Preclinical Pharmacokinetics and Biodistribution of Anticancer Dinuclear Palladium(II)-Spermine Complex (Pd2spm) in Mice

Total Page:16

File Type:pdf, Size:1020Kb

Preclinical Pharmacokinetics and Biodistribution of Anticancer Dinuclear Palladium(II)-Spermine Complex (Pd2spm) in Mice pharmaceuticals Article Preclinical Pharmacokinetics and Biodistribution of Anticancer Dinuclear Palladium(II)-Spermine Complex (Pd2Spm) in Mice Martin Vojtek 1,* , Salomé Gonçalves-Monteiro 1, Edgar Pinto 2,3,Sára Kalivodová 1, Agostinho Almeida 4 , Maria P. M. Marques 5,6 , Ana L. M. Batista de Carvalho 5 , Clara B. Martins 5, Helder Mota-Filipe 7 , Isabel M. P. L. V. O. Ferreira 2 and Carmen Diniz 1,* 1 LAQV/REQUIMTE, Laboratory of Pharmacology, Department of Drug Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; [email protected] (S.G.-M.); [email protected] (S.K.) 2 LAQV/REQUIMTE, Laboratory of Bromatology and Hydrology, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; [email protected] (E.P.); [email protected] (I.M.P.L.V.O.F.) 3 Department of Environmental Health, School of Health, P.Porto, CISA/Research Center in Environment and Health, 4200-072 Porto, Portugal 4 LAQV/REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; [email protected] 5 “Molecular Physical-Chemistry” R&D Unit, Department of Chemistry, University of Coimbra, 3004-535 Coimbra, Portugal; [email protected] (M.P.M.M.); [email protected] (A.L.M.B.d.C.); Citation: Vojtek, M.; [email protected] (C.B.M.) 6 Gonçalves-Monteiro, S.; Pinto, E.; Department of Life Sciences, University of Coimbra, 3000-456 Coimbra, Portugal 7 iMed.ULisboa, Faculty of Pharmacy, University of Lisbon, 1649-003 Lisbon, Portugal; hfi[email protected] Kalivodová, S.; Almeida, A.; Marques, * Correspondence: [email protected] (M.V.); [email protected] (C.D.) M.P.M.; Batista de Carvalho, A.L.M.; Martins, C.B.; Mota-Filipe, H.; Abstract: Palladium-based compounds are regarded as potential analogs to platinum anticancer Ferreira, I.M.P.L.V.O.; et al. Preclinical drugs with improved properties. The present study assessed the pharmacokinetics and biodistri- Pharmacokinetics and Biodistribution bution of a dinuclear palladium(II)-spermine chelate (Pd Spm), which has previously been shown of Anticancer Dinuclear 2 Palladium(II)-Spermine Complex to possess promising in vitro activity against several therapy-resistant cancers. Using inductively (Pd2Spm) in Mice. Pharmaceuticals coupled plasma-mass spectrometry, the kinetic profiles of palladium/platinum in serum, serum 2021, 14, 173. https://doi.org/ ultrafiltrate and tissues (kidney, liver, brain, heart, lungs, ovaries, adipose tissue and mammary 10.3390/ph14020173 glands) were studied in healthy female Balb/c mice after a single intraperitoneal bolus injection of Pd2Spm (3 mg/kg bw) or cisplatin (3.5 mg/kg bw) between 0.5 and 48 h post-injection. Palladium in Academic Editor: serum exhibited biphasic kinetics with a terminal half-life of 20.7 h, while the free palladium in serum Daniela Montesarchio ultrafiltrate showed a higher terminal half-life than platinum (35.5 versus 31.5 h). Palladium was distributed throughout most of the tissues except for the brain, with the highest values in the kidney, Received: 29 January 2021 followed by the liver, lungs, ovaries, adipose tissue and mammary glands. The in vitro cellular accu- Accepted: 17 February 2021 mulation was also evaluated in breast cancer cells, evidencing a passive diffusion as a mechanism Published: 23 February 2021 of Pd2Spm’s cellular entry. This study reports, for the first time, the favorable pharmacokinetics and biodistribution of Pd2Spm, which may become a promising pharmacological agent for cancer Publisher’s Note: MDPI stays neutral treatment. with regard to jurisdictional claims in published maps and institutional affil- iations. Keywords: Pd(II)-based drugs; cisplatin; ICP-MS; metal complexes; polyamines; cancer; tissue; in vivo Copyright: © 2021 by the authors. 