Digital Imagingor Digital Image
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Exploring the .BMP File Format
Exploring the .BMP File Format Don Lancaster Synergetics, Box 809, Thatcher, AZ 85552 copyright c2003 as GuruGram #14 http://www.tinaja.com [email protected] (928) 428-4073 The .BMP image standard is used by Windows and elsewhere to represent graphics images in any of several different display and compression options. The .BMP advantages are that each pixel is usually independently available for any alteration or modification. And that repeated use does not normally degrade the image. Because lossy compression is not used. Its main disadvantage is that file sizes are usually horrendous compared to JPEG, fractal, GIF, or other lossy compression schemes. A comparison of popular image standards can be found here. I’ve long been using the .BMP format for my eBay and my other phototography, scanning, and post processing. I firmly believe that… All photography, scanning, and all image post-processing should always be done using .BMP or a similar non-lossy format. Only after all post-processing is complete should JPEG or another compressed distribution format be chosen. Some current examples of my .BMP work now do include the IMAGIMAG.PDF post-processing tutorial, the Bitmap Typewriterthat generates fully anti-aliased small fonts, the Aerial Photo Combiner, and similar utilities and tutorials found on our Fonts & Images, PostScript, and on our Acrobat library pages. A few projects of current interest involving .BMP files include true view camera swings and tilts for a digital camera, distortion correction, dodging & burning, preventing white punchthrough on knockouts, and emphasis vignetting. Mainly applied to uncompressed RGBX 24-bit color .BMP files. -
Free Lossless Image Format
FREE LOSSLESS IMAGE FORMAT Jon Sneyers and Pieter Wuille [email protected] [email protected] Cloudinary Blockstream ICIP 2016, September 26th DON’T WE HAVE ENOUGH IMAGE FORMATS ALREADY? • JPEG, PNG, GIF, WebP, JPEG 2000, JPEG XR, JPEG-LS, JBIG(2), APNG, MNG, BPG, TIFF, BMP, TGA, PCX, PBM/PGM/PPM, PAM, … • Obligatory XKCD comic: YES, BUT… • There are many kinds of images: photographs, medical images, diagrams, plots, maps, line art, paintings, comics, logos, game graphics, textures, rendered scenes, scanned documents, screenshots, … EVERYTHING SUCKS AT SOMETHING • None of the existing formats works well on all kinds of images. • JPEG / JP2 / JXR is great for photographs, but… • PNG / GIF is great for line art, but… • WebP: basically two totally different formats • Lossy WebP: somewhat better than (moz)JPEG • Lossless WebP: somewhat better than PNG • They are both .webp, but you still have to pick the format GOAL: ONE FORMAT THAT COMPRESSES ALL IMAGES WELL EXPERIMENTAL RESULTS Corpus Lossless formats JPEG* (bit depth) FLIF FLIF* WebP BPG PNG PNG* JP2* JXR JLS 100% 90% interlaced PNGs, we used OptiPNG [21]. For BPG we used [4] 8 1.002 1.000 1.234 1.318 1.480 2.108 1.253 1.676 1.242 1.054 0.302 the options -m 9 -e jctvc; for WebP we used -m 6 -q [4] 16 1.017 1.000 / / 1.414 1.502 1.012 2.011 1.111 / / 100. For the other formats we used default lossless options. [5] 8 1.032 1.000 1.099 1.163 1.429 1.664 1.097 1.248 1.500 1.017 0.302� [6] 8 1.003 1.000 1.040 1.081 1.282 1.441 1.074 1.168 1.225 0.980 0.263 Figure 4 shows the results; see [22] for more details. -
TS 101 499 V2.2.1 (2008-07) Technical Specification
ETSI TS 101 499 V2.2.1 (2008-07) Technical Specification Digital Audio Broadcasting (DAB); MOT SlideShow; User Application Specification European Broadcasting Union Union Européenne de Radio-Télévision EBU·UER 2 ETSI TS 101 499 V2.2.1 (2008-07) Reference RTS/JTC-DAB-57 Keywords audio, broadcasting, DAB, digital, PAD ETSI 650 Route des Lucioles F-06921 Sophia Antipolis Cedex - FRANCE Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16 Siret N° 348 623 562 00017 - NAF 742 C Association à but non lucratif enregistrée à la Sous-Préfecture de Grasse (06) N° 7803/88 Important notice Individual copies of the present document can be downloaded from: http://www.etsi.org The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat. Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp If you find errors in the present document, please send your comment to one of the following services: http://portal.etsi.org/chaircor/ETSI_support.asp Copyright Notification No part may be reproduced except as authorized by written permission. -
51 Document Output
