Foods Derived from Genetically Modified Organisms and Detection Methods

Total Page:16

File Type:pdf, Size:1020Kb

Foods Derived from Genetically Modified Organisms and Detection Methods Foods Derived from Genetically Modified Organisms and Detection Methods by Wolfram Hemmer BATSThis report was prepared in close collaboration with the Swiss Federal Office of Public Health Table of Contents Summary................................................................................................................. 2 1 Introduction .......................................................................................................... 3 1.1 Field trials.......................................................................................................... 4 1.2 Transformation methods and genetic elements introduced into transgenic plants ...................................................................................................................... 7 1.3 Detection methods .......................................................................................... 10 2 GMO Products ................................................................................................... 12 2.1 Regulations ..................................................................................................... 12 2.1.1 Switzerland .................................................................................................. 13 2.1.2 The European Community ........................................................................... 13 2.1.3 USA.............................................................................................................. 14 2.2 Commercialisation of genetically modified products........................................ 15 2.3 Approval of genetically engineered products .................................................. 15 2.3.1 Differences in national approvals of the 'same' products ............................. 16 2.3.2 Summaries of national and multi-national approvals of genetically engineered products ................................................................................................................ 19 2.3.3 Restrictions .................................................................................................. 20 2.3.4 Commercially available products ................................................................. 20 2.3.5 Transgenic organisms in China.................................................................... 21 2.4 Enzymes derived by recombinant technology................................................. 21 2.5 Genetically modified animals .......................................................................... 22 3 Methods for identifying genetically engineered foods ........................................ 23 3.1 PCR-based methods....................................................................................... 23 3.1.1 Officially validated identification methods..................................................... 24 3.1.1.1 Genetically modified potatoes ................................................................... 24 3.1.1.2 Genetically engineered Lactobacillus in raw sausages ............................. 25 3.1.1.3 Genetically engineered Streptococcus used a starter culture in yoghurt... 25 3.1.2 Methods developed to detect GMOs and published in scientific journals..... 25 3.1.3 Highly specialised reports on the detection of GMOs in food unavailable in databases ............................................................................................................. 26 3.1.4 PCR diagnostics - problems and possible solutions in application............... 27 3.1.4.1 Choice of primers and general methodological parameters ...................... 27 3.1.4.2 Avoiding false-positive and false-negative results..................................... 28 3.1.4.3 Sensitivity.................................................................................................. 29 3.1.4.4 DNA quality ............................................................................................... 29 3.1.4.5 PCR methods applied to processed foods ................................................ 29 3.1.4.6 Inhibition of PCR and DNA extraction procedures .................................... 30 3.1.4.7 Verification of PCR results ........................................................................ 30 3.1.4.8 Reviews on the application of PCR in other areas .................................... 31 3.2 Various nucleotide-based amplification methods and their applicability.......... 31 3.2.1 Ligase Chain Reaction (LCR) ...................................................................... 31 3.2.2 Nucleic Acid Sequence-Based Amplification (NASBA) ................................ 31 3.2.3 'Self-sustained sequence replication' (3SR) and 'Q replicase amplification'. 32 3.2.4 Fingerprinting techniques (RFLP, AFLP, RAPD, etc.).................................. 32 3.2.5 Probe hybridisation ...................................................................................... 32 3.3 Protein-based methods ................................................................................... 33 3.4 Detection of enzymatic activities ..................................................................... 33 4 Genetic elements used in approved genetically modified agricultural crops - implications for screening and product-specific detection methods ...................... 34 4.1. Survey of genetic elements introduced into approved transgenic crops ........ 34 4.1.1 Survey of the structural genes used............................................................. 34 4.1.2 Survey of the promoters used ...................................................................... 36 4.1.3 Survey of the terminators used .................................................................... 