Pharmacological Amelioration of Cone Survival and Vision in a Mouse Model for Leber Congenital Amaurosis
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dominant Retinas: a Novel Pathway for Visual- Pigment Regeneration in Daylight
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Neuron, Vol. 36, 69–80, September 26, 2002, Copyright 2002 by Cell Press Isomerization and Oxidation of Vitamin A in Cone- Dominant Retinas: A Novel Pathway for Visual- Pigment Regeneration in Daylight Nathan L. Mata,1 Roxana A. Radu,1 cis-retinaldehyde through a multistep pathway called Richard S. Clemmons,3 and Gabriel H. Travis1,2,4 the visual cycle (Figure 1B). Most of what is known about 1Jules Stein Eye Institute the visual cycle has come from the study of rod-domi- 2 Department of Biological Chemistry nant species such as cattle and rodents. UCLA School of Medicine Several lines of evidence suggest that rod and cone Los Angeles, California 90095 photopigments regenerate by different mechanisms. In 3 Center for Basic Neuroscience frog retinas separated from the retinal pigment epithe- UT Southwestern Medical Center lium (RPE), cone opsin, but not rhodopsin, regenerates Dallas, Texas 75235 spontaneously (Goldstein and Wolf, 1973; Hood and Hock, 1973). After bleaching, isolated salamander cones, but not rods, recover sensitivity with addition of Summary 11-cis-retinol (Jones et al., 1989). Cultured Mu¨ ller cells isomerize all-trans-retinol to 11-cis-retinol, which they The first step toward light perception is 11-cis to all- secrete into the medium (Das et al., 1992). Mu¨ ller cells, trans photoisomerization of the retinaldehyde chro- in addition to RPE cells, contain cellular retinaldehyde mophore in a rod or cone opsin-pigment molecule. binding protein (CRALBP), which specifically binds 11- Light sensitivity of the opsin pigment is restored cis-retinoids (Bunt-Milam and Saari, 1983; Saari and through a multistep pathway called the visual cycle, Bredberg, 1987). -
Retinoid Isomerase Inhibitors Impair but Do Not Block Mammalian Cone Photoreceptor Function
Published Online: 2 March, 2018 | Supp Info: http://doi.org/10.1085/jgp.201711815 Downloaded from jgp.rupress.org on April 2, 2018 RESEARCH ARTICLE Retinoid isomerase inhibitors impair but do not block mammalian cone photoreceptor function Philip D. Kiser1,2, Jianye Zhang2, Aditya Sharma3, Juan M. Angueyra4, Alexander V. Kolesnikov3, Mohsen Badiee5, Gregory P. Tochtrop5, Junzo Kinoshita6, Neal S. Peachey1,6,7, Wei Li4, Vladimir J. Kefalov3, and Krzysztof Palczewski2 Visual function in vertebrates critically depends on the continuous regeneration of visual pigments in rod and cone photoreceptors. RPE65 is a well-established retinoid isomerase in the pigment epithelium that regenerates rhodopsin during the rod visual cycle; however, its contribution to the regeneration of cone pigments remains obscure. In this study, we use potent and selective RPE65 inhibitors in rod- and cone-dominant animal models to discern the role of this enzyme in cone-mediated vision. We confirm that retinylamine and emixustat-family compounds selectively inhibit RPE65 over DES1, the putative retinoid isomerase of the intraretinal visual cycle. In vivo and ex vivo electroretinography experiments in Gnat1−/− mice demonstrate that acute administration of RPE65 inhibitors after a bleach suppresses the late, slow phase of cone dark adaptation without affecting the initial rapid portion, which reflects intraretinal visual cycle function. Acute administration of these compounds does not affect the light sensitivity of cone photoreceptors in mice during extended exposure to background light, but does slow all phases of subsequent dark recovery. We also show that cone function is only partially suppressed in cone-dominant ground squirrels and wild-type mice by multiday administration of an RPE65 inhibitor despite profound blockade of RPE65 activity. -
Supplementary Figures 1-14 and Supplementary References