1. Introduction Licensee MDPI, Basel, Switzerland. This article is an open access article The discovery of the anticancer properties of the platinum(II)-based drug cisplatin distributed under the terms and (cis-Pt(NH3)2Cl2) (Figure1a) has revolutionized the therapy of solid neoplasms, namely, conditions of the Creative Commons breast, testicular, ovarian, cervical, prostate, head, neck, bladder and lung cancers, as well Attribution (CC BY) license (https:// as refractory non-Hodgkin’s lymphoma [1]. However, its therapeutic use is limited by creativecommons.org/licenses/by/ inherent or acquired tumor cell resistance and dose-dependent toxicity (namely, nephrotox- 4.0/). icity, hepatotoxicity, neurotoxicity and myelosuppression). To overcome these limitations, Pharmaceuticals 2021, 14, 173. https://doi.org/10.3390/ph14020173 https://www.mdpi.com/journal/pharmaceuticals Pharmaceuticals 2021, 14, x FOR PEER REVIEW 2 of 16 Pharmaceuticals 2021, 14, 173 inherent or acquired tumor cell resistance and dose-dependent toxicity (namely,2 of 16ne- phrotoxicity, hepatotoxicity, neurotoxicity and myelosuppression). To overcome these limitations, several modifications of cisplatin’s structure have led to the development of carboplatin and oxaliplatin, which have also received worldwide approval for clinical use. several modifications of cisplatin’s structure have led to the development of carboplatin Carboplatin (Figure 1b) is a 2nd generation platinum drug with an improved pharmaco- and oxaliplatin, which have also received worldwide approval for clinical use. Carbo- kinetic profile and tolerability, owing to the substitution of the two chloride ligands by a platin (Figure1b) is a 2nd generation platinum drug with an improved pharmacokinetic cyclobutanedicarboxylate group that has a slower hydrolysis rate to yield reactive species profile and tolerability, owing to the substitution of the two chloride ligands by a cyclobu- prone to bind to DNA [2]. Carboplatin is indicated in a monotherapy regimen of ovarian tanedicarboxylate group that has a slower hydrolysis rate to yield reactive species prone toand bind small to DNA cell lung [2]. carcinomas, Carboplatin but is indicatedit shares a in cross-resistance a monotherapy with regimen cisplatin of ovarianin previously and smallcisplatin-treated cell lung carcinomas, patients, which but it limits shares its a clinical cross-resistance use [3]. Oxaliplatin with cisplatin (Figure in previously 1c) is a 3rd cisplatin-treatedgeneration platinum patients, analog which with limits a diaminocyclohexane its clinical use [3]. ligand Oxaliplatin that significantly (Figure1c) is reduces a 3rd generationits toxicity platinum and glutathione-mediated analog with a diaminocyclohexane acquired tumorligand cell resistance that significantly [4]. Although reduces oxali- its toxicityplatin is and less glutathione-mediated reactive towards DNA acquired than tumorcisplatin, cell it resistance was demonstrated [4]. Although in vitro oxaliplatin that its iscrosslinks less reactive appear towards to be DNA more than damaging cisplatin, [5]. it Currently, was demonstrated oxaliplatinin vitro in combinationthat its crosslinks with 5- appearfluorouracil to bemore is approved damaging for [the5]. Currently,treatment oxaliplatinof advanced in colorectal combination cancer. with 5-fluorouracil is approvedThe pharmacodynamic for the treatment ofeffects advanced of cisplatin colorectal and cancer. other platinum agents are generally acceptedThe pharmacodynamic to be mediated by effectsthe binding of cisplatin to DNA and in otherthe nucleus platinum and agents mitochondria, are generally while acceptedother non-DNA to be mediated targets, bysuch the as binding RNA, tubu to DNAlin, thioredoxin in the nucleus reductase, and mitochondria, membrane-bound