37 4.2 Development of screening methods................................................................ 38 Table 19: How many PCR systems are needed? ................................................. 39 4.3 Product-specific detection methods and available sequence information ....... 40 5 National research projects devoted to the detection of GMOs........................... 40 5.1 The European Community .............................................................................. 41 5.1.1 Germany ...................................................................................................... 41 5.1.2 The United Kingdom .................................................................................... 41 5.1.3 The Netherlands........................................................................................... 42 5.2 Switzerland ..................................................................................................... 42 5.3 Canada ........................................................................................................... 42 6 Laboratories for food control in Switzerland....................................................... 42 7 Prospects ........................................................................................................... 43 8 GLOSSARY ....................................................................................................... 43 9 References......................................................................................................... 48 Summary This report reviews currently approved genetically modified food crops, products from modified microorganisms for food use, and molecular methods currently applicable or under development for detecting foods derived from genetically modified organisms (GMOs). Up-to-date reviews on approvals of genetically engineered organisms or food products (in the United States, the United Kingdom, the Netherlands, Australia, Canada, Japan, the European Community, and Switzerland), including a comprehensive compilation of genetic and biochemical information on the respective products are presented. >From a survey of the genetically engineered agricultural crops it was found that there were 28 approved, genetically distinct plant products (Minor genetic differences between several lines of certain products derived from independent transformation events of the same or virtually the same host plants were not considered here.). These products were chicory (1), corn (6), cotton (4), papaya (1), potato (2), rapeseed (4), soybean (2), squash (2), tobacco (1) and tomato (5). The survey on the genetic elements (promoters, structural genes, terminators) introduced into the approved modified agricultural crops along with other pertinent data presented in this report, could provide the basis for the development of efficient screening methods and product-specific techniques for detecting genetically engineered food products. The other main objective of this paper is to review published analytical methods developed for identifying genetically engineered foods. Relevant methods which may be useful for designing identification techniques are also given. Included are: validated, official methods for the detection of GMOs; methods developed for the identification of GMOs in food stuffs published in specialised scientific journals or in reports unavailable in databases; other scientific articles describing the identification of DNA sequences that have also been used for generating GMOs; and publications from relevant, related fields such as authenticity testing or the detection of pathogens. Most of the techniques currently available use the polymerase chain reaction (PCR) for the amplification of DNA-sequences introduced into the plants by genetic engineering. The applicability of other nucleotide-based
Recommended publications
  • Food Science and Technology (FDST) 1
    Food Science and Technology (FDST) 1 FDST 812 Cereal Technology FOOD SCIENCE AND Crosslisted with: FDST 412 Prerequisites: FDST 205. TECHNOLOGY (FDST) Description: Chemistry and technology of the cereal grains. Post-harvest processing and utilization for food and feed. Current industrial processes FDST 801 Teaching Applications of Food Science and practices, and the theoretical basis for these operations. Crosslisted with: FDST 401 Credit Hours: 3 Prerequisites: BIOS 101 and CHEM 109 Max credits per semester: 3 Notes: Will not count toward a FDST major or minor. Max credits per degree: 3 Description: Overview of the science of food and how food can be used in Format: LEC the classroom to enhance science education. FDST 815 Molds and Mycotoxins in Food, Feed, and the Human Credit Hours: 3 Environment Max credits per semester: 3 Crosslisted with: FDST 415 Max credits per degree: 3 Prerequisites: FDST 405/805/BIOS 445/845 and FDST 406/806/ Format: LEC BIOS 446/846. FDST 803 Food Quality Assurance Description: Occurrence, growth, and mycotoxin production of molds Crosslisted with: FDST 403 in human foods, animal feeds, and the human environment. Spoilage, Prerequisites: FDST 205; STAT 218. mycotoxin production conditions, toxicity, and pathological effects. Description: Quality related issues as they pertain to manufacturing, Culture media, methods and techniques for enumerating and identifying processing, and/or testing of foods, with a major emphasis on food molds, analytical methods for mycotoxins, and effects of food and feed regulations, statistical process control and Hazard Analysis of Critical processing on mycotoxin stability. Control Points (HACCP). Credit Hours: 3 Credit Hours: 3 Max credits per semester: 3 Max credits per semester: 3 Max credits per degree: 3 Max credits per degree: 3 Format: LEC Format: LEC FDST 819 Meat Investigations FDST 805 Food Microbiology Crosslisted with: ASCI 419, ASCI 819, FDST 419 Crosslisted with: BIOS 445, BIOS 845, FDST 405 Prerequisites: ASCI 210 Prerequisites: BIOS 312; CHEM 251; BIOC 321.
