1 II) HOMINIZATION 1) Look at the Map. A) What Does the Map

Total Page:16

File Type:pdf, Size:1020Kb

1 II) HOMINIZATION 1) Look at the Map. A) What Does the Map II) HOMINIZATION 1) Look at the map. a) What does the map represent? b) When did the first modern humans emerge? c) Where did they emerge? d) When they reach i) East Asia? ii) Australia? iii) Europe? iv) North America? 1 2) Read these texts and match them with the correct pictures below. 1) 2 ) 3) By about 35,000 years Australopithecus was An ancestor of modern ago, most of Africa, one of the earliest humans known as Homo Asia, and Europe were human ancestors. The erectus appeared in occupied by modern small, apelike homi- East Africa about 1.6 forms of humans, the nid lived in East million years ago and Homo sapiens sapiens. Africa at least 2 eventually spread million years ago. across Asia and parts of Europe. a B c 2 3) Read the following text. The first ancestors of the human beings appeared about five million years ago. We call them Australopithecus. They were similar to chimpanzees. Two million years ago a new human species called Homo Habilis appeared. They made tools of stone and lived on hunting and gathering. Homo Habilis and Australopithecus lived in Africa. Homo erectus appeared a million and a half years ago. They were similar to Homo habilis but they made better tools. Their technological development was more advanced. This species discovered fire and learned how to use it. Home erectus remains were found in Africa, Europe and Asia. Homo antecessor is an extinct human species discovered in the Atapuerca site (Spain). They appeared about 800,000 years ago. Most probably they were the oldest Europeans. Homo antecessor was a common ancestor of Homo neanderthalensis and Homo sapiens. About 100,000 years ago Homo sapiens appeared. This species had two subtypes: Homo Sapiens neanderthalensis or Neanderthal man and Homo sapiens sapiens. Neanderthal man looked like us but was more robust. This species became extinct. Homo sapiens sapiens is the species we belong to. 4) Match the words in column A with the correct sentences in column B. A B a) Australopithecus 1) Appeared two million years ago. b) Homo Habilis 2) We belong to this species. c) Homo erectus 3) Looked like us but were stronger. d) Homo antecessor 4) Perhaps the oldest Europeans. e) Neanderthal man 5) They used fire. f) Homo sapiens sapiens 6) They still looked like apes. 3 5) Look at the map below. What does it represent? Which continent is especially important for evolution of mankind? 5) Read the text and say whether the sentences below are true or false. Africa is the cradle of human race. Anthropologists have unearthed the oldest human skeletons in East Africa in places such as Hadar, Olduvai, Laetoli. One of the best preserved human remnants is a female skeleton found at Hadar in Ethiopia. Anthropologists assembled about 40% of the young girl that was given the nickname "Lucy". Lucy was dated between 3.6 and 3 million years ago and belongs to the Australopethicus category. 1) The oldest human fossils were found in Africa. 2) “Lucy” is he name of a famous anthropologist. 4 .
Recommended publications
  • The Evolutionary History of the Human Face
    This is a repository copy of The evolutionary history of the human face. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/145560/ Version: Accepted Version Article: Lacruz, Rodrigo S, Stringer, Chris B, Kimbel, William H et al. (5 more authors) (2019) The evolutionary history of the human face. Nature Ecology and Evolution. pp. 726-736. ISSN 2397-334X https://doi.org/10.1038/s41559-019-0865-7 Reuse Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ THE EVOLUTIONARY HISTORY OF THE HUMAN FACE Rodrigo S. Lacruz1*, Chris B. Stringer2, William H. Kimbel3, Bernard Wood4, Katerina Harvati5, Paul O’Higgins6, Timothy G. Bromage7, Juan-Luis Arsuaga8 1* Department of Basic Science and Craniofacial Biology, New York University College of Dentistry; and NYCEP, New York, USA. 2 Department of Earth Sciences, Natural History Museum, London, UK 3 Institute of Human Origins and School of Human Evolution and Social Change, Arizona State University, Tempe, AZ.