while otherNa+/H non-DNA+ exchanger targets, protein such [6], as or RNA, even tubulin, intracellu thioredoxinlar water reductase,[7], have also membrane-bound been reported. NaUpon+/H +cellularexchanger entry, protein the drug’s [6], or hydrolyzab even intracellularle ligands water are [substituted7], have also with been water reported. mole- Uponcules, cellular yielding entry, highly the drug’sreactive hydrolyzable aqua specie ligandss that bind are substitutedto DNA (mainly with water through molecules, the pu- yieldingrine´s nitrogen highly atoms) reactive [8]. aqua The speciesformation that of bindthese todrug-DNA DNA (mainly adducts through prompts the DNA purine’s dam- nitrogenage, which atoms) interferes [8]. The with formation the replication of these and drug-DNA transcription adducts processes prompts and DNA leads damage, to cell whichgrowth interferes impairment with and the replicationcellular death and [2]. transcription processes and leads to cell growth impairment and cellular death [2]. (a) (b) (c) (d) FigureFigure 1. 1.Structure Structure of of Pt(II)- Pt(II)- andand Pd(II)-basedPd(II)-based agents: Worldwide approved approved Pt Pt drugs—( drugs—(aa)) cisplatin, cisplatin, (b (b) )carboplatin carboplatin and and (c) oxaliplatin. (d) Novel palladium(II)-based complex Pd2Spm. (c) oxaliplatin. (d) Novel palladium(II)-based complex Pd2Spm. DespiteDespite the the indisputable indisputable role role of of mononuclear mononuclear platinum platinum drugs drugs (compounds (compounds with with one one metalmetal center, center, such such as as cisplatin, cisplatin, carboplatin carboplatin and and oxaliplatin) oxaliplatin) in in the the therapy therapy of of solid solid neo- neo- plasms,plasms, there there is is considerable considerable interest interest in in the the development development of of more more efficient efficient metal-based metal-based antitumorantitumor agents agents
Recommended publications
  • PENTOBARBITAL SODIUM- Pentobarbital Sodium Injection Akorn, Inc
    PENTOBARBITAL SODIUM- pentobarbital sodium injection Akorn, Inc. ---------- Nembutal® Sodium Solution CII (pentobarbital sodium injection, USP) + novaplus TM Rx only Vials DO NOT USE IF MATERIAL HAS PRECIPITATED DESCRIPTION The barbiturates are nonselective central nervous system depressants which are primarily used as sedative hypnotics and also anticonvulsants in subhypnotic doses. The barbiturates and their sodium salts are subject to control under the Federal Controlled Substances Act (See “Drug Abuse and Dependence” section). The sodium salts of amobarbital, pentobarbital, phenobarbital, and secobarbital are available as sterile parenteral solutions. Barbiturates are substituted pyrimidine derivatives in which the basic structure common to these drugs is barbituric acid, a substance which has no central nervous system (CNS) activity. CNS activity is obtained by substituting alkyl, alkenyl, or aryl groups on the pyrimidine ring. NEMBUTAL Sodium Solution (pentobarbital sodium injection) is a sterile solution for intravenous or intramuscular injection. Each mL contains pentobarbital sodium 50 mg, in a vehicle of propylene glycol, 40%, alcohol, 10% and water for injection, to volume. The pH is adjusted to approximately 9.5 with hydrochloric acid and/or sodium hydroxide. NEMBUTAL Sodium is a short-acting barbiturate, chemically designated as sodium 5-ethyl-5-(1- methylbutyl) barbiturate. The structural formula for pentobarbital sodium is: The sodium salt occurs as a white, slightly bitter powder which is freely soluble in water and alcohol but practically insoluble in benzene and ether. CLINICAL PHARMACOLOGY Barbiturates are capable of producing all levels of CNS mood alteration from excitation to mild sedation, to hypnosis, and deep coma. Overdosage can produce death. In high enough therapeutic doses, barbiturates induce anesthesia.