SUPPORTING INFORMATION Spatial Cross-Talk Between Oxidative Stress and DNA Replication in Human Fibroblasts Marko Radulovic,1,2 Noor O Baqader,1 Kai Stoeber,3† and Jasminka Godovac-Zimmermann1* 1Division of Medicine, University College London, Center for Nephrology, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK. 2Insitute of Oncology and Radiology, Pasterova 14, 11000 Belgrade, Serbia 3Research Department of Pathology and UCL Cancer Institute, Rockefeller Building, University College London, University Street, London WC1E 6JJ, UK †Present Address: Shionogi Europe, 33 Kingsway, Holborn, London WC2B 6UF, UK TABLE OF CONTENTS 1. Supplementary Figures 1-14 and Supplementary References. Figure S-1. Network and joint spatial razor plot for 18 enzymes of glycolysis and the pentose phosphate shunt. Figure S-2. Correlation of SILAC ratios between OXS and OAC for proteins assigned to the SAME class. Figure S-3. Overlap matrix (r = 1) for groups of CORUM complexes containing 19 proteins of the 49-set. Figure S-4. Joint spatial razor plots for the Nop56p complex and FIB-associated complex involved in ribosome biogenesis. Figure S-5. Analysis of the response of emerin nuclear envelope complexes to OXS and OAC. Figure S-6. Joint spatial razor plots for the CCT protein folding complex, ATP synthase and V-Type ATPase. Figure S-7. Joint spatial razor plots showing changes in subcellular abundance and compartmental distribution for proteins annotated by GO to nucleocytoplasmic transport (GO:0006913). Figure S-8. Joint spatial razor plots showing changes in subcellular abundance and compartmental distribution for proteins annotated to endocytosis (GO:0006897). Figure S-9. Joint spatial razor plots for 401-set proteins annotated by GO to small GTPase mediated signal transduction (GO:0007264) and/or GTPase activity (GO:0003924). -
Supplementary Table S1. Correlation Between the Mutant P53-Interacting Partners and PTTG3P, PTTG1 and PTTG2, Based on Data from Starbase V3.0 Database
Supplementary Table S1. Correlation between the mutant p53-interacting partners and PTTG3P, PTTG1 and PTTG2, based on data from StarBase v3.0 database. PTTG3P PTTG1 PTTG2 Gene ID Coefficient-R p-value Coefficient-R p-value Coefficient-R p-value NF-YA ENSG00000001167 −0.077 8.59e-2 −0.210 2.09e-6 −0.122 6.23e-3 NF-YB ENSG00000120837 0.176 7.12e-5 0.227 2.82e-7 0.094 3.59e-2 NF-YC ENSG00000066136 0.124 5.45e-3 0.124 5.40e-3 0.051 2.51e-1 Sp1 ENSG00000185591 −0.014 7.50e-1 −0.201 5.82e-6 −0.072 1.07e-1 Ets-1 ENSG00000134954 −0.096 3.14e-2 −0.257 4.83e-9 0.034 4.46e-1 VDR ENSG00000111424 −0.091 4.10e-2 −0.216 1.03e-6 0.014 7.48e-1 SREBP-2 ENSG00000198911 −0.064 1.53e-1 −0.147 9.27e-4 −0.073 1.01e-1 TopBP1 ENSG00000163781 0.067 1.36e-1 0.051 2.57e-1 −0.020 6.57e-1 Pin1 ENSG00000127445 0.250 1.40e-8 0.571 9.56e-45 0.187 2.52e-5 MRE11 ENSG00000020922 0.063 1.56e-1 −0.007 8.81e-1 −0.024 5.93e-1 PML ENSG00000140464 0.072 1.05e-1 0.217 9.36e-7 0.166 1.85e-4 p63 ENSG00000073282 −0.120 7.04e-3 −0.283 1.08e-10 −0.198 7.71e-6 p73 ENSG00000078900 0.104 2.03e-2 0.258 4.67e-9 0.097 3.02e-2 Supplementary Table S2. -
Key Enzymes of the Retinoid (Visual) Cycle in Vertebrate Retina☆
Biochimica et Biophysica Acta 1821 (2012) 137–151 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbalip Review Key enzymes of the retinoid (visual) cycle in vertebrate retina☆ Philip D. Kiser a,1, Marcin Golczak a,1, Akiko Maeda a,b,⁎, Krzysztof Palczewski a,⁎⁎ a Department of Pharmacology, Case Western Reserve University, Cleveland, OH, 44106-4965, USA b Department of Ophthalmology and Vision Sciences, Case Western Reserve University, Cleveland, OH, 44106-4965, USA article info abstract Article history: A major goal in vision research over the past few decades has been to understand the molecular details of Received 19 January 2011 retinoid processing within the retinoid (visual) cycle. This includes the consequences of side reactions that Received in revised form 8 March 2011 result from delayed all-trans-retinal clearance and condensation with phospholipids that characterize a Accepted 22 March 2011 variety of serious retinal diseases. Knowledge of the basic retinoid biochemistry involved in these diseases is Available online 5 April 2011 essential for development of effective therapeutics. Photoisomerization of the 11-cis-retinal chromophore of rhodopsin triggers a complex set of metabolic transformations collectively termed phototransduction that Keywords: RPE65 ultimately lead to light perception. Continuity of vision depends on continuous conversion of all-trans-retinal Retinol dehydrogenase back to the 11-cis-retinal isomer. This process takes place in a series of reactions known as the retinoid cycle, Visual cycle which occur in photoreceptor and RPE cells. All-trans-retinal, the initial substrate of this cycle, is a chemically Retinoid cycle reactive aldehyde that can form toxic conjugates with proteins and lipids. -