    [Show full text]
  • Food Microbiology 101
    November 2018 Food Microbiology 101 Nina G. Parkinson NGP Consulting November 6, 2018 Food Safety and Sanitation Conference Summary • Microbiological contamination of food • Routes of contamination by pathogens • Overview on emerging risks • Solutions 1 November 2018 Basics of Food Microbiology • Not all microorganisms are ‘bad’ • Used to ferment products • Necessary for composting organic materials • Some cause spoilage • Decomposition of foods economic losses • Some cause illnesses and diseases • Pathogens Types of foodborne illnesses • Infections • Caused by swallowing living pathogens, which grow within the body and cause illness • Intoxications • Caused by swallowing toxin (poison) that has been formed in food as pathogens grow • Reactions usually occur within hours or days of consumption • Secondary conditions attributed to some of these illnesses 2 November 2018 Historical perspective 1900‐1950’s • Clostridium botulinum • Salmonella spp. • Staphylococcus aureus Worked hard to figure out how they grew, how they caused illnesses, etc. Growth needs Survival skills • Food • Sporeformers • Acid • High temperatures • Temperature • Unpleasant conditions • Time • Sanitizer chemicals • Oxygen • Low pH • Moisture • Vegetative pathogens • Low water activity • Low pH Some produce toxins • Low temperatures 3 November 2018 1950’s to 2000’s and beyond • E. coli (many strains and serotypes) • E. coli O157:H7 Enterohemorrhagic (EHEC) • Enterotoxigenic E. coli (ETEC) • Shiga (or Shiga‐like) Toxin E. coli (STEC) • Shigella spp. • Cronobacter sakazakii
    [Show full text]
  • Food Science Curriculum
    FOOD SCIENCE University of Florida - College of Agricultural and Life Sciences To remain on track, first year students must complete the appropriate critical-tracking courses, which appear in bold, with a 2.5 GPA or better. Students are required to complete a Quest 1course in semester 1 or 2. Fall Credits Spring Credits CHM 2045 & 2045L General Chemistry I (3) and 4 CHM 2046 & 2046L General Chemistry II 4 Laboratory (1) (GE-P) (3) and Laboratory (1) (GE-P) MAC 2311 Analytic Geometry & Calculus I (GE-M) 4 Quest 1 (GE-H) 3 Composition (GE-C) (WR) 3 Economics: ECO 2013, ECO 2023, or AEB 2014 3-4 Humanities w/Diversity Designation (GE-H/D) 3 Elective 4 Elective 1 Total 15 Total 14-15 Fall Credits Spring Credits BSC 2010 & 2010L Integrated Principles of Biology I 4 BSC 2011 & 2011L Integrated Principles 4 (3) and Laboratory (1) (GE-B) of Biology II (3) and Laboratory (1) (GE-B) PHY2053 & PHY2053L Physics and Lab (GE-P) 5 + CHM2210 Organic Chemistry I 3 FOS3042 Intro to Food Science 3 STA 2023 Introduction to Statistics (GE-M) 3 Composition (GE-C) (WR) 3 AEB3114L Intro AG Computer Applications 1 Quest 2 w/International Designation (GE-S/N) 3 Elective 1 Total 15 Total 15 Fall Credits Spring Credits FOS4722C Quality Control in Food Systems 3 HUN2201 Fundamentals of Human Nutrition 3 CHM 2211 Organic Chemistry II (3) and 5 MCB2000 (3) & MCB2000L(1) Microbiology and Lab 4 CHM2211 Lab (2) AEC3030C Effective Oral Communication or 3 FOS4311 (3) & FOS4311L (1) Food Chemistry and 4 SPC2608 Intro to Public Speaking Lab FOS3060 (Life After Graduation) 1 FOS4731 Govt.