    [Show full text]
  • Deliberate Self-Poisoning with a Lethal Dose of Pentobarbital: Survival with Supportive Care
    Deliberate self-poisoning with a lethal dose of pentobarbital: Survival with supportive care. (1) (1,2) Santosh Gone , Andis Graudins (1) Clinical Toxicology Service, Program of Emergency Medicine, Monash Health (2) Monash Emergency Research Collaboration, Clinical Sciences at Monash Health, Monash University Abstract 84 INTRODUCTION CASE REPORT (continued) DISCUSSION Pentobarbital (Nembutal) is short acting In the ED: Pentobarbital has been a banned substance for barbiturate sedative-hypnotic, currently widely GCS: 3/15, fixed dilated pupils, apnoeic and human use in Australia since 1998. However, it can used in veterinary practice for anesthesia and ventilated. be procured overseas or bought on the internet. euthanasia. Pulse: 116 bpm sinus tachycardia BP: 115/60 on epinephrine infusion. Pentobarbital is recommended as an effective It is also commonly recommended as a VBG: pH 7.03 pCO2 77 mmHg Bicarb 19 mmol/L agent for use in euthanasia due to its apparently euthanasia drug for assisted suicide and it is Lactate 8.8 mmol/L peaceful transition to death. unlikely that any resuscitative measures will be Activated charcoal (50g) given via an NG tube. attempted in such cases. Course in the Intensive Care Department: In a case series of 150 assisted suicides in Day-1 post-OD: Sweden, a 100% success rate was seen with Intentional overdose results in depression of - Absent brain stem reflexes and fixed dilated pupils for ingestion of 9 grams. Cardiovascular collapse was brain stem function and rapid onset respiratory five days. seen within 15 minutes in 30% of patients. It is rare depression and apnoea. Hypotension also - Diabetes insipidus developed with urine output of to see survival after intentional ingestion for develops, followed by cardiovascular collapse 300ml/hour.
    [Show full text]
  • Pentobarbital Sodium
    PENTobarbital Sodium Brand names Nembutal Sodium Medication error Look-alike, sound-alike drug names. Tall man letters (not FDA approved) are recommended potential to decrease confusion between PENTobarbital and PHENobarbital.(1,2) ISMP recommends the following tall man letters (not FDA approved): PENTobarbital.(30) Contraindications Contraindications: In patients with known hypersensitivity to barbiturates or any com- and warnings ponent of the formulation.(2) If an allergic or hypersensitivity reaction or a life-threatening adverse event occurs, rapid substitution of an alternative agent may be necessary. If pentobarbital is discontinued due to development of a rash, an anticonvulsant that is structurally dissimilar should be used (i.e., nonaromatic). (See Rare Adverse Effects in the Comments section.) Also contraindicated in patients with a history of manifest or latent porphyria.(2) Warnings: Rapid administration may cause respiratory depression, apnea, laryngospasm, or vasodilation with hypotension.(2) Should be withdrawn gradually if large doses have been used for prolonged periods.(2) Paradoxical excitement may occur or important symptoms could be masked when given to patients with acute or chronic pain.(2) May be habit forming. Infusion-related Respiratory depression and arrest requiring mechanical ventilation may occur. Monitor cautions oxygen saturation. If hypotension occurs, the infusion rate should be decreased and/or the patient should be treated with IV fluids and/or vasopressors. Pentobarbital is an alkaline solution (pH = 9–10.5); therefore, extravasation may cause tissue necrosis.(2) (See Appendix E for management.) Gangrene may occur following inadvertent intra-arterial injection.(2) Dosage Medically induced coma (for persistently elevated intracranial pressure (ICP) or refractory status epilepticus): Patient should be intubated and mechanically ventilated.
