as the name suggests were once considered a part of a domain "Bacteria" but with the discovery of the third domain "Archaea" by Carl Woese et al.7, it became part of Archaea.
    [Show full text]
  • Kin Discrimination Promotes Horizontal Gene Transfer Between Unrelated Strains in Bacillus Subtilis
    ARTICLE https://doi.org/10.1038/s41467-021-23685-w OPEN Kin discrimination promotes horizontal gene transfer between unrelated strains in Bacillus subtilis ✉ Polonca Stefanic 1,5,6 , Katarina Belcijan1,5, Barbara Kraigher 1, Rok Kostanjšek1, Joseph Nesme2, Jonas Stenløkke Madsen2, Jasna Kovac 3, Søren Johannes Sørensen 2, Michiel Vos 4 & ✉ Ines Mandic-Mulec 1,6 Bacillus subtilis is a soil bacterium that is competent for natural transformation. Genetically 1234567890():,; distinct B. subtilis swarms form a boundary upon encounter, resulting in killing of one of the strains. This process is mediated by a fast-evolving kin discrimination (KD) system consisting of cellular attack and defence mechanisms. Here, we show that these swarm antagonisms promote transformation-mediated horizontal gene transfer between strains of low related- ness. Gene transfer between interacting non-kin strains is largely unidirectional, from killed cells of the donor strain to surviving cells of the recipient strain. It is associated with acti- vation of a stress response mediated by sigma factor SigW in the donor cells, and induction of competence in the recipient strain. More closely related strains, which in theory would experience more efficient recombination due to increased sequence homology, do not upregulate transformation upon encounter. This result indicates that social interactions can override mechanistic barriers to horizontal gene transfer. We hypothesize that KD-mediated competence in response to the encounter of distinct neighbouring strains could maximize the probability of efficient incorporation of novel alleles and genes that have proved to function in a genomically and ecologically similar context. 1 Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia.
    [Show full text]
  • Mr. Pranit Patil India, [email protected] Mr. Rinke
    Paper ID: 52357 70th International Astronautical Congress 2019 oral IAF/IAA SPACE LIFE SCIENCES SYMPOSIUM (A1) Biology in Space (8) Author: Mr. Pranit Patil India, [email protected] Mr. Rinkesh Kurkure India, [email protected] Ms. Sucheshnadevi Patil United States, [email protected] Ms. Kinnari Gatare IIIT Bombay, India, [email protected] Mr. Saurav Sunil Telge India, [email protected] Mr. Pradnesh Mhatre India, [email protected] Ms. Bhakti Mithagri India, [email protected] Mr. Pranjal Mhatre India, [email protected] Ms. Namaswi Patil India, [email protected] ENVIRONMENTAL RESEARCH AND GENETIC EXPRESSION IN NEW EARTH SIMILARITY STUDY Abstract To inhabit a planet we need to know its atmosphere cell tolerance to the atmosphere, currently Mars is a potential for human habitation due to Earth-likeness. Our knowledge of chemical, physical, geological geographic data is insufficient to deem an environment habitable, but it does point us in a direction where we are likely to find an area with potential for habitation. To keep cells/organisms alive through long space travel is the challenge, and we believe the solution lies in cryopreservation techniques. The process by which cells enter the hibernation state is well understood, but the reverse process, from hibernation to normal is yet to be fully understood. To date simulated Mars environment studies have been done on various organisms, mainly common terrestrial bacteria Bacillus subtilis. However, this hasn't as yet been done on plants or extremophiles. We have set two objectives: (1a) understanding the mechanism - how a Ceratodon purpureus (Moss, Kingdom: Plantae, Division: Bryophyta) an extremophile "Tardigrade", (Kingdom: Animalia, Phylum: Tardigrada) retrieves to normal from desiccation (moss),"tun"(tardigrade) in cryptobiosis; (1b) the same in combined state to form an Ecology - as moss are autotrophic tardigrade feed on moss; (2) create reference database - set of parametric standards in biological extremities, i.e.
    [Show full text]
  • Identification and Characterization of the Gene Encoding the Acidobacterium Capsulatum Major Sigma Factor
    Gene 376 (2006) 144–151 www.elsevier.com/locate/gene Identification and characterization of the gene encoding the Acidobacterium capsulatum major sigma factor Zakee L. Sabree a,b, Veit Bergendahl c,1, Mark R. Liles a,2, Richard R. Burgess c, ⁎ Robert M. Goodman a,3, Jo Handelsman a, a Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA b Microbiology Doctoral Training Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA c McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA Received 11 December 2005; received in revised form 14 February 2006; accepted 15 February 2006 Available online 5 April 2006 Received by R. Britton Abstract Acidobacterium capsulatum is an acid-tolerant, encapsulated, Gram-negative member of the ubiquitous, but poorly understood Acidobacteria phylum. Little is known about the genetics and regulatory mechanisms of A. capsulatum. To begin to address this gap, we identified the gene encoding the A. capsulatum major sigma factor, rpoD, which encodes a 597-amino acid protein with a predicted sequence highly similar to the major sigma factors of Solibacter usitatus Ellin6076 and Geobacter sulfurreducens PCA. Purified hexahistidine-tagged RpoD migrates at ∼70 kDa under SDS-PAGE conditions, which is consistent with the predicted MW of 69.2 kDa, and the gene product is immunoreactive with monoclonal antibodies specific for either bacterial RpoD proteins or the N-terminal histidine tag. A. capsulatum RpoD restored normal growth to E. coli strain CAG20153 under conditions that prevent expression of the endogenous rpoD. These results indicate we have cloned the gene encoding the A.
