AU2007356815B2.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

AU2007356815B2.Pdf (12) STANDARD PATENT (11) Application No. AU 2007356815 B2 (19) AUSTRALIAN PATENT OFFICE (54) Title Single stage purification for uranium refining (51) International Patent Classification(s) C22B 60/02 (2006.01) (21) Application No: 2007356815 (22) Date of Filing: 2007.07.24 (87) WIPO No: W009/013759 (43) Publication Date: 2009.01.29 (44) Accepted Journal Date: 2012.08.30 (71) Applicant(s) SECRETARY, DEPARTMENT OF ATOMIC ENERGY (72) Inventor(s) Shanmugavelu, P.;Dhavamani, D.;Agrawal, Ankur;Bhowmik, A. (74) Agent / Attorney Griffith Hack, GPO Box 1285, Melbourne, VIC, 3001 (56) Related Art US 4271127 A (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau lllllllllllllllllllllllllllllllllllll^ (43) International Publication Date PCT (10) International Publication Number 29 January 2009 (29.01.2009) WO 2009/013759 Al (51) International Patent Classification: (74) Agents: MAJUMDAR, Subhatosh et al.; S. Majumdar & C22B 60/02 (2006.01) Co., 5, Harish Mukherjee Road, Kolkata 700 025 (IN). (21) International Application Number: (81) Designated States (unless otherwise indicated, for every PCT/IN2007/000305 kind of national protection available): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, CH, (22) International Filing Date: 24 July 2007 (24.07.2007) CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, H, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, IL, (25) Filing Language: English IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, (26) Publication Language: English MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, (71) Applicant (for all designated States except US): SEC­ TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, RETARY, DEPARTMENT OF ATOMIC ENERGY ZM, ZW. [IN/IN]; Government of India, Anushakti Bhavan, Chha- trapati Shivaji Maharaj Marg, Mumbai 400 001 (IN). (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (72) Inventors; and GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, (75) Inventors/Applicants (for US only): BHOWMIK, A. ZW), Eurasian (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), [IN/IN]; Chemical Technology Division, BARC, Trombay, European (AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, Mumbai 400 085 (IN). SHANMUGAVELU, P. [IN/IN]; FR, GB, GR, HU, IE, IS, IT, LT, LU, LV, MC, MT, NL, PL, Chemical Technology Division, BARC, Trombay, Mum­ PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, bai 400 085 (IN). DHAVAMANI, D. [IN/IN]; Chemical GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG). Technology Division, BARC, Trombay, Mumbai 400 085 (IN). AGRAWAL, Ankur [IN/IN]; Chemical Technology Published: Division, BARC, Trombay, Mumbai 400 085 (IN). — with international search report IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIN Ai (54) Title: SINGLE STAGE PURIFICATION FOR URANIUM REFINING 2009/013759 (57) Abstract: A process for refining yellowcake to produce nuclear grade uranium using a single step precipitation route for the simultaneous removal of heavy metals, boron and other rare earth metals comprising dissolving the yellowcake in nitric acid under mild agitation and adding hydrogen peroxide at pre-defined pH and temperature to selectively precipitate uranium peroxide hydrate. Also described is a process for producing nuclear grade uranium starting from uranium ore utilizing the above process. w o WO 2009/013759 PCT/IN2007/000305 1 SINGLE STAGE PURIFICATION FOR URANIUM REFINING FIELD OF THE INVENTION The present invention relates to a process for the preparation of nuclear grade pure uranium dioxide, natural metallic uranium and uranium hexafluoride from yellow 5 cake containing boron, rare earth and other metallic impurities. More particularly, the present invention relates to a process for the preparation of pure uranium dioxide that meets the nuclear grade specifications of the equivalent boron content being less than 4pg/g on uranium basis as per ASTM C - 753-99. I 10 BACKGROUND AND PRIOR ART Yellowcakes are uranium concentrates, which represent an intermediate step in the processing of uranium ores. Yellowcakes are usually obtained through the milling and chemical processing of uranium ore forming a coarse powder, which is insoluble in water and contains about 60-80% of uranium oxide depending on type of 15 Yellowcakes such as Magnesium Di-uranate, Ammonium Di-uranate or Uranium peroxide. In the process conventionally used within the art, the ore is first crushed to a fine powder by passing the starting raw uranium ore through crushers and grinders to produce the pulped ore. The pulped ore is thereafter processed with concentrated acid or an alkaline solution to leach out the uranium and the eluate is subjected to 20 precipitation of Uranium concentrates that is then filtered and dried to produce yellowcake. This yellowcake usually contains boron, rare earths and other metallic impurities. The yellowcake thus produced is thereafter