    [Show full text]
  • Calcium Current Block by (-)-Pentobarbital, Phenobarbital
    The Journal of Neuroscience, August 1993, 13(E): 321 l-3221 Calcium Current Block by (-)-Pentobarbital, Phenobarbital, and CHEB but not (+)-Pentobarbital in Acutely Isolated Hippocampal CA1 Neurons: Comparison with Effects on GABA-activated Cl- Current Jarlath M. H. ffrench-Mullen,’ Jeffery L. Barker,* and Michael A. Rogawski3 ‘Department of Pharmacology, Zeneca Pharmaceuticals Group, Zeneca Inc., Wilmington, Delaware 19897 and *Laboratory of Neurophysiology, and 3Neuronal Excitability Section, Epilepsy Research Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892 Block of a voltage-activated Ca*+ channel current by pheno- Ca*+ current, whereas the sedative effects that occur at high- barbital (PHB), 5-(2-cyclohexylideneethyl)-5-ethyl barbituric er concentrations could reflect stronger Ca2+ current block- acid (CHEB), and the optical R(-)- and S(+)-enantiomers of ade. The powerful sedative-hypnotic action of (-)-PB may pentobarbital (PB) was examined in freshly dissociated adult reflect greater maximal enhancement of GABA responses guinea pig hippocampal CA1 neurons; the effects of the in conjunction with strong inhibition of Ca2+ current. The barbiturates on GABA-activated Cl- current were also char- convulsant action of CHEB is unlikely to be related to its acterized in the same preparation. (-)-PB, PHB, and CHEB effects on the Ca*+ current. produced a reversible, concentration-dependent block of the [Key words: calcium channel, GABA receptor, (-)-pen- peak Ca*+ channel current (3 mM Ba2+ as the charge carrier) tobarbital, (+)-pentobarbital, phenobarbital, CHEB [S-(2-cy- evoked by depolarization from -80 to - 10 mV (I&,, values, clohexylideneethyl)-S-ethyl barbituric acid], CA 1 hippocam- 3.5, 72, and 118 PM, respectively).
    [Show full text]
  • Volatile Solvents As Drugs of Abuse: Focus on the Cortico-Mesolimbic Circuitry
    Neuropsychopharmacology (2013) 38, 2555–2567 & 2013 American College of Neuropsychopharmacology. All rights reserved 0893-133X/13 www.neuropsychopharmacology.org Review Volatile Solvents as Drugs of Abuse: Focus on the Cortico-Mesolimbic Circuitry 1,2 ,1,2 Jacob T Beckley and John J Woodward* 1 2 Department of Neurosciences, Medical University of South Carolina, Charleston, SC, USA; Center for Drug and Alcohol Programs, Department of Psychiatry/Neurosciences, Medical University of South Carolina, Charleston, SC, USA Volatile solvents such as those found in fuels, paints, and thinners are found throughout the world and are used in a variety of industrial applications. However, these compounds are also often intentionally inhaled at high concentrations to produce intoxication. While solvent use has been recognized as a potential drug problem for many years, research on the sites and mechanisms of action of these compounds lags behind that of other drugs of abuse. In this review, we first discuss the epidemiology of voluntary solvent use throughout the world and then consider what is known about their basic pharmacology and how this may explain their use as drugs of abuse. We next present data from preclinical and clinical studies indicating that these substances induce common addiction sequelae such as dependence, withdrawal, and cognitive impairments. We describe how toluene, the most commonly studied psychoactive volatile solvent, alters synaptic transmission in key brain circuits such as the mesolimbic dopamine system and medial prefrontal cortex (mPFC) that are thought to underlie addiction pathology. Finally, we make the case that activity in mPFC circuits is a critical regulator of the mesolimbic dopamine system’s ability to respond to volatile solvents like toluene.