    [Show full text]
  • Relaxed Natural Selection Alone Does Not Permit Transposable Element Expansion Within 4,000 Generations in Escherichia Coli
    Genetica (2011) 139:895–902 DOI 10.1007/s10709-011-9593-x Relaxed natural selection alone does not permit transposable element expansion within 4,000 generations in Escherichia coli Gordon R. Plague • Kevin M. Dougherty • Krystal S. Boodram • Samantha E. Boustani • Huansheng Cao • Sarah R. Manning • Camille C. McNally Received: 19 February 2011 / Accepted: 25 June 2011 / Published online: 13 July 2011 Ó Springer Science+Business Media B.V. 2011 Abstract Insertion sequences (ISs) are transposable insertion. We propagated 12 populations under four genetic elements in bacterial genomes. IS elements are experimental conditions: large Ne versus small Ne, and common among bacteria but are generally rare within free- nutrient rich medium versus minimal medium. We found living species, probably because of the negative fitness that relaxed selection over 4,000 generations was not suf- effects they have on their hosts. Conversely, ISs frequently ficient to permit IS element expansion in any experimental proliferate in intracellular symbionts and pathogens that population, thus leading us to hypothesize that IS expan- recently transitioned from a free-living lifestyle. IS ele- sion in intracellular symbionts may often be spurred by ments can profoundly influence the genomic evolution of enhanced transposition rates, possibly due to environmen- their bacterial hosts, although it is unknown why they often tal stress, coupled with relaxed natural selection. expand in intracellular bacteria. We designed a laboratory evolution experiment with Escherichia
    [Show full text]
  • Effects of Heavy Ion Particle Irradiation on Spore Germination of Bacillus
    life Article Effects of Heavy Ion Particle Irradiation on Spore Germination of Bacillus spp. from Extremely Hot and Cold Environments Vincenzo Zammuto 1 , Maria G. Rizzo 1,*, Laura M. De Plano 1, Domenico Franco 1 , Salvatore Guglielmino 1, Maria T. Caccamo 2 , Salvatore Magazù 2, Akira Fujimori 3, Angelina Lo Giudice 4 , Mauro Guglielmin 5, Kevin Roderick McAlpin 6,7, Ralf Moeller 6,7 and Concetta Gugliandolo 1 1 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Research Centre for Extreme Environments and Extremophiles, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; [email protected] (V.Z.); [email protected] (L.M.D.P.); [email protected] (D.F.); [email protected] (S.G.); [email protected] (C.G.) 2 Department of Mathematics, Computer Sciences, Physics and Earth Sciences, University of Messina, V.le F. Stagno d’Alcontres 31, 98166 Messina, Italy; [email protected] (M.T.C.); [email protected] (S.M.) 3 Department of Basic Medical Sciences for Radiation Damages, Molecular and Cellular Radiation Biology Group, NIRS/QST, Chiba 263-8555, Japan; [email protected] 4 Institute of Polar Sciences, National Research Council (CNR-ISP), Spianata San Raineri 86, 98122 Messina, Italy; [email protected] 5 Department of Theoretical and Applied Sciences, University of Insubria, Via J.H. Dunant, 21100 Varese, Italy; [email protected] 6 Institute of Aerospace Medicine, Radiation Biology Department, German Aerospace Center, Aerospace Microbiology, DLR, Linder Höhe, D-51147 Cologne/Köln, Germany; [email protected] (R.M.); [email protected] (K.R.M.) 7 Natural Sciences Department, University of Applied Sciences Bonn-Rhein-Sieg (BRSU), D-53359 Rheinbach, Germany * Correspondence: [email protected] Received: 13 October 2020; Accepted: 28 October 2020; Published: 30 October 2020 Abstract: Extremophiles are optimal models in experimentally addressing questions about the effects of cosmic radiation on biological systems.
    [Show full text]
  • Bacillus Subtilis Evade Plant Defense by Producing Lantibiotic Subtilomycin to Mask Self-Produced flagellin
    ARTICLE https://doi.org/10.1038/s42003-019-0614-0 OPEN Endophyte Bacillus subtilis evade plant defense by producing lantibiotic subtilomycin to mask self-produced flagellin Yun Deng 1, Hanqiao Chen1, Congzhi Li1, Jianyi Xu1, Qingdong Qi1, Yuanyuan Xu1, Yiguang Zhu1, 1234567890():,; Jinshui Zheng 1, Donghai Peng1, Lifang Ruan1 & Ming Sun1* Microbes can enter into healthy plants as endophytes and confer beneficial functions. The entry of commensal microbes into plants involves penetrating plant defense. Most mechanisms about overcoming plant defense are focused on adapted pathogens, while the mechanism involved in beneficial endophyte evades plant defense to achieve harmonious commensalism is unclear. Here, we discover a mechanism that an endophyte bacterium Bacillus subtilis BSn5 reduce to stimulate the plant defensive response by producing lantibiotic subtilomycin to bind self-produced flagellin. Subtilomycin bind with flagellin and affect flg22- induced plant defense, by which means promotes the endophytic colonization in A. thaliana. Subtilomycin also promotes the BSn5 colonization in a distinct plant, Amorphophallus konjac, where the BSn5 was isolated. Our investigation shows more independent subtilomycin/-like producers are isolated from distinct plants. Our work unveils a common strategy that is used for bacterial endophytic colonization. 1 State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, 430070 Wuhan, China. *email: [email protected] COMMUNICATIONS BIOLOGY | (2019) 2:368 | https://doi.org/10.1038/s42003-019-0614-0 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-019-0614-0 icrobes exist as early as 4 billion years ago and so supernatant (Fig. 1a), and showed activity against Bacillus strains.
    [Show full text]