III Llll Orders Is Presented
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Expression of Type XVI Collagen in Human Skin Fibroblasts: Enhanced Expression in Fibrotic Skin Diseases
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Expression of Type XVI Collagen in Human Skin Fibroblasts: Enhanced Expression in Fibrotic Skin Diseases Atsushi Akagi, Shingo Tajima, Akira Ishibashi,* Noriko Yamaguchi,† and Yutaka Nagai Department of Dermatology, National Defense Medical College, Tokorozawa, Saitama, Japan; *Department of Cell Biology, Harvard Medical School, Boston, Massachusetts, U.S.A.; †Koken Bioscience Institute, Shinjuku-ku, Tokyo, Japan Abundance of type XVI collagen mRNA in normal level was elevated 2.3-fold in localized scleroderma human dermal fibroblasts explanted from different and 3.6-fold in systemic scleroderma compared with horizontal layers was determined using RNase protec- keloid and normal controls. Immunofluorescent study tion assays. Type XVI collagen mRNA level in the revealed that an intense immunoreactivity with the fibroblasts explanted from the upper dermis was antibody was observed in the upper to lower dermal greater than those of the middle and lower dermis. matrix and fibroblasts in the skin of systemic The antibody raised against the synthetic N-terminal scleroderma as compared with normal skin. The noncollagenous region reacted with ≈210 kDa colla- results suggest that expression of type XVI collagen, a genous polypeptide in the culture medium of member of fibril-associated collagens with interrupted fibroblasts. Immunohistochemical study of normal triple helices, in human skin fibroblasts can be human skin demonstrated that the antibody reacted heterogeneous in the dermal layers and can be preferentially with the fibroblasts and the extracellular modulated by some fibrotic diseases. Key words: matrix in the upper dermis rather than those in the dermal fibroblast/scleroderma/type XVI collagen. -
Functions of Vertebrate Ferlins
cells Review Functions of Vertebrate Ferlins Anna V. Bulankina 1 and Sven Thoms 2,* 1 Department of Internal Medicine 1, Goethe University Hospital Frankfurt, 60590 Frankfurt, Germany; [email protected] 2 Department of Child and Adolescent Health, University Medical Center Göttingen, 37075 Göttingen, Germany * Correspondence: [email protected] Received: 27 January 2020; Accepted: 20 February 2020; Published: 25 February 2020 Abstract: Ferlins are multiple-C2-domain proteins involved in Ca2+-triggered membrane dynamics within the secretory, endocytic and lysosomal pathways. In bony vertebrates there are six ferlin genes encoding, in humans, dysferlin, otoferlin, myoferlin, Fer1L5 and 6 and the long noncoding RNA Fer1L4. Mutations in DYSF (dysferlin) can cause a range of muscle diseases with various clinical manifestations collectively known as dysferlinopathies, including limb-girdle muscular dystrophy type 2B (LGMD2B) and Miyoshi myopathy. A mutation in MYOF (myoferlin) was linked to a muscular dystrophy accompanied by cardiomyopathy. Mutations in OTOF (otoferlin) can be the cause of nonsyndromic deafness DFNB9. Dysregulated expression of any human ferlin may be associated with development of cancer. This review provides a detailed description of functions of the vertebrate ferlins with a focus on muscle ferlins and discusses the mechanisms leading to disease development. Keywords: dysferlin; myoferlin; otoferlin; C2 domain; calcium-sensor; muscular dystrophy; dysferlinopathy; limb girdle muscular dystrophy type 2B (LGMD2B), membrane repair; T-tubule system; DFNB9 1. Introduction Ferlins belong to the superfamily of proteins with multiple C2 domains (MC2D) that share common functions in tethering membrane-bound organelles or recruiting proteins to cellular membranes. Ferlins are described as calcium ions (Ca2+)-sensors for vesicular trafficking capable of sculpturing membranes [1–3]. -
A Novel Mechanism of Metastasis in Postpartum Breast Cancer