    [Show full text]
  • INTRAVENOUS ANAESTHESIA Dr
    INTRAVENOUS ANAESTHESIA Dr. SK Sharma, Associate Professor General anaesthesia: It is the controlled, reversible intoxication of CNS producing unconsciousness with complete loss of sensory as well as motor reflexes. The common methods to induce GA in animals are by using inhalation and intravenous anaesthesia. The other not so common methods are oral. Per rectal, intramuscular, intra peritoneum etc. However out of these methods the most preferred method is intravenous anaesthesia. Intravenous anaesthesia: Intravenous anaesthesia in veterinary practice is primarily used for the induction of anaesthesia which is subsequently maintained by inhalation anaesthesia in small animals. However in large animals intravenous anaesthesia is mostly used for both induction as well as maintenance of anaesthesia. Advantages: 1. Easiness in administration. 2. Produces surgical anaesthesia with speed and pleasantness. 3. No sophisticated facilities are required as for inhalation anaesthesia. 4. Requires minimum equipment. 5. Economical Disadvantages: 1. Recovery depends upon the ability of the animal to redistribute, metabolize and excrete the anaesthetic drug. Very important in sick and debilitatedDr. animals. SK Sharma 2. Depth of anaesthesia cannot be decreased quickly unless you have an antagonist. 3. Recovery period may be longer depending upon the health status of the animal and the drug used. 4. Characteristic excitement and premature attempts to stand during recovery may be dangerous sometimes. 5. Long procedures can lead to severe physiological changes in the patient. 6. Oxygen and assisted controlled ventilation may not be available during emergency. 2 RUMONANTS ARE POOR SUBJECTS FOR INTRAVENOUS ANAESTHESIA. WHY? The ruminants are considered as poor subjects for general anaesthesia by any method because of many reasons as listed below: 1.
    [Show full text]
  • Section 2.6.4 Pharmacokinetics Written Summary EMTRICITABINE
    SECTION 2.6 NONCLINICAL SUMMARY Section 2.6.4 Pharmacokinetics Written Summary EMTRICITABINE/ RILPIVIRINE/ TENOFOVIR DISOPROXIL FUMARATE FIXED-DOSE COMBINATION 17 August 2010 CONFIDENTIAL AND PROPRIETARY INFORMATION Emtricitabine/Rilpivirine/Tenofovir Disoproxil Fumarate Section 2.6.4 Pharmacokinetics Written Summary Final TABLE OF CONTENTS SECTION 2.6 NONCLINICAL SUMMARY........................................................................................................1 TABLE OF CONTENTS .......................................................................................................................................2 GLOSSARY OF ABBREVIATIONS AND DEFINITION OF TERMS ..............................................................5 2.6. NONCLINICAL SUMMARY.......................................................................................................................8 2.6.4. PHARMACOKINETICS WRITTEN SUMMARY .........................................................................8 2.6.4.1. Brief Summary................................................................................................................8 2.6.4.2. Methods of Analysis .....................................................................................................14 2.6.4.2.1. Emtricitabine............................................................................................14 2.6.4.2.2. Rilpivirine ................................................................................................14 2.6.4.2.3. Tenofovir Disoproxil Fumarate
    [Show full text]
  • Lethal Injection Drug Access Could Put Executions on Hold Pentobarbital, Now Most-Commonly Used Execution Drug, Likely to Face Barriers in Coming Months
    Health Lethal injection drug access could put executions on hold Pentobarbital, now most-commonly used execution drug, likely to face barriers in coming months By Kimberly Leonard 6:00 am, April 4, 2012 Updated: 12:19 pm, May 19, 2014 Inmates on death row in the United States are executed by means of lethal injection. Dave Martin/AP 55 tweets Comment E-mail Print A federal judge’s decision to block imports of a drug used in executions will leave states to rely more on a substitute drug that could itself be getting scarce — developments that raise questions about both how these drugs are regulated and whether states will have the drugs they need to continue capital punishment by lethal injection. Over the past three decades, lethal injection has become the primary method of execution in the United States because it is widely viewed as the most humane alternative. Thirty-five states and the federal government use this method and more than 1,100 inmates have been put to death by lethal injection. State justice or corrections departments have conducted these executions by administering the anesthetic sodium thiopental in a lethal dosage on its own, or as part of a three-step “cocktail” in which sodium thiopental is followed by pancuronium bromide, a paralytic agent, then potassium chloride, which stops the heart and causes death. But in late March, a federal judge blocked importation of sodium thiopental, ruling that the Food and Drug Administration (FDA) ignored the law by allowing it to be imported into the country without following regulatory protocol.