    [Show full text]
  • Introduction to the Microbiology of Food Processing.Pdf
    United States Department of Agriculture Food Safety and Inspection Service Introduction TO THE Microbiology OF Food Processing August 2012 Small Plant News Guidebook Series Small Plant News is a four-page, four-color newsletter published by the U.S. Department of Agriculture’s (USDA) Food Safety and Inspection Service (FSIS). It is targeted to small and very small Federal- and State-inspected establishment owners and operators who produce meat, poultry, and processed egg products. Small Plant News’s mission is to support the “FSIS’ Strategic Implementation Plan for Strengthening Small and Very Small Plant Outreach” by providing pertinent information for plant owners and operators so they can produce safe food and, ultimately, ensure the success of their livelihoods. The newsletter strives to do this through: ✔ Informing and educating small and very small plant owners and operators on FSIS news with current and meaningful information in an easy-to-read format. ✔ Assisting plant owners and operators in incorporating FSIS rules and regulations into their daily operational practices with “plain language” information. ✔ Fostering small and very small plants’ ability to stay in business and produce the safest food by providing essential tips that will encourage the highest sanitation standards, paperwork compliance, and cost-saving measures. ✔ Honoring FSIS’ obligations to small and very small plants by providing a mechanism that increases two-way dialogue between plants and the Agency. Back issues of Small Plant News are available on FSIS’ Web site at www.fsis.usda.gov. Or you may call the Small Plant Help Desk at (877) 374-7435 to order back copies.
    [Show full text]
  • 7. Genetically Modified Microorganisms and Their Potential Effects on Human Health and Nutrition
    Trends in Food Science & Technology 14 (2003) 264–276 7. Genetically modified inactivated or viable. When genetically modified (GM) micoorganisms (GMMs) are used, these alternatives, microorganisms naturally, have rather different safety implications. Owing to the plasticity of microbial genomes and exist- ing gene exchange mechanisms, genetic containment, and their potential especially, is fundamentally different for GMMs than for other genetically modified organisms (GMOs). The effects on human following is an attempt to analyse the impacts of GMMs on human health and nutrition taking into health and nutrition account their various actual or potential uses. 7.2. Contribution of transgenic technologies to food microorganisms a, Atte von Wright * and 7.2.1. Background to the use of microorganisms in A˚ ke Bruceb traditional fermented foods Food fermentations represent an age-old technology to improve the keeping quality, safety and nutritional value of perishable foodstuffs; the types of fermented aInstitute of Applied Biotechnology, University of foods differ greatly in different parts of the world and Kuopio, P.O. Box 1627, FIN-70211 Kuopio, Finland among different food traditions (Cooke, Twiddy & (tel.: +358-17-162087; fax: +358-17-163322; Reilly, 1987; Nout, 2001). While many processes in the e-mail: atte.vonwright@uku.fi) developed world are nowadays carried out using defined bNational Food Administration, Uppsala, Sweden starter strains with known and predictable properties, spontaneous fermentation, back slopping (inoculation of the fresh
    [Show full text]
  • Food Microbiology - Radomir Lasztity
    FOOD QUALITY AND STANDARDS – Vol. III - Food Microbiology - Radomir Lasztity FOOD MICROBIOLOGY Radomir Lasztity Department of Biochemistry and Food Technology, Budapest University of Technology and Economics, Hungary Keywords: aerobic, anaerobic, antibiotic, ascus, ascomycetes, ascospora, bacteria, botulism, budding, coccus, colony, facultative aerobic, filament, filamentous fungi, film yeasts, food-borne diseses, food-borne pathogens, food microbiology, fungi imperfecti, HACCP, heterofermentative, homofermentative, hypha, industrial use of microorganisms (molds, yeasts, bacteria), lactic acid bacteria, mesophilic, methods in food microbiology, microaerobic, microorganism, molds, morphological characteristics, mycelium, pasteurization, preservation of foods, psychrophilic, single cell protein, spoilage of foods, spore, sterilization, thermophilic, true yeast, water activity, yeasts. Contents 1. Introduction 2. Microorganisms Important in Food 2.1. Molds 2.1.1. General 2.1.2. Molds Occurring in Foods 2.2. Yeasts 2.2.1. General 2.2.2. Classification,Important Genera of Yeasts and Their Industrial Use. 2.3. Bacteria 2.3.1. General 2.3.2. Classification. Bacteria Important in Food Microbiology. 2.3.3. Industrial Use of Bacteria. 2.3.4. Food-borne Pathogens 3. Microbiology of Spoilage and Preservation of Food 3.1. General 3.2. Spoilage of Foods. 3.3. Preservation of Foods 3.3.1. Reduction of Moisture Content 3.3.2. Preservation by Use of High Temperatures. 3.3.3.PresevationUNESCO at low temperatures – EOLSS 3.3.4. Preservation of Foods by Preservatives. 3.3.5. Other MethodsSAMPLE of Food Preservation CHAPTERS 4. Food-borne Diseases 4.1. General 4.2. Microorganisms Causing Food Infection and Food Poisoning. 4.2.1. Botulism 4.2.2. Staphylococcal Food Poisoning 4.2.3.