converted to nuclear grade pure uranium 25 dioxide, natural metallic uranium and uranium hexafluoride using various processes conventionally known in the art. In one of the known processes i,e Solvent Extraction, the yellowcake is first dissolved in nitric acid and thereafter feed preparation is done to adjust the nitric acid and uranium concentration. This feed is thereafter passed through a multi-stage counter current slurry extractor wherein WO 2009/013759 PCT/IN2007/000305 2 uranyl nitrate is extracted using a mixture of 33% tributyl phosphate and kerosene leaving behind impurities in the mother liquor known as raffinate. The organic phase containing pure uranyl nitrate is further subjected to another separation step using de-mineralized water to produce pure uranyl nitrate solution. This pure urnayl nitrate 5 solution is co-precipitated with ammonia to produce ammonium diuranate (ADU), which is thereafter converted to produce nuclear grade uranium dioxide or metallic uranium. The conventionally known solvent extraction process, which involves the use of 10 carcinogenic materials such as tributyl phosphate, highly inflammable kerosene and hazardous ammonia needs lots of monitoring and safety regulations for industrial . scale operations. This process also produces degraded tributyl phosphate due to reaction with nitric acid and radioactivity, which requires complicated disposal method involving further treatment and incineration facilities, generates lots of solid 15 and liquid wastes containing nitrates which are difficult to dispose off. The generated solid waste contains a preponderance of nitrates, which therefore cannot be recycled for the recovery of uranium without the removal of nitrates. The removal of nitrates from the solid wastes generated requires special treatment steps as nitrate contamination of the ground water may lead to methemoglobinemia and stomach 20 cancer. The conventionally used solvent extraction process is also disadvantageous in that it generates multiple streams of wastes. The liquid waste stream typically contains about 100 ppm of uranium along with the soluble nitrates Which are disposed off in large solar ponds. The disposal of the liquid wastes in the large solar ponds requires large space and a continuous monitoring of the ground water around 25 the solar pond. , In another “dry refining process”, the starting yellowcake is directly palletized and reduced with hydrogen to produce uranium dioxide at a temperature between 550 - 650 °C in a fluidized bed reactor. The uranium dioxide is thereafter converted to WO 2009/013759 PCT/IN2007/000305 3 uranium tetrafluoride and uranium hexafluoride in the fluidized bed/Flame reactor. - The thus produced uranium hexafluorides are thereafter “refined" using a two-stage pressure distillation process. Further, this process of refining uranium fluorides by pressure distillation is a technically difficult and potentially hazardous process. 5 ' Refining is a process aimed at reducing the harmful impurities to an acceptable level, particularly to meet the nuclear grade specification that the equivalent boron content (EBC) may not exceed 4pg/g on uranium basis as per ASTM C - 753-99. The process according to the present invention surprisingly brings down the initial 10 EBC of 180 μg/g in the starting yellowcake to about less than 1.0 qg/g of EBC in the final product. A further approach for the production of pure uranium grades has been to use purer forms of the starting yellowcakes using hydrogen peroxide for the reduction of Mo, 15 V, P, Zr, As, Ca, Mg, Na, Si and other sulfates to produce purer yellowcakes in the form of uranium peroxide from eluate solutions of sulfate nature compared with Ammonium diuranate and Magnesium diuranate are used as the starting materials. However, it has been found that the yellowcake produced in the form of uranium peroxide using the aforesaid approach also contains substantial levels of rare earth 20 impurities that remain in the yellow cake thus necessitating further refining steps. Without wishing to be bound by theory, the inventors believe that hitherto, it has been impossible to remove both heavy metals and rare earth impurities such as boron, gadolinium, cadmium, europium and samarium in a single refining step using 25 Hydrogen peroxide as precipitation route because the process involves stringent pH control by the addition of alkaline solutions, which interferes with the simultaneous removal of rare,earth impurities such as boron, gadolinium, cadmium, europium and samarium in single refining step. WO 2009/013759 PCT/IN2007/000305 4 US 4 024 215 describes a process for the preparation of yellowcake, with a reduced content of sodium and vanadium from the eluate. However, the disclosed is not suitable for the removal of the rare earth impurities. Further, the yellowcake produced is further refined using the wet solvent extraction process to produce , 5 nuclear grade uranium, which suffers from the above identified deficiencies.