WEANING-INDUCED LIVER INVOLUTION: A NOVEL MECHANISM OF METASTASIS IN POSTPARTUM BREAST CANCER By Erica T. Goddard A THESIS/DISSERTATION Presented to the Cancer Biology Program & the Oregon Health & Science University School of Medicine in partial fulfillment of the requirements for the degree of Doctor of Philosophy January 2017 School of Medicine Oregon Health & Science University CERTIFICATE OF APPROVAL ______________________________ This is to certify that the PhD dissertation of Erica Thornton Goddard has been approved _________________________________ Pepper J. Schedin, PhD, Mentor/Advisor _________________________________ Virginia F. Borges, MD, MMSc, Clinical Mentor/Advisor _________________________________ Melissa H. Wong, PhD, Oral Exam Committee Chair _________________________________ Lisa Coussens, PhD, Member _________________________________ Amanda W. Lund, PhD, Member _________________________________ Caroline Enns, PhD, Member _________________________________ Willscott E. Naugler, MD, Member Table of Contents List of Figures ........................................................................................................................... iv List of Tables ............................................................................................................................ vii List of abbreviations ............................................................................................................ viii Acknowledgements ............................................................................................................. -
The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid
The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome Annette K. Brenner, Elise Aasebø, Maria Hernandez-Valladares, Frode Selheim, Frode Berven, Ida-Sofie Grønningsæter, Sushma Bartaula-Brevik and Øystein Bruserud Supplementary Material S2 of S31 Table S1. Detailed information about the 68 AML patients included in the study. # of blasts Viability Proliferation Cytokine Viable cells Change in ID Gender Age Etiology FAB Cytogenetics Mutations CD34 Colonies (109/L) (%) 48 h (cpm) secretion (106) 5 weeks phenotype 1 M 42 de novo 241 M2 normal Flt3 pos 31.0 3848 low 0.24 7 yes 2 M 82 MF 12.4 M2 t(9;22) wt pos 81.6 74,686 low 1.43 969 yes 3 F 49 CML/relapse 149 M2 complex n.d. pos 26.2 3472 low 0.08 n.d. no 4 M 33 de novo 62.0 M2 normal wt pos 67.5 6206 low 0.08 6.5 no 5 M 71 relapse 91.0 M4 normal NPM1 pos 63.5 21,331 low 0.17 n.d. yes 6 M 83 de novo 109 M1 n.d. wt pos 19.1 8764 low 1.65 693 no 7 F 77 MDS 26.4 M1 normal wt pos 89.4 53,799 high 3.43 2746 no 8 M 46 de novo 26.9 M1 normal NPM1 n.d. n.d. 3472 low 1.56 n.d. no 9 M 68 MF 50.8 M4 normal D835 pos 69.4 1640 low 0.08 n.d. -
Myoferlin Regulation by NFAT in Muscle Injury, Regeneration and Repair
Research Article 2413 Myoferlin regulation by NFAT in muscle injury, regeneration and repair Alexis R. Demonbreun1,2, Karen A. Lapidos2,3, Konstantina Heretis2, Samantha Levin2, Rodney Dale1, Peter Pytel4, Eric C. Svensson1,3 and Elizabeth M. McNally1,2,3,* 1Committee on Developmental Biology, 2Department of Medicine, 3Department of Molecular Genetics and Cell Biology, and 4Department of Pathology, The University of Chicago, 5841 South Maryland Avenue, MC 6088, Chicago, IL 60637, USA *Author for correspondence ([email protected]) Accepted 9 April 2010 Journal of Cell Science 123, 2413-2422 © 2010. Published by The Company of Biologists Ltd doi:10.1242/jcs.065375 Summary Ferlin proteins mediate membrane-fusion events in response to Ca2+. Myoferlin, a member of the ferlin family, is required for normal muscle development, during which it mediates myoblast fusion. We isolated both damaged and intact myofibers from a mouse model of muscular dystrophy using laser-capture microdissection and found that the levels of myoferlin mRNA and protein were increased in damaged myofibers. To better define the components of the muscle-injury response, we identified a discreet 1543-bp fragment of the myoferlin promoter, containing multiple NFAT-binding sites, and found that this was sufficient to drive high-level myoferlin expression in cells and in vivo. This promoter recapitulated normal myoferlin expression in that it was downregulated in healthy myofibers and was upregulated in response to myofiber damage. Transgenic mice expressing GFP under the control of the myoferlin promoter were generated and GFP expression in this model was used to track muscle damage in vivo after muscle injury and in muscle disease. -