    [Show full text]
  • UNIT 4 HISTORY of HUMAN EVOLUTION* History of Human Evolution
    UNIT 4 HISTORY OF HUMAN EVOLUTION* History of Human Evolution Contents 4.0 Introduction 4.1 Trends in Human Evolution: Understanding Pre-modern Humans 4.2 Hominization Process 4.2.1 Bipedalism 4.2.2 Opposable Thumb and Manual Dexterity 4.3 Summary 4.4 References 4.5 Answers to Check Your Progress Learning Objectives: After reading this unit you will be able to: analyze the major trends in human evolution; review characteristics which distinguish human from their primate ancestors; learn anatomical and cultural changes associated with the process of hominization; and comprehend the significance of these changes during evolution of human. 4.0 INTRODUCTION Humans first evolved in East Africa about 2.5 million years ago from an earlier genus of apes called Australopithecus, which means ‘Southern Ape’. About 2 million years ago, some of these archaic men and women left their homeland to journey through and settle vast areas of North Africa, Europe and Asia. Since survival in the snowy forests of northern Europe required different traits than those needed to stay alive in Indonesia’s steaming jungles, human populations evolved in different directions. The result was several distinct species, to each of which scientists have assigned a pompous Latin name. Humans in Europe and western Asia evolved into Homo neanderthalensis (‘Man from the Neander Valley’), popularly referred to simply as ‘Neandethals’. Neanderthals, bulkier and more muscular than us Sapiens, were well adapted to the cold climate of Ice Age western Eurasia. The more eastern regions of Asia were populated by Homo erects, ‘Upright Man’, who survived there for close to 2 million years, making it the most durable species ever.
    [Show full text]
  • Mechanics of Bipedalism: an Exploration of Skeletal Morphology and Force Plate Anaylsis Erin Forse May 04, 2007 a Senior Thesis
    MECHANICS OF BIPEDALISM: AN EXPLORATION OF SKELETAL MORPHOLOGY AND FORCE PLATE ANAYLSIS ERIN FORSE MAY 04, 2007 A SENIOR THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF ARTS IN ARCHAEOLOGICAL STUDIES UNIVERSITY OF WISCONSIN- LA CROSSE Abstract There are several theories on how humans learned to walk, and while these all address the adaptations needed for walking, none adequately describes how our early ancestors developed the mechanism to walk. Our earliest recognizable relatives, the australopithecines, have several variations on a theme: walking upright. There are varied changes as australopithecines approach the genus Homo. These changes occurred in the spine, legs, pelvis, and feet, and changes are also in the cranium, arms and hands, but these are features that may have occurred simultaneously with bipedalism. Several analyses of Australopithecus afarensis, specifically specimen A.L. 288-1 ("Lucy"), have shown that the skeletal changes are intermediate between apes and humans. Force plate analyses are used to determine if the gait pattern of humans resembles that of apes, and if it is a likely development pattern. The results of both these analyses will give insight into how modern humans developed bipedalism. Introduction Bipedalism is classified as movement of the post-cranial body in a vertical position, with the lower limbs shifting as an inverted pendulum, progressing forward. Simply, it is upright walking. Several theories have addressed why bipedalism evolved in hominids, with some unlikely ideas taking hold throughout the history of the issue. Other theories are more likely, but all lack the same characteristic: answering how bipedalism developed.