Recommended publications
  • FACT SHEET Office of Public Affairs
    FACT SHEET Office of Public Affairs Phone: 301-415-8200 Email: [email protected] Uranium Recovery Background The production of fuel for nuclear power plants starts with taking uranium ore from the ground and then purifying and processing it through a series of steps. Uranium recovery focuses on extracting natural uranium ore from the earth and concentrating (or milling) that ore. These recovery operations produce a product, called "yellowcake," which is then transported to a succession of fuel cycle facilities where the yellowcake is transformed into fuel for nuclear power reactors. In addition to yellowcake, uranium recovery operations generate waste products, called byproduct materials, that contain low levels of radioactivity. The NRC does not regulate uranium mining or mining exploration, but does have authority over milling of mined materials and in situ processes used to recover uranium, as well as mill tailings. Today’s conventional uranium mills and in situ recovery (ISR) facilities are operating safely and in a manner that is protective of the environment. The NRC regulates these facilities in close coordination with other Federal agencies and State and Tribal governments and provides technical support and guidance to those Agreement States that have authority over uranium recovery activities. Discussion The NRC becomes involved in uranium recovery operations when the ore is processed and physically or chemically altered. This happens either in a conventional, heap leach uranium mill, or ISR. For that reason, the NRC regulates ISR facilities as well as uranium mills and the disposal of liquid and solid wastes from uranium recovery operations (including mill tailings).
    [Show full text]
  • Implementing Safeguards-By-Design at Natural Uranium Conversion Plants
    NIS Office of Nuclear Safeguards and Security Safeguards-By-Design Facility Guidance Series (NGSI-SBD-002) August 2012 Implementing Safeguards-by-design at Natural Uranium Conversion Plants U.S. DEPARTMENT OF ENERG National Nuclear Security AdministrationY IMPLEMENTING SAFEGUARDS-BY-DESIGN AT NATURAL URANIUM CONVERSION PLANTS Lisa Loden John Begovich Date Published: July 2012 iii CONTENTS Page CONTENTS ......................................................................................................................................... IV 1. INTRODUCTION AND PURPOSE ................................................................................................. 1 2. KEY DEFINITIONS ......................................................................................................................... 2 3. SAFEGUARDS AT NUCPS ............................................................................................................. 7 3.1 SAFEGUARDS OBJECTIVES ................................................................................................. 7 3.2 TRADITIONAL AND INTEGRATED SAFEGUARDS ......................................................... 7 3.3 SAFEGUARDS RESPONSIBILITIES ..................................................................................... 8 3.3.1 STATE REGULATORY AUTHORITY RESPONSIBILITIES ..................................... 8 3.3.2 IAEA RESPONSIBILITIES ............................................................................................ 9 4. ELEMENTS OF FACILITY DESIGN THAT ARE RELEVANT