Enzymatic Cleavage of Myoferlin Releases a Dual C2-Domain Module Linked to ERK Signalling
Cellular Signalling 33 (2017) 30–40 Contents lists available at ScienceDirect Cellular Signalling journal homepage: www.elsevier.com/locate/cellsig Enzymatic cleavage of myoferlin releases a dual C2-domain module linked to ERK signalling Ann-Katrin Piper a,b, Samuel E. Ross a, Gregory M. Redpath c, Frances A. Lemckert a, Natalie Woolger a,b, Adam Bournazos a, Peter A. Greer d, Roger B. Sutton e,f, Sandra T. Cooper a,b,⁎ a Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Sydney, NSW 2145, Australia b Discipline of Child and Adolescent Health, Faculty of Medicine, University of Sydney, Sydney, Australia c EMBL Australia Node in Single Molecule Science, School of Medical Science, University of New South Wales, Sydney, NSW, Australia d Department of Pathology and Molecular Medicine, Queen's University, Division of Cancer Biology and Genetics, Queen's Cancer Research Institute, Kingston, ON K7L 3N6, Canada e Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA f Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA article info abstract Article history: Myoferlin and dysferlin are closely related members of the ferlin family of Ca2+-regulated vesicle fusion proteins. Received 11 January 2017 Dysferlin is proposed to play a role in Ca2+-triggered vesicle fusion during membrane repair. Myoferlin regulates Accepted 7 February 2017 endocytosis, recycling of growth factor receptors and adhesion proteins, and is linked to the metastatic potential Available online 10 February 2017 of cancer cells. Our previous studies establish that dysferlin is cleaved by calpains during membrane injury, with the cleavage motif encoded by alternately-spliced exon 40a. -
Rashid Thesis 2015
Protein Profile and Directed Gene Expression of Developing C2C12 cells By Susan Rashid Submitted in Partial Fulfillment of the Requirements For the Degree of Master of Science In the Biological Sciences Program YOUNGSTOWN STATE UNIVERSITY August 3, 2015 Protein Profile and Directed Gene Expression of Developing C2C12 cells Susan Rashid I hereby release this thesis to the public. I understand that this will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: ___________________________________________________ Susan Rashid, Student Date Approvals: ___________________________________________________ Dr. Gary Walker, Thesis Advisor 'ate ___________________________________________________ Dr. Jonathan Caguiat, Committee Member Date ___________________________________________________ Dr. David Asch, Committee Member Date ___________________________________________________ Dr. Sal Sanders, Associate Dean, Graduate Studies Date ABSTRACT Myogenesis is a tightly regulated process resulting in unique structures called myotubes or myofibers, which compose skeletal muscle. Myotubes are multi-nucleated fibers containing a functional unit composed of cytoskeletal proteins called the sarcomere. The specific arrangement of these proteins in the sarcomere works to contract and relax muscles. During embryonic and post-embryonic development, fluctuations in expression of growth factors throughout the program account for the dramatic structural changes from cell to mature muscle fiber. In vivo, these growth factors are strictly spatiotemporally regulated according to a ‘myogenic program.’ In order to assess the dynamics of protein expression throughout this program, we conducted a time course study using the mouse myoblast cell line C2C12, in which cells were allowed to differentiate and insoluble protein fractions were collected at seven time points. -
Myoferlin-Mediated Lysosomal Exocytosis Regulates Cytotoxicity