◆ Document Output <Function> You can output a document from “Document List” as an image file. All the documents selected in “Document List” can be outputted as a document in a specified format. <ICP Setting Procedures> Refer to 4 3, 6 15 1. Click “Output Document” at the right side. 2. The “Save As” dialog box appears. 3. Click “Compression” to confirm the file compression setting for “TIFF File”. If you change, click “OK”. 4. Select “PDF File” as a file format in the “Save as type” list box. 5. Click “Compression” to confirm the file compression setting for “PDF File”. If you change, click “OK”. 6. Select “PDF(Searchable) File” as a file format in the “Save as type” list box. 7. Click “OCR Settings” to confirm the searchable file setting. If you change, click “OK”. 8. Select “Jpeg File” as a file format in the “Save as type” list box. 9. Click “Compression” to confirm the file compression setting for “JPEG File”. If you change, click “OK”. 10. Select “Jpeg2000 File” as a file format in the “Save as type” list box. 11. Click “Compression” to confirm the file compression setting for “Jpeg2000 File”. If you change, click “OK”. 12. Select “Depends on Image Type” in the “Save as type” list box. 13. “File Type Settings” dialog box appears and confirm the settings for each type. If you change, click “OK”. 14. Select “Jpeg File” as a file format in the “Save as type” list box. 15. Confirm the setting of File Name at the bottom right and click “Save”. -
Raster Images in R Graphics by Paul Murrell
48 CONTRIBUTED RESEARCH ARTICLES Raster Images in R Graphics by Paul Murrell Abstract The R graphics engine has new sup- 39837_s_at 1267_at 402_s_at 32562_at 37600_at 1007_s_at 36643_at 1039_s_at 40215_at 39781_at port for rendering raster images via the func- 266_s_at 307_at 38408_at 37539_at 1911_s_at 1463_at 2057_g_at 39556_at 41744_at 34789_at 34850_at rasterImage() grid.raster() 38631_at tions and . This 37280_at 36536_at 37006_at 41397_at 41346_at 40692_at 35714_at 1992_at 33244_at 40167_s_at 32872_at 34699_at 33440_at leads to better scaling of raster images, faster 36275_at 33809_at 40953_at 1308_g_at 1928_s_at 1307_at 40504_at 41742_s_at 41743_i_at 1674_at 40784_at 40785_g_at rendering to screen, and smaller graphics files. 37978_at 37099_at 1973_s_at 38413_at 2036_s_at 1126_s_at 31472_s_at 37184_at 35256_at 40493_at 41779_at 33412_at Several examples of possible applications of 37193_at 37479_at 39210_at 919_at 1140_at 41478_at 35831_at 176_at 37724_at 38385_at 41401_at 41071_at these new features are described. 39135_at 34961_at 37251_s_at 41470_at 1947_g_at 37810_at 36777_at 38004_at 177_at 36897_at 34106_at 31615_i_at 35665_at 33358_at 39315_at 41191_at 931_at 1914_at 36873_at 37809_at 39635_at 38223_at 33936_at 37558_at 41348_at 31605_at 205_g_at 32475_at 34247_at 36149_at 1500_at 34098_f_at 33528_at 35663_at 40393_at 33193_at 39716_at 33405_at 1929_at 36092_at 32215_i_at 41448_at 40763_at 873_at Prior to version 2.11.0, the core R graphics engine 37225_at 38056_at 37413_at 39424_at 32116_at 2039_s_at 40480_s_at 35816_at 1134_at -
Understanding Image Formats and When to Use Them
Understanding Image Formats And When to Use Them Are you familiar with the extensions after your images? There are so many image formats that it’s so easy to get confused! File extensions like .jpeg, .bmp, .gif, and more can be seen after an image’s file name. Most of us disregard it, thinking there is no significance regarding these image formats. These are all different and not cross‐ compatible. These image formats have their own pros and cons. They were created for specific, yet different purposes. What’s the difference, and when is each format appropriate to use? Every graphic you see online is an image file. Most everything you see printed on paper, plastic or a t‐shirt came from an image file. These files come in a variety of formats, and each is optimized for a specific use. Using the right type for the right job means your design will come out picture perfect and just how you intended. The wrong format could mean a bad print or a poor web image, a giant download or a missing graphic in an email Most image files fit into one of two general categories—raster files and vector files—and each category has its own specific uses. This breakdown isn’t perfect. For example, certain formats can actually contain elements of both types. But this is a good place to start when thinking about which format to use for your projects. Raster Images Raster images are made up of a set grid of dots called pixels where each pixel is assigned a color. -
Graphic File Preparation for Letterpress Printing ©2016