    [Show full text]
  • Uranium Dioxide Is Voluminous
    r>r 19 i o% ORNL-4755 UC-25 - Metals, Ceramics, and Materials s <-;. CONVERSIOH OF V&&4VWA NITRATE TO i aRAMlC-OR^Dt OXIDE>fs6t THE U&HT W4TBT J- -« .•'--• "" * -„ -' r J* - J * \ ^ --; f % ;~, <r- 4>- >» N< DMSICH0F DAfE -,i M\OH CAR6IDE COft^0tATtOR. U.S. ATOMIC *N**0T COMMAS»OIV 9>f & ^ima®tf»T^^*tB iwww® 1 PH^sarf in «*£ Uf9t«t Stress e* America. A vatfatt» from ---Sri*; -3K- >f ~ - - i ,43^>*£«* «^ ixn^ar»# ac «*, mts&mf of work {passaged b? tfw Lhnw XtitNr tfgr *}~ti$*i $**m «ar t!» untod Soto* Aflymic ^ «^ awy ^ iftw^r itT»i&y*OT« nor mf sd ihev canifiesscs.. ^iU- >*• ^H^ **•-» *-*• V .24, i *~ eta* -4-T" * iL - - IBS kfiE- r-„- 2 • «. "« J" '»' i - ^r'-s^j. •NOTICt ORNL-4755 Contract No. W-7405-eng-26 METAI5 AND CERAMICS DIVISION CONVERSION OF URANIUM NITRATE TO CERAMIC-GRADE OXIDE FOR THE LIGHT WATER ESEEDER REACTOR: PROCESS DEVELOPMENT J. M. Leitnaker M. L. Smith C. M. Fitzpatrick APRIL 1972 OAK RIDGE NATIONAL LABORATORY Oak Ridge, Tennessee 37830 operated by UNION CARBIDE CORPORATIOJN for the U.S. ATOMIC ENERGY COMMISSION W5TWBUTI0N OF THIS DOCUMENT IS UftUMflli iii CONTENTS Page Abstract 1 Introduction 1 Previous Investigations - 3 Stabilisation 4 Behavior of IXfe in Dry Air or Oxygen at Lev Tenpera&ures . 5 Behavior of UCfe in Dry Air or Oxygen at High Temperatures . 5 Behavior of DC^ in Hoist Air 7 Stabilisation of UO2 by Control of Surface Area 7 Stabilization by Addition of Moisture 11 Stabilization of UO2 with Dry Ice 12 Mechanical Stabilization of UO2 13 Reduction of Uranate to UO2 14 General Process Description .
    [Show full text]
  • Two Paths to a Nuclear Bomb Iran Has Historically Pursued Work on Both Uranium- and Plutonium-Weapons Programs, Western O Cials Say
    Two Paths to a Nuclear Bomb Iran has historically pursued work on both uranium- and plutonium-weapons programs, Western ocials say. The 2015 nuclear deal set temporary limits on a wide range of Iran's nuclear work and committed Tehran to never work on nuclear weapons. Here's how far down those paths Iran is. Creating weapons-grade nuclear fuel Uranium 1 Low-grade uranium ore is 2 Centrifuges are set up in 3 Enriching uranium to 5% is the 4 It takes roughly 200 kg to 250 kg of 20% mined and chemically treated cascades to enrich the uranium. most time-consuming part of enriched uranium to produce the 25 kg of to produce a concentrated The sophisticated process can producing weapons-grade material. 90% enriched uranium, the amount needed yellowcake. After a conversion take years to establish. Iran Iran on Monday exceeded its for a bomb. Iran has reached 20% purity in process, it is fed into produced around 20,000 basic permitted 300-kg stockpile of the past but has never enriched above that centrifuges. centrifuges but is doing research uranium enriched to 3.67%. level. The enriched uranium is converted to Weaponizing nuclear fuel on more advanced machines. uranium metal for weapon use. Deploying the nuclear fuel in a Centrifuges weapon presents technical challenges, many of which Iran isn’t believed to have mastered. Detonating the 5% enriched Uranium Yellowcake Uranium 20% weapon requires a fission ore hexaflouride uranium 90% reaction. The nuclear payload 25kg must be attached to a missile, and the payload must be able 200-250 kg to withstand reentry through through earth's atmosphere as Plutonium it descends to its target.