Functional Gene Clusters in Global Pathogenesis of Clear Cell Carcinoma of the Ovary Discovered by Integrated Analysis of Transcriptomes
International Journal of Environmental Research and Public Health Article Functional Gene Clusters in Global Pathogenesis of Clear Cell Carcinoma of the Ovary Discovered by Integrated Analysis of Transcriptomes Yueh-Han Hsu 1,2, Peng-Hui Wang 1,2,3,4,5 and Chia-Ming Chang 1,2,* 1 Department of Obstetrics and Gynecology, Taipei Veterans General Hospital, Taipei 112, Taiwan; [email protected] (Y.-H.H.); [email protected] (P.-H.W.) 2 School of Medicine, National Yang-Ming University, Taipei 112, Taiwan 3 Institute of Clinical Medicine, National Yang-Ming University, Taipei 112, Taiwan 4 Department of Medical Research, China Medical University Hospital, Taichung 440, Taiwan 5 Female Cancer Foundation, Taipei 104, Taiwan * Correspondence: [email protected]; Tel.: +886-2-2875-7826; Fax: +886-2-5570-2788 Received: 27 April 2020; Accepted: 31 May 2020; Published: 2 June 2020 Abstract: Clear cell carcinoma of the ovary (ovarian clear cell carcinoma (OCCC)) is one epithelial ovarian carcinoma that is known to have a poor prognosis and a tendency for being refractory to treatment due to unclear pathogenesis. Published investigations of OCCC have mainly focused only on individual genes and lack of systematic integrated research to analyze the pathogenesis of OCCC in a genome-wide perspective. Thus, we conducted an integrated analysis using transcriptome datasets from a public domain database to determine genes that may be implicated in the pathogenesis involved in OCCC carcinogenesis. We used the data obtained from the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) DataSets. We found six interactive functional gene clusters in the pathogenesis network of OCCC, including ribosomal protein, eukaryotic translation initiation factors, lactate, prostaglandin, proteasome, and insulin-like growth factor. -
A Knowledge-Guided Mechanistic Model of Synthetic Lethality in The
bioRxiv preprint doi: https://doi.org/10.1101/2021.06.22.449530; this version posted June 23, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. A Knowledge-guided Mechanistic Model of Synthetic Lethality in the HCT116 Vorinostat-resistant Colon Cancer Xenograft Model Cell-line Paul Aiyetan June 22, 2021 Abstract With an overall lifetime risk of about 4.3% and 4.0%, in men and women respectively, colorectal cancer remains the third leading cause of cancer-related deaths in the United States. In persons aged 55 and below, its rate increased at 1% per year in the years 2008 to 2017 despite the steady decline associated with improved screening, early diagnosis and treatment in the general population. Besides standardized therapeutic regimen, many trials continue to evaluate the potential benefits of vorinostat, mostly in combination with other anti-neoplastic agents for its treatment. Vorinostat, an FDA approved anti-cancer drug known as suberoylanilide hydroxamic acid (SAHA), an histone deacylase (HDAC) inhibitor, through many mechanisms, causes cancer cell arrest and death. However, like many other anti-neoplastic agents, resistance and or failures have been observed. In the HCT116 colon cancer cell line xenograft model, exploiting potential lethal molecular interactions by additional gene knockouts restored vorinotat sensitivity. This phenomenon, known as synthetic lethality, offers a promise to selectively target cancer cells. Although without clearly delineated understanding of underlying molecular processes, it has been demonstrated as an effective cancer-killing mechanism. -
Tsin-CV; Updated 6/94