GRAPHIC FILE PREPARATION FOR LETTERPRESS PRINTING ©2016, Smart Set, Inc. COMMON GRAPHIC FILE FORMATS Vector Formats .ai (Adobe Illustrator) Native Illustrator file format. Best format for importing into Adobe InDesign. Illustrators’s native code is pdf, so saving files in .ai contains the portability of pdf files, but retaining all the editing capabilities of Illustrator. (AI files must be opened in the version of Illustrator that they were created in (or higher). .pdf (Adobe Portable Document Format) A vector format which embeds font and raster graphics within a self-con- tained document that can be viewed and printed (but not edited) in Adobe’s Reader freeware. All pre-press systems are in the process of transitioning from PostScript workflows to PDF workflows. Because of the ability to em- bed all associated fonts and graphics, pdf documents can be generated from most graphics software packages and can be utilized cross-platform and without having all versions of different software packages. Many large printers will now only accept pdf files for output. .eps (Encapsulated PostScript) Before Adobe created the pdf format, PostScript allowed files to be created in a device-independent format, eps files printed on a 300 dpi laser printer came out 300 dpi, the same file printed to an imagesetter would come out at 2540 dpi. PostScript files are straight code files, an Encapsulated PostScript includes a 72 dpi raster preview so that you can see what you’re working with in a layout program such as Quark XPress or InDesign. COMMON GRAPHIC FILE FORMATS Raster Formats .tiff (Tagged Image File Format) Tiffs are binary images best for raster graphics. -
Effects of JPEG2000 on the Information and Geometry Content of Aerial Photo Compression
03-082.qxd 1/11/05 5:17 PM Page 157 Effects of JPEG2000 on the Information and Geometry Content of Aerial Photo Compression Jung-Kuan Liu, Houn-Chien Wu, and Tian-Yuan Shih Abstract evaluated the effects of compression on geometric accuracy. Li The standardization effort of the next ISO standard for et al., (2002) indicated that when compression ratios are less compression of the still image, JPEG2000, has recently than a factor of 10, the compressed image is near-lossless with reached International Standard (IS) status. This wavelet- JPEG. In other words, the visual quality of JPEG compressed based standard outperforms the Discrete Cosine Transform images remains excellent and the accuracy of manual image (DCT) based JPEG in terms of compression ratio, as well mensuration is, essentially, not influenced. Paola et al. (1995) as, quality. In this study, the performance of JPEG2000 is and Schmanske and Loew (2001) concentrated on the classifi- evaluated for aerial image compressions. Different com- cation accuracies of compressed images. Paola et al. (1995) pression ratios are applied to scanned aerial photos at the revealed that high quality classifications could be obtained for 1:5 000 scale. Both the image quality measurements and the images with JPEG compression ratios approaching 10:1 or even accuracy of photogrammetric point determination aspects higher. The classification result retains its overall appearance, are examined. The evaluation of image quality is based but the smoothing effect of high compression tends to elimi- on visual analysis of the objects in the scene and on the nate much of the pixel-to-pixel detail. -
Image Formats
Image Formats Ioannis Rekleitis Many different file formats • JPEG/JFIF • Exif • JPEG 2000 • BMP • GIF • WebP • PNG • HDR raster formats • TIFF • HEIF • PPM, PGM, PBM, • BAT and PNM • BPG CSCE 590: Introduction to Image Processing https://en.wikipedia.org/wiki/Image_file_formats 2 Many different file formats • JPEG/JFIF (Joint Photographic Experts Group) is a lossy compression method; JPEG- compressed images are usually stored in the JFIF (JPEG File Interchange Format) >ile format. The JPEG/JFIF >ilename extension is JPG or JPEG. Nearly every digital camera can save images in the JPEG/JFIF format, which supports eight-bit grayscale images and 24-bit color images (eight bits each for red, green, and blue). JPEG applies lossy compression to images, which can result in a signi>icant reduction of the >ile size. Applications can determine the degree of compression to apply, and the amount of compression affects the visual quality of the result. When not too great, the compression does not noticeably affect or detract from the image's quality, but JPEG iles suffer generational degradation when repeatedly edited and saved. (JPEG also provides lossless image storage, but the lossless version is not widely supported.) • JPEG 2000 is a compression standard enabling both lossless and lossy storage. The compression methods used are different from the ones in standard JFIF/JPEG; they improve quality and compression ratios, but also require more computational power to process. JPEG 2000 also adds features that are missing in JPEG. It is not nearly as common as JPEG, but it is used currently in professional movie editing and distribution (some digital cinemas, for example, use JPEG 2000 for individual movie frames). -
About Graphics/Digital Images