    [Show full text]
  • The Human Evolutionary Calendar - Evolution in a Year)I------1 January • December F------{( March ) ( June September
    The Human Evolutionary Calendar - Evolution in a Year)I---------1 January • December f-------{( March ) ( June September SahelanthropusTchadensi Australopithecus sediba Homo rh odes iensis Ardipithecus ramidus 7,000,000 - 6,000,000 yrs. 2,000,000 - , ,750,000 yrs. 300,000 -125,000 yrs. 3,200,000 • 4,300,000 yrs. Homo rudolfensis Orrorin tugenensis 1,900,000 - 1.750,000 yrs. Homo pekin ensi s 6, 100,000 - 5,BOO,Oci:l yrs. 700,000 - 500,000 yrs. Australopit ec us anamensis 4,200,00 - 3,900,000 yrs. Ardipithecus kadabba 5,750,000 - 5,200,000 yrs. Ho m o Ergaster 1,900,000 - 1,3,000,000 yrs. Homo heidelberge nsis 700,000 • 200,000 yrs. Australopithecus afarensis Homo erectus 3,900,000 - 2,900,000 yrs. 1,800,000 • 250,000 yrs. Ho mo antecessor Australopithecus africa nus Ho mo habilis 1,000,000 -700,000 yrs. 3,800,000 - 3,000,000 yrs. 2,350,000 - 1,450,000 yrs. Ho m o g eorgicus Kenya nthropus platyo ps 1,800,000- 1.3000,000 yrs. 3,500,000 - 3,200,000 yrs. Ho m o nea nderthalensis 200,000 · 28,000 yrs. Paranthropus bo ise i Paranthropus aethiopicu 2,275,000- 1,250,000 yrs. De nisova ho minins 2,650,000 - 2,300,000 yrs. 200,000 - 30,000 yrs. Paranthropus robustus/crass iden s Australopithecus garhi 1,750,000- 1,200,000 yrs. 2,750,000 - 2.400,000 yrs. Red Deer Cave Peo ple ?- 11,000yrs. Ho mo sa piens sapien s 200~ Ho m o fl o res iensis 100,000 • 13,000 yrs.
    [Show full text]
  • What Makes a Modern Human We Probably All Carry Genes from Archaic Species Such As Neanderthals
    COMMENT NATURAL HISTORY Edward EARTH SCIENCE How rocks and MUSIC Philip Glass on Einstein EMPLOYMENT The skills gained Lear’s forgotten work life evolved together on our and the unpredictability of in PhD training make it on ornithology p.36 planet p.39 opera composition p.40 worth the money p.41 ILLUSTRATION BY CHRISTIAN DARKIN CHRISTIAN BY ILLUSTRATION What makes a modern human We probably all carry genes from archaic species such as Neanderthals. Chris Stringer explains why the DNA we have in common is more important than any differences. n many ways, what makes a modern we were trying to set up strict criteria, based non-modern (or, in palaeontological human is obvious. Compared with our on cranial measurements, to test whether terms, archaic). What I did not foresee evolutionary forebears, Homo sapiens is controversial fossils from Omo Kibish in was that some researchers who were not Icharacterized by a lightly built skeleton and Ethiopia were within the range of human impressed with our test would reverse it, several novel skull features. But attempts to skeletal variation today — anatomically applying it back onto the skeletal range of distinguish the traits of modern humans modern humans. all modern humans to claim that our diag- from those of our ancestors can be fraught Our results suggested that one skull nosis wrongly excluded some skulls of with problems. was modern, whereas the other was recent populations from being modern2. Decades ago, a colleague and I got into This, they suggested, implied that some difficulties over an attempt to define (or, as PEOPLING THE PLANET people today were more ‘modern’ than oth- I prefer, diagnose) modern humans using Interactive map of migrations: ers.