    [Show full text]
  • Food Microbiology and Food Safety
    Food Microbiology and Food Safety Series Editor Michael P. Doyle Center of Food Safety, University of Georgia, Griffin, GA, USA For other titles published in this series, go to http://www.springer.com/series/7131 FOOD MICROBIOLOGY AND FOOD SAFETY SERIES Food Microbiology and Food Safety publishes valuable, practical, and timely resources for professionals and researchers working on microbiological topics associated with foods, as well as food safety issues and problems. Series Editor Michael P. Doyle, Regents Professor and Director of the Center for Food Safety, University of Georgia, Griffith, GA, USA Editorial Board Francis F. Busta, Director, National Center for Food Protection and Defense, University of Minnesota, Minneapolis, MN, USA Bruce R. Cords, Vice President, Environment, Food Safety & Public Health, Ecolab Inc., St. Paul, MN, USA Catherine W. Donnelly, Professor of Nutrition and Food Science, University of Vermont, Burlington, VT, USA Paul A. Hall, President, AIV Microbiology and Food Safety Consultants, LLC, Hawthorn Woods, IL, USA Ailsa D. Hocking, Chief Research Scientist, CSIRO—Food Science Australia, North Ryde, Australia Thomas J. Montville, Professor of Food Microbiology, Rutgers University, New Brunswick, NJ, USA R. Bruce Tompkin, Formerly Vice President-Product Safety, ConAgra Refrigerated Prepared Foods, Downers Grove, IL, USA Titles Compendium of the Microbiological Spoilage of Foods and Beverages, William Sperber and Michael Doyle (Eds.) (2009) Effective Risk Communication, Timothy Sellnow, Robert Ulmer, et al. (2009) Food Safety Culture, Frank Yiannas (2008) Molecular Techniques in the Microbial Ecology of Fermented Foods, Luca Cocolin and Danilo Ercolini (Eds.) (2008) Viruses in Foods, Sagar M. Goyal (Ed.) (2006) Foodborne Parasites, Ynes R.