    [Show full text]
  • Journal of Luminescence 210 (2019) 425–434
    Journal of Luminescence 210 (2019) 425–434 Contents lists available at ScienceDirect Journal of Luminescence journal homepage: www.elsevier.com/locate/jlumin Insight into the effect of A-site cations on structural and optical properties of T RE2Hf2O7:U nanoparticles ∗ Maya Abdoua, Santosh K. Guptaa,b, Jose P. Zunigaa, Yuanbing Maoa,c, a Department of Chemistry, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539, USA b Radiochemistry Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400085, India c School of Earth, Environmental, and Marine Sciences, University of Texas Rio Grande Valley, 1201 West University Drive, Edinburg, TX, 78539, USA ARTICLE INFO ABSTRACT Keywords: A2B2O7 type pyrochlores have been recently proposed as a potential nuclear waste host due to their many Uranium interesting properties. To assess and understand the performance of these compounds as nuclear waste hosts, the Pyrochlore speciation and structural investigations on actinide-doped RE2Hf2O7 are needed since both are imperative from Phase-transition their application perspective. In this work, we investigated the effect of uranium doping at different con- Luminescence centrations in the range of 0–10% on the structural and optical properties of RE Hf O :U (RE = Y, Gd, Nd, and Cotunnite 2 2 7 Lu) nanoparticles (NPs). The Y2Hf2O7 NPs exist in slightly disordered pyrochlore structure and the extent of disordering increases as a function of uranium doping while the structure reaches a cotunnite phase at 10.0% doping level. The Nd2Hf2O7 NPs also exist in a distorted pyrochlore structure and their distortion increases with increasing uranium doping inducing a phase transition into a disordered fluorite structure at 10.0% uranium doping.
    [Show full text]
  • Global Fissile Material Report 2006 a Table of Contents
    IPF M Global Fis sile Material Report Developing the technical basis for policy initiatives to secure and irreversibly reduce stocks of nuclear weapons and fissile materials 2006 Over the past six decades, our understanding of the nuclear danger has expanded from the threat posed by the vast nuclear arsenals created by the super- powers in the Cold War to encompass the prolifera- tion of nuclear weapons to additional states and now also to terrorist groups. To reduce this danger, it is essential to secure and to sharply reduce all stocks of highly enriched uranium and separated plutonium, the key materials in nuclear weapons, and to limit any further production. The mission of the IPFM is to advance the technical basis for cooperative international policy initiatives to achieve these goals. A report published by Global Fissile The International Panel on Fissile Materials (IPFM) www.fissilematerials.org Program on Science and Global Security Princeton University Material Report 2006 221 Nassau Street, 2nd Floor Princeton, NJ 08542, USA First report of the International Panel on Fissile Materials First report of the International Panel on Fissile Materials Developing the Technical Basis for Policy Initiatives to Secure and Irreversibly Reduce Stocks of Nuclear Weapons and Fissile Materials www.fissilematerials.org Global Fissile Material Report 2006 a Table of Contents About the IPFM 1 Summary 2 I. Background 5 1 Fissile Materials and Nuclear Weapons 6 2 Nuclear-Weapon and Fissile-Material Stocks 12 3 Production and Disposition of Fissile
    [Show full text]
  • Revision 1 Manuscript Submitted To
    This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4295 10/3 1 Revision 1 2 3 Manuscript submitted to the Special Section: 4 "Mineralogy and the Nuclear Industry: Actinides in 5 Geology, Energy, and the Environment" 6 7 8 9 10 Evidence for nanocrystals of vorlanite, a rare uranate mineral, in the Nopal I low- 11 temperature uranium deposit (Sierra Peña Blanca, Mexico) 12 Guillaume Othmane,1,* Thierry Allard,1 Nicolas Menguy,1 Guillaume Morin,1 Imène Esteve,1 13 Mostafa Fayek,2 and Georges Calas1 14 15 1 Institut de Minéralogie et de Physique des Milieux Condensés (IMPMC), UMR 7590 16 CNRS-UPMC/Paris VI-IRD, Case 115, 4 place Jussieu, 75252 Paris Cedex 05, France 17 18 2 Dept. of Geological Sciences, University of Manitoba, Winnipeg, MB, Canada R3T 2N2 19 20 * E-mail: [email protected] 21 1 Always consult and cite the final, published document. See http://www.minsocam.org or GeoscienceWorld This is a preprint, the final version is subject to change, of the American Mineralogist (MSA) Cite as Authors (Year) Title. American Mineralogist, in press. (DOI will not work until issue is live.) DOI: http://dx.doi.org/10.2138/am.2013.4295 10/3 22 ABSTRACT 23 The occurence of vorlanite, cubic CaUO4, is reported in the Nopal I uranium deposit 24 (Sierra Peña Blanca, Mexico). This is the first time this rare calcium uranate has been found 25 displaying a cubic morphology, in agreement with its crystal structure.