    [Show full text]
  • Adam and Eve Outside of Eden Prof.M.M.Ninan
    ADAM AND EVE OUTSIDE OF EDEN PROF.M.M.NINAN ISBN 978-0-359-08377-0 Normal, IL Feb., 2018 ADAM AND EVE OUTSIDE OF EDEN PROF.M.M.NINAN CONTENTS PREFACE CHAPTER ONE: THE STORY SO FAR 1 CHAPTER TWO: THE WORLD OUTSIDE OF EDEN. 10 CHAPTER THREE: ADAM: THE GIANT FARMER 29 CHAPTER FOUR; CAIN AND ABEL 47 CHAPTERFIVE: CAINANDSETH 67 CHAPTER SIX: NEPHILIM AND THE DAUGHTERS OF MEN 77 CHAPTER SEVEN: CLEANSING THE EARTH 95 ADAM AND EVE OUTSIDE OF EDEN PROF.M.M.NINAN PREFACE This is a continuation of my studies in genesis in which I study what happened to Adam and Eve after they have been thrown out of Eden because they did not obey the one commandment as children given by God the Father. Thus in order that they may not remain as eternal demons with a selfish nature, God send them out clothed in skin and to live of their own using their brains and learning to live. Since outside of Eden, the law of entropy was the default law, they are no susceptible to death. God had his plan of redemption without violating the freedom of any of his children. Until all creation is redeemed, since creation is always part of God himself with whole universe within God as the only reality is God, God himself will be in torment and pain. Yet that is what having children mean - even on earth. Adam carried the selfish ego DNA as a Son of God went out into the world outside of Eden, with the only profession he knew as an Agriculturalist.
    [Show full text]
  • Denisovans, Neanderthals Or Sapiens?
    Could There Have Been Human Families... 8(2)/2020 ISSN 2300-7648 (print) / ISSN 2353-5636 (online) Received: March 31, 2020. Accepted: September 2, 2020 DOI: http://dx.doi.org/10.12775/SetF.2020.019 Could There Have Been Human Families Where Parents Came from Different Populations: Denisovans, Neanderthals or Sapiens? MARCIN EDWARD UHLIK Independent Scholar e-mail: [email protected] ORCID: 0000-0001-8518-0255 Abstract. No later than ~500kya the population of Homo sapiens split into three lin- eages of independently evolving human populations: Sapiens, Neanderthals and Den- isovans. After several hundred thousands years, they met several times and interbred with low frequency. Evidence of coupling between them is found in fossil records of Neanderthal – Sapiens offspring (Oase 1) and Neanderthal – Denisovans (Denisova 11) offspring. Moreover, the analysis of ancient and present-day population DNA shows that there were several significant gene flows between populations. Many introgressed sequences from Denisovans and Neanderthals were identified in genomes of currently living populations. All these data, according to biological species definition, may in- dicate that populations of H. sapiens sapiens and two extinct populations H. sapiens neanderthalensis and H. sapiens denisovensis are one species. Ontological transitions from pre-human beings to humans might have happened before the initial splitting of the Homo sapiens population or after the splitting during evolution of H. sapiens sapiens lineage in Africa. If the ensoulment of the first homo occurred in the evolving populations of H. sapiens sapiens, then occasionally mixed couples (Neanderthals – Sa- piens or Denisovans – Sapiens) created relations that functioned as a family, in which children could have matured.
    [Show full text]
  • Early Members of the Genus Homo -. EXPLORATIONS: an OPEN INVITATION to BIOLOGICAL ANTHROPOLOGY
    EXPLORATIONS: AN OPEN INVITATION TO BIOLOGICAL ANTHROPOLOGY Editors: Beth Shook, Katie Nelson, Kelsie Aguilera and Lara Braff American Anthropological Association Arlington, VA 2019 Explorations: An Open Invitation to Biological Anthropology is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License, except where otherwise noted. ISBN – 978-1-931303-63-7 www.explorations.americananthro.org 10. Early Members of the Genus Homo Bonnie Yoshida-Levine Ph.D., Grossmont College Learning Objectives • Describe how early Pleistocene climate change influenced the evolution of the genus Homo. • Identify the characteristics that define the genus Homo. • Describe the skeletal anatomy of Homo habilis and Homo erectus based on the fossil evidence. • Assess opposing points of view about how early Homo should be classified. Describe what is known about the adaptive strategies of early members of the Homo genus, including tool technologies, diet, migration patterns, and other behavioral trends.The boy was no older than 9 when he perished by the swampy shores of the lake. After death, his slender, long-limbed body sank into the mud of the lake shallows. His bones fossilized and lay undisturbed for 1.5 million years. In the 1980s, fossil hunter Kimoya Kimeu, working on the western shore of Lake Turkana, Kenya, glimpsed a dark colored piece of bone eroding in a hillside. This small skull fragment led to the discovery of what is arguably the world’s most complete early hominin fossil—a youth identified as a member of the species Homo erectus. Now known as Nariokotome Boy, after the nearby lake village, the skeleton has provided a wealth of information about the early evolution of our own genus, Homo (see Figure 10.1).