    [Show full text]
  • Barbiturates for the Treatment of Alcohol Withdrawal Syndrome: ☆ a Systematic Review of Clinical Trials
    Journal of Critical Care 32 (2016) 101–107 Contents lists available at ScienceDirect Journal of Critical Care journal homepage: www.jccjournal.org Barbiturates for the treatment of alcohol withdrawal syndrome: ☆ A systematic review of clinical trials Yoonsun Mo, MS, Pharm.D., BCPS, BCCCP a,b,⁎, Michael C. Thomas, Pharm.D., BCPS, FCCP a,1, George E. Karras Jr., MD, FCCM b,2 a Department of Pharmacy Practice, Western New England University College of Pharmacy, 1215 Wilbraham Road, Springfield, MA 01119 b Mercy Medical Center, 271 Carew Street, Springfield, MA 01104 article info abstract Keywords: Purpose: To perform a systematic review of the clinical trials concerning the use of barbiturates for the treatment Barbiturates of acute alcohol withdrawal syndrome (AWS). Phenobarbital Materials and Methods: A literature search of MEDLINE, EMBASE, and the Cochrane Library, together with a man- Benzodiazepines ual citation review was conducted. We selected English-language clinical trials (controlled and observational Alcohol withdrawal syndrome studies) evaluating the efficacy and safety of barbiturates compared with benzodiazepine (BZD) therapy for Delirium tremens Systematic review the treatment of AWS in the acute care setting. Data extracted from the included trials were duration of delirium, number of seizures, length of intensive care unit and hospital stay, cumulated doses of barbiturates and BZDs, and respiratory or cardiac complications. Results: Seven studies consisting of 4 prospective controlled and 3 retrospective trials were identified. Results from all the included studies suggest that barbiturates alone or in combination with BZDs are at least as effective as BZDs in the treatment of AWS. Furthermore, barbiturates appear to have acceptable tolerability and safety pro- files, which were similar to those of BZDs in patients with AWS.
    [Show full text]
  • Effect of Pentobarbital and Thiopental on the Acetylcholine Content of the Heart and Brain
    SHORT COMMUNICATION EFFECT OF PENTOBARBITAL AND THIOPENTAL ON THE ACETYLCHOUNE CONTENT OF THE HEART AND BRAIN By B.R. MADAN, N.K. KHANNA AND B.K. JAIN Department of Pharmacology, S.P. Medical College, Bikaner Acetylcholine content of the heart is altered by drugs which affect the rate and rhythm of the heart (6, 10). Pentobarbital suppresses cardiac arrhythmias (3) while thiopental provokes arrhythmias (9). Hence, it is of interest to study changes in the acetylcholine level of the heart in rats treated with these two barbiturates. Further, since there are many similarities in the fundamental mechanisms of excitation between the nervous and cardiac tissues (4), changes in the acetylcholine content of the brain have also been determined in some of the experiments. MATERIALS AND METHODS 52 albino rats of both sexes, weighing between 80 and 200 gm were divided into 3 groups. First group served as controls and received normal saline intraperitoneally. ' The second and third groups were given intraperitoneal injection of 30 mgjkg of pentobarbital sodium and thiopental sodium respectively. This resulted in the loss of righting reflex within 15 to 20 minutes, The animals were stunned and sacrificed. The heart and brain were removed quickly andkept in dry ice for 10 minutes. The atria, ventricles and cerebral cortex were dissected out. Acetylcholine content of the cardiac tissue was determined by the method of Anand et al. (1) and that of the brain by the method of Bose et al. (2). RESULTS , The results, as summarized in Table J, indicate that pentobarbital produces a significant decrease in the acetylcholine content of the atria and ventricles while thiopental causes a signi- ficant increase in the acetylcholine content of the atria without any significant change in that of the ventricles.