    [Show full text]
  • Spectroscopic Signatures of Uranium Speciation for Forensics
    UNLV Theses, Dissertations, Professional Papers, and Capstones May 2017 Spectroscopic Signatures of Uranium Speciation for Forensics Nicholas Wozniak University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Chemistry Commons Repository Citation Wozniak, Nicholas, "Spectroscopic Signatures of Uranium Speciation for Forensics" (2017). UNLV Theses, Dissertations, Professional Papers, and Capstones. 3063. http://dx.doi.org/10.34917/10986257 This Dissertation is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Dissertation in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Dissertation has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. SPECTROSCOPIC SIGNATURES OF URANIUM SPECIATION FOR FORENSICS By Nicholas Robert Wozniak Bachelors of Science – Chemistry Bachelors of Science – Physics Hope College 2012 A dissertation submitted in partial fulfillment of the requirements for the Doctor of Philosophy – Radiochemistry Department of Chemistry College of Sciences The Graduate College University of Nevada, Las Vegas May 2017 Dissertation Approval The Graduate College The University of Nevada, Las Vegas April 14, 2017 This dissertation prepared by Nicholas Robert Wozniak entitled Spectroscopic Signatures of Uranium Speciation for Forensics is approved in partial fulfillment of the requirements for the degree of Doctor of Philosophy – Radiochemistry Department of Chemistry Ken Czerwinski, Ph.D.
    [Show full text]
  • Managing the Nuclear Fuel Cycle: Policy Implications of Expanding Global Access to Nuclear Power
    Managing the Nuclear Fuel Cycle: Policy Implications of Expanding Global Access to Nuclear Power Mary Beth Nikitin, Coordinator Specialist in Nonproliferation Anthony Andrews Specialist in Energy and Defense Policy Mark Holt Specialist in Energy Policy October 19, 2012 Congressional Research Service 7-5700 www.crs.gov RL34234 CRS Report for Congress Prepared for Members and Committees of Congress Managing the Nuclear Fuel Cycle Summary After several decades of widespread stagnation, nuclear power has attracted renewed interest in recent years. New license applications for 30 reactors have been announced in the United States, and another 548 are under construction, planned, or proposed around the world. In the United States, interest appears driven, in part, by tax credits, loan guarantees, and other incentives in the 2005 Energy Policy Act, as well as by concerns about carbon emissions from competing fossil fuel technologies. A major concern about the global expansion of nuclear power is the potential spread of nuclear fuel cycle technology—particularly uranium enrichment and spent fuel reprocessing—that could be used for nuclear weapons. Despite 30 years of effort to limit access to uranium enrichment, several undeterred states pursued clandestine nuclear programs, the A.Q. Khan black market network’s sales to Iran and North Korea representing the most egregious examples. However, concern over the spread of enrichment and reprocessing technologies may be offset by support for nuclear power as a cleaner and more secure alternative to fossil fuels. The Obama Administration has expressed optimism that advanced nuclear technologies being developed by the Department of Energy may offer proliferation resistance. The Administration has also pursued international incentives and agreements intended to minimize the spread of fuel cycle facilities.
    [Show full text]
  • Kinetic Study of the Oxidative Dissolution of UO2 in Aqueous Carbonate Media
    8188 Ind. Eng. Chem. Res. 2004, 43, 8188-8193 Kinetic Study of the Oxidative Dissolution of UO2 in Aqueous Carbonate Media Shane M. Peper,† Lia F. Brodnax,† Stephanie E. Field,† Ralph A. Zehnder,† Scott N. Valdez,‡ and Wolfgang H. Runde*,† Chemistry and Nuclear Materials Technology Divisions, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 The oxidative dissolution of uranium(IV) dioxide powder at room temperature in aqueous carbonate media has been investigated. Kinetic studies evaluating the efficacy of various oxidants, including K2S2O8, NaOCl, and H2O2, for dissolving UO2 in alkaline solution have been performed, with H2O2 exhibiting the most rapid initial dissolution at 0.1 M oxidant concentrations. This result is due in part to the ability of peroxide to act as both an oxidant and a ligand under alkaline conditions. A spectrophotometric titration was used to confirm peroxide coordination to the U(VI) metal center. The disappearance of characteristic absorbance maxima associated 4- with UO2(CO3)3 (e.g., 448.5 nm) and a subsequent change in solution coloration upon titration with hydrogen peroxide indicated a change in speciation. Optimization of the hydrogen peroxide concentration indicated that the initial rate of uranium oxidation increased with increasing peroxide concentration, with a maximum reaction rate estimated at about 0.9 M peroxide. In addition, the effects of both the carbonate countercation and the carbonate concentration were also studied. It was determined that for 40 mg UO2 0.5MNa2CO3 was the most propitious choice, exhibiting both a high initial dissolution rate and the highest UO2 dissolution capacity among the systems studied.