About Graphics/Digital Images Digital images are found in lots of file formats (types) that are used for various reasons. I liken the file formats to flavors of ice-cream, which you might or might not choose to consume on any given day. One day chocolate is more important than mint; another day you might use vanilla, and on another day you might decide to combine more than one flavor in the same bowl. Likewise, you might choose one type of graphic file for a particular project, but it might be completely inappropriate for another project. What works well for display purposes (keeping it on the computer, or for publication to the internet) might not print well. Something that prints well might be too big a file to post to the internet, or may make your program run too slowly. Also, some authoring programs (like Boardmaker or Classroom Suite) might be written to only understand certain types of image files. Some file types are more common than others, and are more likely to be recognized by the “parent” program (the one you use to display, edit or print your image). Whatever type you pick ultimately depends on how you plan to use the image. The more technical definitions provided below are taken from the glossary found at http://www.photoshopelementsuser.com/glossary.php?letter=B The additional comments I have added, and hopefully let you know why you would care about any of this, anyway. The two biggest types of images I describe here fall loosely into two categories: vector images and bitmap images. -
LO1: Investigating Digital Graphics
Name: Freya Ellis Candidate Number: 5068 Centre Number: 29335 Series: June 2019 R082 – Creating a Digital Graphic LO1: Investigating Digital Graphics Purpose of digital graphic: A digital graphic is an electronic image that can be used for a variety of different things, however the image does not always have to be used on electronic devices as it can be printed and used. Some examples of a digital graphic are magazines, posters, logos etc.. My poster will include images and pictures of popular films to create an eye catching poster that will gather the audience the client wants. The images wont be of just any movies but a wide range as this is an all inclusive film festival for people of all ages. The poster will be very high quality print using 600ppi. It will also have a .tiff image format because it is a high quality print, a big file size and has a lossless compression. With our digital graphic we must make it appealing to everybody because it is a family movie festival, so thus we need to combine the demographics of adults, teenagers and small children. This make it difficult as all of these demographics are very different and so we have to make it eye catching for younger audience but also very informative for an older audience, as well as not looking too childish as to attract teenagers. The graphic I’m going to create will be not only eye catching but also informative and show the true atmosphere that the festival will have, this means it will be simplistic yet interesting easy to read yet informative as I feel this will feel my client needs the best. -
Package 'Tiff'
Package ‘tiff’ March 31, 2021 Version 0.1-8 Title Read and Write TIFF Images Author Simon Urbanek <[email protected]> [aut, cre], Kent Johnson <[email protected]> [ctb] Maintainer Simon Urbanek <[email protected]> Depends R (>= 2.9.0) Description Functions to read, write and display bitmap images stored in the TIFF for- mat. It can read and write both files and in-memory raw vectors, including native image repre- sentation. License GPL-2 | GPL-3 SystemRequirements tiff and jpeg libraries URL https://www.rforge.net/tiff/ NeedsCompilation yes Repository CRAN Date/Publication 2021-03-31 15:10:02 UTC R topics documented: readTIFF . .1 writeTIFF . .4 Index 6 readTIFF Read a bitmap image stored in the TIFF format Description Reads an image from a TIFF file/content into a raster array. 1 2 readTIFF Usage readTIFF(source, native = FALSE, all = FALSE, convert = FALSE, info = FALSE, indexed = FALSE, as.is = FALSE, payload = TRUE) Arguments source Either name of the file to read from or a raw vector representing the TIFF file content. native logical, determines the image representation - if FALSE (the default) then the result is an array, if TRUE then the result is a native raster representation (suitable for plotting). all logical scalar or integer vector. TIFF files can contain more than one image. If all=TRUE then all images are returned in a list of images. If all is a vector, it gives the (1-based) indices of images to return. Otherwise only the first image is returned. convert logical, if TRUE then first convert the image into 8-bit RGBA samples and then to an array, see below for details.