Updated June, 2019 Andrew Tsin CURRICULUM VITAE Andrew Tsin, Ph.D. Professor and Chair Deaprtment of Molecular Science And Senior Associate Dean of Research School of Medicine The University of Texas Rio Grande Valley (UT Health – Rio Grande Valley) CONTACT INFO: Department of Molecular Science, School of Medicine The University of Texas Rio Grande Valley 1210 W. Schunior St., Edinburg, TX 78541 Phone: (956) 665-6599 Email: [email protected] CITIZENSHIP: USA and CANADA EDUCATION/TRAINING: 1973 BS in Biology, Dalhousie University, Halifax, Nova Scotia, Canada 1976 MS in Zoology (Physiology), The University of Alberta, Edmonton, Alberta, Canada 1979 Ph.D. in Zoology (Physiology), The University of Alberta, Edmonton, Alberta, Canada 1979-81 Postdoctoral Fellow, Cullen Eye Institute, Department of Ophthalmology, Program in Neuroscience, Baylor College of Medicine, Texas Medical Center, Houston, Texas CONTINUED EDUCTION: 2014 Healing Health Care Disparities through Education: An Interdisciplinary Faculty Development Program, Harvard Medical School, Boston, Massachusetts. 2016 Effective Validation of Commercialization Strategy through tactical collection and analysis of data from direct interaction with customer- a short course by The Southwest Node of the National Science Foundation Innovation Corps (I-Corps) Program, The IC2 Institute of the University of Texas at Austin. 2017 Organizational Leadership in Academic Medicine: An Executive Development Seminar for Associate Deans and Department Chairs, AAMC (Association of American Medical -
Genome-Wide Transcript and Protein Analysis Reveals Distinct Features of Aging in the Mouse Heart
bioRxiv preprint doi: https://doi.org/10.1101/2020.08.28.272260; this version posted April 21, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Genome-wide transcript and protein analysis reveals distinct features of aging in the mouse heart Isabela Gerdes Gyuricza1, Joel M. Chick2, Gregory R. Keele1, Andrew G. Deighan1, Steven C. Munger1, Ron Korstanje1, Steven P. Gygi3, Gary A. Churchill1 1The Jackson Laboratory, Bar Harbor, Maine 04609 USA; 2Vividion Therapeutics, San Diego, California 92121, USA; 3Harvard Medical School, Boston, Massachusetts 02115, USA Corresponding author: [email protected] Key words for online indexing: Heart Aging Transcriptomics Proteomics eQTL pQTL Stoichiometry ABSTRACT Investigation of the molecular mechanisms of aging in the human heart is challenging due to confounding factors, such as diet and medications, as well limited access to tissues. The laboratory mouse provides an ideal model to study aging in healthy individuals in a controlled environment. However, previous mouse studies have examined only a narrow range of the genetic variation that shapes individual differences during aging. Here, we analyzed transcriptome and proteome data from hearts of genetically diverse mice at ages 6, 12 and 18 months to characterize molecular changes that occur in the aging heart. Transcripts and proteins reveal distinct biological processes that are altered through the course of natural aging. Transcriptome analysis reveals a scenario of cardiac hypertrophy, fibrosis, and reemergence of fetal gene expression patterns. -
ANNUAL REPORT 2014–2015 Stein Eye Institute ANNUAL REPORT
ANNUAL REPORT 2014–2015 Stein Eye Institute ANNUAL REPORT July 1, 2014–June 30, 2015 Director Bartly J. Mondino, MD Faculty Advisor Debora B. Farber, PhD, DPhhc Managing Editor Tina-Marie Gauthier c/o Stein Eye Institute 100 Stein Plaza, UCLA Los Angeles, California 90095–7000 Email: [email protected] Editors Teresa Closson Susan Ito Rosalie Licht Peter J. López Ellen Pascual Debbie Sato M. Gail Summer Guest Writer Dan Gordon Photography Reed Hutchinson J. Charles Martin Robin Weisz Design Robin Weisz/Graphic Design Printing Colornet Press Send questions, comments, and updates to: [email protected]. To view the Annual Report online, visit: jsei.org/annual_report.htm. For more information about the Institute, see: www.jsei.org. ©2015 by the Regents of the University of California. All rights reserved. On the cover: Signature eyewear worn by philanthropists Edie and Lew Wasserman dominate the lobby of the Edie & Lew Wasserman Building, paying homage to the couple’s infinite vision and long- standing commitment to preventing blindness and restoring eyesight. A Year in Review 1 Stein Eye Institute 