Myoferlin-Mediated Lysosomal Exocytosis Regulates Cytotoxicity by Phagocytes Yuji Miyatake, Tomoyoshi Yamano and Rikinari Hanayama This information is current as J Immunol published online 17 October 2018 of October 2, 2021. http://www.jimmunol.org/content/early/2018/10/16/jimmun ol.1800268 Supplementary http://www.jimmunol.org/content/suppl/2018/10/16/jimmunol.180026 Downloaded from Material 8.DCSupplemental Why The JI? Submit online. http://www.jimmunol.org/ • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: by guest on October 2, 2021 http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2018 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published October 17, 2018, doi:10.4049/jimmunol.1800268 The Journal of Immunology Myoferlin-Mediated Lysosomal Exocytosis Regulates Cytotoxicity by Phagocytes Yuji Miyatake,*,† Tomoyoshi Yamano,*,‡ and Rikinari Hanayama*,‡,x During inflammation, phagocytes release digestive enzymes from lysosomes to degrade harmful cells such as pathogens and tumor cells. However, the molecular mechanisms regulating this process are poorly understood. In this study, we identified myoferlin as a critical regulator of lysosomal exocytosis by mouse phagocytes. -
Structural Basis for the Distinct Membrane Binding Activity of the Homologous C2A Domains of Myoferlin and Dysferlin
Article Structural Basis for the Distinct Membrane Binding Activity of the Homologous C2A Domains of Myoferlin and Dysferlin Faraz M. Harsini 1,2, Anthony A. Bui 3, Anne M. Rice 4, Sukanya Chebrolu 1, Kerry L. Fuson 1, Andrei Turtoi 5,6,7, Mazdak Bradberry 9, Edwin R. Chapman 8,9 and R. Bryan Sutton 1,2 1 - Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA 2 - Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX, 79430, USA 3 - Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA 4 - Department of Biophysics, Johns Hopkins University, Baltimore, MD, 21205, USA 5 - Tumor Microenvironment and Resistance to Treatment Lab, Institut de Recherche en Cancrologie de Montpellier, 34090 Montpellier, France 6 - Institut du Cancer Montpellier, 34090 Montpellier, France 7 - Universit Montpellier, 34298 Montpellier, France 8 - Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, WI, 53705, USA 9 - Department of Neuroscience, University of Wisconsin-Madison, Madison, WI, 53705, USA Correspondence to R. Bryan Sutton: [email protected] https://doi.org/10.1016/j.jmb.2019.04.006 Edited by James Sellers Abstract Dysferlin has been implicated in acute membrane repair processes, whereas myoferlin's activity is maximal during the myoblast fusion stage of early skeletal muscle cell development. Both proteins are similar in size and domain structure; however, despite the overall similarity, myoferlin's known physiological functions do not overlap with those of dysferlin. Here we present for the first time the X‐ray crystal structure of human myoferlin C2A to 1.9 Å resolution bound to two divalent cations, and compare its three-dimensional structure and membrane binding activities to that of dysferlin C2A. -
Increased Expression of Several Collagen Genes Is Associated With
Journal of Cancer 2016, Vol. 7 1295 Ivyspring International Publisher Journal of Cancer 2016; 7(10): 1295-1310. doi: 10.7150/jca.15371 Research Paper Increased Expression of Several Collagen Genes is Associated with Drug Resistance in Ovarian Cancer Cell Lines Radosław Januchowski1, Monika Świerczewska1, Karolina Sterzyńska1, Karolina Wojtowicz1, Michał Nowicki1, Maciej Zabel1,2 1. Department of Histology and Embryology, Poznań University of Medical Sciences, Poland; 2. Department of Histology and Embryology, Wroclaw Medical University, Poland. Corresponding author: Radosław Januchowski, mailing address: Department of Histology and Embryology, Poznan University of Medical Sciences, Święcickiego 6 St., Poznań, post code 61-781, phone number +48618546419, fax number +48 618546440, email address: [email protected]. © Ivyspring International Publisher. Reproduction is permitted for personal, noncommercial use, provided that the article is in whole, unmodified, and properly cited. See http://ivyspring.com/terms for terms and conditions. Received: 2016.02.25; Accepted: 2016.05.23; Published: 2016.06.25 Abstract Ovarian cancer is the most lethal gynaecological cancer. The main reason for the high mortality among ovarian cancer patients is the development of drug resistance. The expression of collagen genes by cancer cells can increase drug resistance by inhibiting the penetration of the drug into the cancer tissue as well as increase apoptosis resistance. In this study, we present data that shows differential expression levels of collagen genes and proteins in cisplatin- (CIS), paclitaxel- (PAC), doxorubicin- (DOX), topotecan- (TOP), vincristine- (VIN) and methotrexate- (MTX) resistant ovarian cancer cell lines. Quantitative real-time polymerase chain reactions were performed to determine the mRNA levels. Protein expression was detected using Western blot and immunocytochemistry assays. -
