An Evaluation of Snoop-Based Cache Coherence Protocols Linda Bigelow Veynu Narasiman Aater Suleman ECE Department The University of Texas at Austin fbigelow, narasima,
[email protected] I. INTRODUCTION based cache coherence protocol is one that not only maintains coherence, but does so with minimal performance degrada- A common design for multiprocessor systems is to have a tion. small or moderate number of processors each with symmetric In the following sections, we will first describe some of access to a global main memory. Such systems are known as the existing snoop-based cache coherence protocols, explain Symmetric Multiprocessors, or SMPs. All of the processors their deficiencies, and discuss solutions and optimizations are connected to each other as well as to main memory that have been proposed to improve the performance of through the same interconnect, usually a shared bus. these protocols. Next, we will discuss the hardware imple- In such a system, when a certain memory location is read, mentation considerations associated with snoop-based cache we expect that the value returned is the latest value written coherence protocols. We will highlight the differences among to that location. This property is definitely maintained in implementations of the same coherence protocol, as well a uniprocessor system. However, in an SMP, where each as differences required across different coherence protocols. processor has its own cache, special steps have to be taken Lastly, we will evaluate the performance of several different to ensure that this is true. For example, consider the situation cache coherence protocols using real parallel applications run where two different processors, A and B, are reading from on a multiprocessor simulation model.