2 Transitions 6 Alumni News 6 Honors and Awards 8 Research 11 Education 13 Community Outreach 15 Philanthropy 17 Thank You 19 Jules and Doris Stein 24 Board of Trustees and Executive Committee 26 Faculty 29 Programs 87 Patient Care Services 88 Research and Treatment Centers 90 Clinical Laboratories 95 Training Programs 97 Appendices 101 Volunteer and Consulting Faculty 102 Residents and Fellows 104 Educational Offerings 105 Research Contracts and Grants 107 Clinical Research Studies 116 Publications of the Full-Time Faculty 123 Giving Opportunities 130 Dear Friends, The 2014–2015 academic term stands as a banner year for the Stein Eye Institute. -
In Silico Analysis of IDH3A Gene Revealed Novel Mutations Associated with Retinitis Pigmentosa
bioRxiv preprint doi: https://doi.org/10.1101/554196; this version posted February 18, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. In silico analysis of IDH3A gene revealed Novel mutations associated with Retinitis Pigmentosa Thwayba A. Mahmoud1*, Abdelrahman H. Abdelmoneim1, Naseem S. Murshed1, Zainab O. Mohammed2, Dina T. Ahmed1, Fatima A. Altyeb1, Nuha A. Mahmoud3, Mayada A. Mohammed1, Fatima A. Arayah1, Wafaa I. Mohammed1, Omnia S. Abayazed1, Amna S. Akasha1, Mujahed I. Mustafa1,4, Mohamed A. Hassan1 1- Department of Biotechnology, Africa city of Technology, Sudan 2- Hematology Department, Ribat University Hospital, Sudan 3- Biochemistry Department, faculty of Medicine, National University, Sudan 4- Department of Biochemistry, University of Bahri, Sudan *Corresponding Author: Thwayba A. Mahmoud, Email: [email protected] Abstract: Background: Retinitis Pigmentosa (RP) refers to a group of inherited disorders characterized by the death of photoreceptor cells leading to blindness. The aim of this study is to identify the pathogenic SNPs in the IDH3A gene and their effect on the structure and function of the protein. Method: we used different bioinformatics tools to predict the effect of each SNP on the structure and function of the protein. Result: 20 deleterious SNPs out of 178 were found to have a damaging effect on the protein structure and function. Conclusion: this is the first in silico analysis of IDH3A gene and 20 novel mutations were found using different bioinformatics tools, and they could be used as diagnostic markers for Retinitis Pigmentosa. -
Processing and Transport of Retinoids by the Retinal Pigment Epithelium
Eye (1990) 4, 326-332 Processing and Transport of Retinoids by the Retinal Pigment Epithelium DE AN BOK Los Angeles Summary Recent developments regarding our understanding of retinoid processing and trans port during the visual cycle and related events are reviewed. Retinoids are bound and protected by a cohort of retinoid binding proteins, each of whiCh is unique. The production of retinol (Vitamin A) derivatives is accomplished by a group of mem brane-bound enzymes, some of which appear to be coupled in their actions. Historical Perspectives on a series of biochemical reactions involving The photopigments of all organisms studied the coordinated activity of the retinal pigment to date consist of a chromophore derived from epithelium (RPE) and the photoreceptors.3 Vitamin A (Retinol)! covalently bound to a These events begin with the photobleaching protein by a protonated aldimine bond of rhodopsin to form opsin and all-trans·ret· (Schiff's base).2 The chromophore or pros inal, the production of various retinol deriva thetic group is, in all cases, retinaldehyde (ret tives, the regeneration of ll-cis-retinal and inal) the oxidised form of retinol. Retinol and ultimately, the regeneration of the photopig its derivatives are collectively referred to as ment itself. This complex series of interac retinoids and the proteins that covalently bind tions is known as the visual cycle. In retinal are called opsins. Both the retinoids Dowling's original observations, light was and the opsins are hydrophobic molecules, found to cause a cis to trans isomerisation of retinol being a fat-soluble vitamin, and the opsin-bound retinal following which retinal opsins belonging to a class of membrane com dissociated from the protein and was reduced ponents collectively known as intrinsic pro to form all-trans-retinol.