    [Show full text]
  • On the Evolution of Human Fire Use
    ON THE EVOLUTION OF HUMAN FIRE USE by Christopher Hugh Parker A dissertation submitted to the faculty of The University of Utah in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Anthropology The University of Utah May 2015 Copyright © Christopher Hugh Parker 2015 All Rights Reserved The University of Utah Graduate School STATEMENT OF DISSERTATION APPROVAL The dissertation of Christopher Hugh Parker has been approved by the following supervisory committee members: Kristen Hawkes , Chair 04/22/2014 Date Approved James F. O’Connell , Member 04/23/2014 Date Approved Henry Harpending , Member 04/23/2014 Date Approved Andrea Brunelle , Member 04/23/2014 Date Approved Rebecca Bliege Bird , Member Date Approved and by Leslie A. Knapp , Chair/Dean of the Department/College/School of Anthropology and by David B. Kieda, Dean of The Graduate School. ABSTRACT Humans are unique in their capacity to create, control, and maintain fire. The evolutionary importance of this behavioral characteristic is widely recognized, but the steps by which members of our genus came to use fire and the timing of this behavioral adaptation remain largely unknown. These issues are, in part, addressed in the following pages, which are organized as three separate but interrelated papers. The first paper, entitled “Beyond Firestick Farming: The Effects of Aboriginal Burning on Economically Important Plant Foods in Australia’s Western Desert,” examines the effect of landscape burning techniques employed by Martu Aboriginal Australians on traditionally important plant foods in the arid Western Desert ecosystem. The questions of how and why the relationship between landscape burning and plant food exploitation evolved are also addressed and contextualized within prehistoric demographic changes indicated by regional archaeological data.
    [Show full text]
  • THE HOMINIZATION PROCESS of HOMO SAPIENS Ajeet Jaiswal University of Delhi, Delhi, India
    TENSIVE COURSE IN BIOLOGICAL ANTHROPOLOGY 1st Summer School of the European Anthropological Association 16–30 June, 2007, Prague, Czech Republic EAA Summer School eBook 1: 43-46 THE HOMINIZATION PROCESS OF HOMO SAPIENS Ajeet Jaiswal University of Delhi, Delhi, India The Hominization process consists of evolutionary transformation of hominoids into Hominids. It is a process that has occurred in the hominoid-line since its divergence from the last common hominoid ancestor shared with any living ape. Initially the term has a restricted meaning and implied emergence of modern man, different from all other forms. Currently, however, the term is broadened and includes all those aspects of structural and behavioral changes that occurred in the Hominid line finally leading to man. All such changes can be broadly grouped into following heads. 1. Bipedalism 2. Hand manipulation and tool use (manual dexterity) 3. Modification of jaw and teeth. 4. Enlargement of brain 5. Changes in vocal tracts, language and speech Bipedalism Analysis of postcranial elements of A. africanus, A. afarensis, A. ramidus (Tim et al. 1994) and A. anamensis (Leakey et al. 1995) clearly establishes bipedalism to be one of the oldest of all hominid characteristics. The age of most primitive australopithecines. A. ramidus is estimated to be 4.4 mya, perhaps one million years after separation of ancestral lines leading to great apes and man. The branch point between ape and human accestors is estimated to be 5-6 mya. According to Stanford (1995). A. ramidus was a biped, its lower body was clearly adapted for walking on the ground, though they may have continued to use trees for gathering fruits and for shelter at night.