    [Show full text]
  • Evaluation of a Rapid Detection Method of Salmonella in Comparison with the Culture Method and Microbiological Quality in Fish F
    a ISSN 0101-2061 (Print) Food Science and Technology ISSN 1678-457X (Online) DOI: https://doi.org/10.1590/fst.38719 Evaluation of a rapid detection method of Salmonella in comparison with the culture method and microbiological quality in fish from the Brazilian Amazon Paula Hellayne Costa dos SANTOS1#, Hamilton M. FIGUEIREDO1#, Luiza Helena Meller da SILVA1#* , Rafaela Santos Oliveira da SILVA1#, Gabrielle Virginia Ferreira CARDOSO2#, Carina Martins MORAES2#, Antonio Manoel da Cruz RODRIGUES1# Abstract Microbiological safety of fish is a concern of consumers, industries and regulatory agencies worldwide. Among the pathogenic microorganisms, Salmonella spp. is one of the main agents of foodborne diseases and should be absent in animal products. Rapid and accurate identification of pathogens in the supply chain is important for both quality assurance and tracking infectious agents within the chain. In this context, this study aimed to evaluate the equivalence of two rapid detection tests, as alternative methods to the conventional Salmonella detection method, as well as to verify the microbiological quality parameters of two commercially important fish species in the Amazon biome. The plate count of aerobic bacteria ranged from 7.76 x 410 to 8.71 x 107 CFU.g-1 for mesophiles and 1.70 x 106 to 4.27 x 108 CFU.g-1 for psychrotrophic whereas the maximum for this group of microorganisms in fresh fish is 106 CFU.g-1. Regarding the Staphylococcus count, the two species presented variations between 1.35 x 104 to 1.51 x 105 CFU.g-1. This represents unsatisfactory conditions of handling, storage and conservation of fish species.
    [Show full text]
  • 11:115:321 (44K PDF)
    Ethical Issues in Biochemical Research Spring 2021 11:115:321:01 George Pieczenik, Ph.D., Professor Spring 2021 Day M,W Time 2:15-3:35 Online: GoToMeeting and Zoom 3 credits, meeting twice a week for 80 minutes Course Description This course will address ethical issues in biochemistry, with some focus on genetics and molecular biology. The course will consist of lectures by the professor, as well as student presentations on selected topics. Issues to be covered will include the ethics of recombinant DNA technology, of genetically modified plants and animals, of stem cell use, scientific patents, and of creating DNA databases. Other topics will include the political use of genetics and evolutionary paradigms, and the use of fraudulent data and “pseudo science”, and how these tools can be used to sway public opinion. Important issues facing scientists and students currently will also be discussed, such as plagiarism . data manipulation and consequences of the biotechnology revolution. Course Requirements 1. Class Attendance & Participation: Students are expected to attend class online and to participate actively. There will be spot quizzes. Unexcused absences (>3) will result in failure. (10%) Online class attendance will be through GoToMyMeeting and/or Zoom. Classes will be recorded and deposited to Dropbox for students who can not make the class synchronously. 2. Essays on assigned topics: Students will present two power point topics assigned or requested. for presentation to the class. (70%) 3. Final exam; A final take home 2 hour exam. (20%) Optional reading list from which to prepare paper The Main text is Edwin Black's - America's War on the Weak Publisher: Four Walls Eight Windows; (September 2003) ISBN: 1568582587 Rosalind Franklin: The Dark Lady of DNA by Brenda Maddox , Harper Collins 2002, UK The Fraud of Abderhalden’s Enzymes by Ute Deichmann and Benno Muller-Hill, Nature vol 393.
    [Show full text]
  • Distributions of Microorganisms in Foods and Their Impact on Food Safety
    Distributions of microorganisms in foods and their impact on food safety Ida Jongenburger Thesis committee Thesis supervisors Prof. dr. ir. M.H. Zwietering Professor of Food Microbiology Wageningen University Prof. dr. L.G.M. Gorris Professor of Food Microbiology Wageningen University Thesis co-supervisor Dr. ir. M.W. Reij Lecturer at the Laboratory of Food Microbiology Wageningen University Other members Prof. dr. H.C. Boshuizen, Wageningen University Prof. F. Butler, University College Dublin, Dublin, Ireland Prof. dr. ir. A.H. Havelaar, Utrecht University Dr. M.C. Spanjer, Food and Consumer Product Safety Authority, Utrecht This research was conducted under the auspices of the Graduate School of advanced studies in Food Technology, Agrobiotechnology, Nutrition and Health Sciences (VLAG) Distributions of microorganisms in foods and their impact on food safety Ida Jongenburger Thesis submittted in fulfilment of the requirements for the degree of doctor at Wageningen University by the authority of the Rector Magnificus Prof. dr. M.J. Kropff, in the presence of the Thesis Committee appointed by the Academic Board to be defended in public on Friday March 2 2012 at 4 p.m. in the Aula. Ida Jongenburger Distributions of microorganisms in foods and their impact on food safety 208 pages Thesis Wageningen University, Wageningen, NL (2012) With references, with summaries in Dutch and English ISBN 978-94-6173-207-1 This thesis is dedicated to my parents, who showed me the way, the truth, and the life (John 14: 6a). P. Jongenburger (1924-2006) C. M. Jongenburger-Bezemer Contents Abstract 9 Chapter 1 Introduction 11 Chapter 2 Impact of microbial distributions on food safety 21 I.