Effect of Selenocystine on Gene Expression Profiles in Human Keloid
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Genomics 97 (2011) 265–276 Contents lists available at ScienceDirect Genomics journal homepage: www.elsevier.com/locate/ygeno Effect of selenocystine on gene expression profiles in human keloid fibroblasts Bruna De Felice a,⁎, Corrado Garbi b, Robert R. Wilson a, Margherita Santoriello b, Massimo Nacca a a Department of Life Sciences, University of Naples II, Via Vivaldi 43, 81100 Caserta, Italy b Department of Cellular and Molecular Biology and Pathology, University of Naples “Federico II”, Naples, Italy article info abstract Article history: In this study, selenocystine, a nutritionally available selenoamino acid, was identified for the first time as a Received 15 October 2010 novel agent with anti proliferative activity on human keloids. Accepted 24 February 2011 The 20 μM concentration after 48 h treatment used here was the most effective to reduce keloid fibroblast Available online 1 March 2011 growth. We analyzed the gene expression profile of selenocystine treatment response in keloid fibroblasts by the microarray system to characterize the effects of selenocystine on human keloids. Keywords: The major alterations in keloid fibroblasts following selenocystine exposure included up-regulation of the Keloids Microarray genes encoding cell death and transcription factors. Prominent down-regulation of genes involved in Selenocystine development, cell adhesion and cytoskeleton, as well as extra cellular matrix genes, usually strongly up- Gene expression regulated in keloids, resulted following selenocystine exposure. The range of the down-regulated genes and the degree of the decreased expression appeared to be correlated with the degree of the morphological alterations in selenocystine treated keloids. -
Bioinformatics Tools for the Analysis of Gene-Phenotype Relationships Coupled with a Next Generation Chip-Sequencing Data Processing Pipeline
Bioinformatics Tools for the Analysis of Gene-Phenotype Relationships Coupled with a Next Generation ChIP-Sequencing Data Processing Pipeline Erinija Pranckeviciene Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the Doctorate in Philosophy degree in Cellular and Molecular Medicine Department of Cellular and Molecular Medicine Faculty of Medicine University of Ottawa c Erinija Pranckeviciene, Ottawa, Canada, 2015 Abstract The rapidly advancing high-throughput and next generation sequencing technologies facilitate deeper insights into the molecular mechanisms underlying the expression of phenotypes in living organisms. Experimental data and scientific publications following this technological advance- ment have rapidly accumulated in public databases. Meaningful analysis of currently avail- able data in genomic databases requires sophisticated computational tools and algorithms, and presents considerable challenges to molecular biologists without specialized training in bioinfor- matics. To study their phenotype of interest molecular biologists must prioritize large lists of poorly characterized genes generated in high-throughput experiments. To date, prioritization tools have primarily been designed to work with phenotypes of human diseases as defined by the genes known to be associated with those diseases. There is therefore a need for more prioritiza- tion tools for phenotypes which are not related with diseases generally or diseases with which no genes have yet been associated in particular. Chromatin immunoprecipitation followed by next generation sequencing (ChIP-Seq) is a method of choice to study the gene regulation processes responsible for the expression of cellular phenotypes. Among publicly available computational pipelines for the processing of ChIP-Seq data, there is a lack of tools for the downstream analysis of composite motifs and preferred binding distances of the DNA binding proteins.