    [Show full text]
  • Effects of Progesterone and Testosterone on Cocaine Self-Administration and Cocaine Discrimination by Female Rhesus Monkeys
    Neuropsychopharmacology (2011) 36, 2187–2199 & 2011 American College of Neuropsychopharmacology. All rights reserved 0893-133X/11 www.neuropsychopharmacology.org Effects of Progesterone and Testosterone on Cocaine Self-Administration and Cocaine Discrimination by Female Rhesus Monkeys Nancy K Mello*,1, Inge M Knudson1, Maureen Kelly1, Peter A Fivel1 and Jack H Mendelson1 1 Alcohol and Drug Abuse Research Center, McLean HospitalFHarvard Medical School, Belmont, MA, USA The neuroactive steroid hormone progesterone attenuates cocaine’s abuse-related effects in women and in rodents under some conditions, but the effects of testosterone are unknown. We compared the acute effects of progesterone (0.1, 0.2, and 0.3 mg/kg, intramuscularly (i.m.)), testosterone (0.001, 0.003, and 0.01 mg/kg, i.m.), and placebo on cocaine self-administration and cocaine discrimination dose–effect curves in female rhesus monkeys. Cocaine self-administration (0.03 mg/kg per inj.) was maintained on a fixed ratio 30 schedule of reinforcement, and monkeys had unlimited access to cocaine for 2 h each day. Cocaine doses were administered in an irregular order during each dose–effect curve determination, and the same dose order was used in each subject in all treatment conditions. Blood samples for hormone analysis were collected at the end of each test session. Banana-flavored food pellets (1 g) were also available in three 1-h daily sessions. In drug discrimination studies, the effects of pretreatment with progesterone (0.032–0.32 mg/kg, i.m.) and testosterone (0.001–0.01 mg/kg, i.m.) on the discriminative stimulus effects of cocaine (0.18 mg/kg, i.m.) were examined.
    [Show full text]
  • AVMA Guidelines for the Euthanasia of Animals: 2020 Edition*
    AVMA Guidelines for the Euthanasia of Animals: 2020 Edition* Members of the Panel on Euthanasia Steven Leary, DVM, DACLAM (Chair); Fidelis Pharmaceuticals, High Ridge, Missouri Wendy Underwood, DVM (Vice Chair); Indianapolis, Indiana Raymond Anthony, PhD (Ethicist); University of Alaska Anchorage, Anchorage, Alaska Samuel Cartner, DVM, MPH, PhD, DACLAM (Lead, Laboratory Animals Working Group); University of Alabama at Birmingham, Birmingham, Alabama Temple Grandin, PhD (Lead, Physical Methods Working Group); Colorado State University, Fort Collins, Colorado Cheryl Greenacre, DVM, DABVP (Lead, Avian Working Group); University of Tennessee, Knoxville, Tennessee Sharon Gwaltney-Brant, DVM, PhD, DABVT, DABT (Lead, Noninhaled Agents Working Group); Veterinary Information Network, Mahomet, Illinois Mary Ann McCrackin, DVM, PhD, DACVS, DACLAM (Lead, Companion Animals Working Group); University of Georgia, Athens, Georgia Robert Meyer, DVM, DACVAA (Lead, Inhaled Agents Working Group); Mississippi State University, Mississippi State, Mississippi David Miller, DVM, PhD, DACZM, DACAW (Lead, Reptiles, Zoo and Wildlife Working Group); Loveland, Colorado Jan Shearer, DVM, MS, DACAW (Lead, Animals Farmed for Food and Fiber Working Group); Iowa State University, Ames, Iowa Tracy Turner, DVM, MS, DACVS, DACVSMR (Lead, Equine Working Group); Turner Equine Sports Medicine and Surgery, Stillwater, Minnesota Roy Yanong, VMD (Lead, Aquatics Working Group); University of Florida, Ruskin, Florida AVMA Staff Consultants Cia L. Johnson, DVM, MS, MSc; Director,
    [Show full text]