    [Show full text]
  • Detection of Viable Foodborne Pathogens & Spoilage
    Detection of Viable Foodborne Pathogens & Spoilage Microorganisms by Nucleic Acid Amplification Based Platforms Dissertation Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Linlin Xiao, M.S. Graduate Program in Food Science & Nutrition The Ohio State University 2011 Dissertation Committee: Dr. Hua H. Wang, Advisor Dr. M. Monica Giusti, Co-advisor Dr. John Litchfield Dr. Zhongtang Yu Copyright by Linlin Xiao 2011 I Abstract Foodborne disease outbreaks and microbial spoilage threaten public health and cause major financial loss to the food industry and the society. Proper detection of concerned microorganisms in both raw materials and final food productes is a key to control the problems associated with microbial contamination. Several platforms were used to develop accurate, rapid, quantitative, specific and sensitive detection methods for targeted, viable cells, including RNA-based amplification platforms, such as nucleic acid sequence based amplification (NASBA) and reverse transcriptase PCR (RT-PCR), as well as DNA amplification coupled with sample treatment with DNA-intercalating dye propidium monoazide (PMA). In this study, a NASBA-molecular beacon assay targeting 18S ribosomal RNA has been established to investigate its potential to detect viable spoilage yeasts in juice products. Using the developed platform, less than 100 yeast cells per reaction was detected rapidly and specifically. In addition, significant decrease of amplification signals after lethal heat treatments indicated that this platform has the potential for rapid detection of viable spoilage yeasts if combined with quantitative analysis. Listeria monocytogenes contamination is a serious public health issue. The second part of my project compared the suitability of using 16S rRNA, inlA mRNA and rplD ii mRNA as indictors to detect viable L.
    [Show full text]
  • Vegetable Biotechnology
    UC Davis, Vegetable Research and Information Center Biotechnology (Publication pending) VEGETABLE BIOTECHNOLOGY Vegetable Research and Information Center Vegetable Biotechnology Applications of Biotechnology in Vegetable Breeding, Production, Marketing, and Consumption Department of Vegetable Crops, University of California, Davis, CA 95616 Tel. 530-752-1249 Fax: 530-752-9659 email: [email protected] http://vric.ucdavis.edu Authors: Trevor V. Suslow and Kent J. Bradford Bioengineered Products Reach The Marketplace Revolutionary discoveries in biology in the 1970’s and 1980’s fueled predictions of dramatic changes in agriculture and stimulated entrepreneurial excitement and investment. Driven by continuing advances in knowledge, technology, and commercial experience, these predictions are now being realized in the marketplace. Beginning in 1994, the first wave of products from biotechnological applications to vegetables were introduced in pilot test markets. Vine-ripe tomatoes with extended shelf life, processing tomatoes with superior quality and deep red color, squash with novel virus resistance, and potatoes genetically modified to produce an insect-killing protein are examples of the traits introduced into commercial vegetable varieties with the tools of biotechnology These first products, such as the Flavr Savr® tomato which promised superior vine-ripened flavor, received both public visibility and regulatory scrutiny. Less visible to the public is the astounding behind-the-scenes impact of biotechnology in vegetable breeding, production, processing, and marketing. While not replacing traditional crop breeding and horticultural expertise, biotechnology has dramatically expanded the tools available for the genetic improvement and production of vegetables. The revolutionary (evolutionary in terms of biological sciences as a whole) advances that have resulted from public and private investments in basic and applied research are now entering commercial application, to the benefit of both producers and consumers.
    [Show full text]