    [Show full text]
  • The Brain in Hominid Evolution
    v\useum o/ ,\. %,'*/ * \ 1869 THE LIBRARY j? THE BRAIN IN HOMINID P EVOLUTION PHILLIP V. TOBIAS The brain in hominid evolution g COLUMBIA UNIVERSITY PRESS Q NEW YORK & LONDON i 9 yi Phillip V. Tobias is Professor of Anatomy at the University of the Witwatersrand, Johannesburg. This book is based on the author's James Arthur Lecture, delivered at the American Museum of Natural History, New York City, April 30, 1969; it was the thirty-eighth in this series of lectures. Copyright © 1971 Columbia University Press International Standard Book Number: 0-231-03518-7 Library of Congress Catalog Card Number: 78-158458 Printed in the United States of America LIBRARY OFTHE AMERICAN MUSEUM JAMES ARTHUR LECTURES ON THE EVOLUTION OF THE HUMAN BRAIN March 15, 1932 Frederick Tilney, The Brain in Relation to Behavior April 6, 1933 C. Judson Herrick, Brains as Instruments of Biological Values April 24, 1934 D. M. S. Watson, The Story of Fossil Brains from Fish to Man April 25, 1935 C. U. Ariens Kappers, Structural Principles in the Nervous System; The Development of the Forebrain in Animals and Prehistoric Human Races May 15, 1936 Samuel T. Orton, The Language Area of the Human Brain and Some of Its Disorders Apnl 15 R. W. Gerard, Dynamic Neural Patterns Franz Weidenreich, The Phylogenetic Development of the Hominid Brain and Its Connection with the Transformation of the Skull G. Kingsley Noble, The Neural Basis of Social Behavior of Vertebrates John F. Fulton, A Functional Approach to the Evolution of the Primate Brain Frank A. Beach, Central Nervous Mechanisms Involved in the Reproductive Behavior of Vertebrates George Pinkley, A History of the Human Brain James W.
    [Show full text]
  • Nubian Levallois Technology Associated with Southernmost Neanderthals James Blinkhorn1,2*, Clément Zanolli3, Tim Compton4, Huw S
    www.nature.com/scientificreports OPEN Nubian Levallois technology associated with southernmost Neanderthals James Blinkhorn1,2*, Clément Zanolli3, Tim Compton4, Huw S. Groucutt5,6,10, Eleanor M. L. Scerri1,7,10, Lucile Crété4, Chris Stringer4, Michael D. Petraglia6,8,9 & Simon Blockley2 Neanderthals occurred widely across north Eurasian landscapes, but between ~ 70 and 50 thousand years ago (ka) they expanded southwards into the Levant, which had previously been inhabited by Homo sapiens. Palaeoanthropological research in the frst half of the twentieth century demonstrated alternate occupations of the Levant by Neanderthal and Homo sapiens populations, yet key early fndings have largely been overlooked in later studies. Here, we present the results of new examinations of both the fossil and archaeological collections from Shukbah Cave, located in the Palestinian West Bank, presenting new quantitative analyses of a hominin lower frst molar and associated stone tool assemblage. The hominin tooth shows clear Neanderthal afnities, making it the southernmost known fossil specimen of this population/species. The associated Middle Palaeolithic stone tool assemblage is dominated by Levallois reduction methods, including the presence of Nubian Levallois points and cores. This is the frst direct association between Neanderthals and Nubian Levallois technology, demonstrating that this stone tool technology should not be considered an exclusive marker of Homo sapiens. Given genetic evidence for interbreeding between Homo sapiens and Neanderthal populations 1–6, constraining when and where they may have encountered one another has broad ramifcations for understanding our shared heritage. With a wealth of chronometrically dated Palaeolithic sites concentrated in a relatively small area, a number of which preserve fossil hominin specimens, the Levant is a key region of focus to examine biological and behavioural diferences between these populations, as well as possible interactions between them.
    [Show full text]