    [Show full text]
  • Uranium Mining Communities in the American West
    Contents List of Illustrations vii Acknowledgments ix Introduction xv 1 From Weed to Weapon: U.S. Uranium, 1898–1945 1 2 To Stimulate Production and in Interest of Security: 17 The First Cold War Uranium Boom, 1946–1958 3 Uranium Company Towns in the American West 37 4 The Uranium Capital of the World I: Moab 53 5 The Uranium Capital of the World II: Grants 77 6 Allocation, Protectionism, and Subsistence: 105 Changing Federal Policies to Preserve Domestic Producers, 1958–1970 7 Creatures of Uncle Sam: Yellowcake Communities 115 During the Allocation and Stretch-out Periods 8 The Commercial Boom and Bust: Federal Policies and 135 the Free Market, 1970–1988 9 Yellowcake Towns During the Commercial Boom and 149 Bust, 1970–1988 10 Conclusion 173 Bibliography 181 Index 197 Introduction S INCE THE END OF THE COLD WAR in 1989, Americans have begun to consider seriously the social costs exacted by the development of the atom. Recent disclosures have revealed radiation tests conducted on unknowing children. Similar studies have probed cancer rates in the inter- montane West presumably caused by nuclear testing. Still others have ex- amined the survival of cities such as Hanford, Washington, and Los Alamos, New Mexico, where the first bombs and reactors were manufactured.1 But little scholarly attention has been directed to the supply side of the indus- try. Although some recent works have examined the environmental conse- quences of uranium mining and the cancer rates among its miners, there is little mention of the well-being of the communities impacted by the min- ing and milling of yellowcake, the industry’s term for processed uranium ore.2 This study analyzes the origins, development, and decline of four such yellowcake communities: Uravan, Colorado; Moab, Utah; Grants, New Mexico; and Jeffrey City, Wyoming.
    [Show full text]
  • Uranium (U) Fact Sheet
    Uranium (U) September 2003 Fact Sheet 320-079 Division of Environmental Health Office of Radiation Protection WHO DISCOVERED URANIUM? Uranium was discovered by Martin Klaproth, a German chemist, in 1789 in the mineral pitchblende, and was named after the planet Uranus. Some of the important isotopes of uranium are: ♦ U235 (half-life 703,800,000 years) ♦ U238 (half-life 4,468,000,000 years) WHAT IS URANIUM USED FOR? In the past, uranium was used to color glass (from as early as 79 AD) and deposits were once mined in order to obtain its decay product, radium. This element was used in luminous paint, particularly on the dials of watches and aircraft instruments, and in medicine for the treatment of disease. Uranium was popular as an orange coloring agent for ceramic glazes on Fiesta Ware until its use was restricted in 1943, and as an additive in porcelain teeth to improve their appearance. Until the 1970s, virtually all of the uranium that was mined was used in the production of nuclear weapons. Today the only substantial use for uranium is as fuel in nuclear reactors, mostly in nuclear power plants for electricity generation. Uranium-235 is the only naturally occurring material which can sustain a fission chain reaction, releasing large amounts of energy. Uranium Fuel Natural uranium is composed of 0.72% U-235 (the fissionable isotope), 99.27% U-238, and a trace quantity 0.0055% U-234. The 0.72% U-235 is not sufficient to produce a self-sustaining critical chain reaction in U.S. style light-water reactors, although it is used in Canadian CANDU reactors.
    [Show full text]