Estrogen Receptor B Represses Akt Signaling

Total Page:16

File Type:pdf, Size:1020Kb

Estrogen Receptor B Represses Akt Signaling Lindberg et al. Breast Cancer Research 2011, 13:R43 http://breast-cancer-research.com/content/13/2/R43 RESEARCHARTICLE Open Access Estrogen receptor b represses Akt signaling in breast cancer cells via downregulation of HER2/ HER3 and upregulation of PTEN: implications for tamoxifen sensitivity Karolina Lindberg1, Luisa A Helguero2, Yoko Omoto1, Jan-Åke Gustafsson1,3 and Lars-Arne Haldosén1* Abstract Introduction: The inhibition of estrogen receptor (ER) a action with the ER antagonist tamoxifen is an established treatment in the majority of breast cancers. De novo or acquired resistance to this therapy is common. Expression of ERb in breast tumors has been implicated as an indicator of tamoxifen sensitivity. The mechanisms behind this observation remain largely uncharacterized. In the present study, we investigated whether ERb can modulate pathways implicated in endocrine resistance development. Methods: T47-D and MCF-7 ERa-expressing breast cancer cells with tetracycline-regulated expression of ERb were used as a model system. Expression levels and activity of known regulators of endocrine resistance were analyzed by performing quantitative polymerase chain reaction assays, Western blot analysis and immunostaining, and sensitivity to tamoxifen was investigated by using a cell proliferation kit. Results: Expression of ERb in ERa-positive T47-D and MCF-7 human breast cancer cells resulted in a decrease in Akt signaling. The active form of an upstream regulator of Akt, proto-oncogene c-ErbB-2/receptor tyrosine kinase erbB-3 (HER2/HER3) receptor dimer, was also downregulated by ERb. Furthermore, ERb increased expression of the important inhibitor of Akt, phosphatase and tensin homologue deleted on chromosome 10 (PTEN). Importantly, ERb expression increased the sensitivity of these breast cancer cells to tamoxifen. Conclusions: Our results suggest a link between expression of ERb and endocrine sensitivity by increasing PTEN levels and decreasing HER2/HER3 signaling, thereby reducing Akt signaling with subsequent effects on proliferation, survival and tamoxifen sensitivity of breast cancer cells. This study supports initiatives to further investigate whether ERb presence in breast cancer samples is an indicator for endocrine response. Current therapies in ERa-positive breast cancers aim to impair ERa activity with antagonists or by removal of endogenous estrogens with aromatase inhibitors. Data from this study could be taken as indicative for also using ERb as a target in selected groups of breast cancer. Introduction ERb, have been identified [3]. ERa plays an important Approximately two-thirds of breast cancers express role in the proliferation and progression of breast can- estrogen receptors (ERs) and initially require estrogen to cer, whereas a distinct function of ERb in breast cancer grow, and are therefore treated with ER antagonists, initiation and development has not yet been clearly such as tamoxifen, or by depletion of endogenous estro- established. In in vitro settings, ERb inhibits prolifera- gens with aromatase inhibitors [1,2]. Two ERs, ERa and tion, migration and invasion of breast cancers cells [4-9] as well as the growth of breast tumor xenografts [10]. ERa is the marker of choice to decide endocrine treat- * Correspondence: [email protected] ment of breast cancer. However, in the case of tamoxi- 1Department of Biosciences and Nutrition, Novum, Karolinska Institutet, Blickagången 6, S-141 83 Huddinge, Sweden fen treatment, despite the initial response to the Full list of author information is available at the end of the article © 2011 Lindberg et al.; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Lindberg et al. Breast Cancer Research 2011, 13:R43 Page 2 of 13 http://breast-cancer-research.com/content/13/2/R43 therapy, one-third of patients will acquire resistance and associated with poor disease outcome [41-44]. even though their ERa status may remain unchanged PTEN antagonizes PI3K activity by dephosphorylating [11]. ERb has also been considered a marker of endo- PIP3, resulting in lower levels of active Akt [45]. crine response. Lower expression of ERb is found in The goal of this study was to investigate whether tamoxifen-resistant tumors, and high levels of ERb are ERb1 (referred to hereinafter as ERb) has any effect on sometimes associated with a better clinical outcome in the RTK/PI3K/Akt signaling pathway and thereby repre- ERa-expressing breast tumors [12]. However, some stu- sents a regulator of tamoxifen sensitivity. We show that dies have indicated that in high-grade, ERa-negative, in ERa-positive breast cancer cells, expression of ERb node-positive breast tumors, ERb presence appears to reduced Akt activation through downregulation of be a marker related to a more aggressive breast cancer HER2/HER3 signaling and upregulation of PTEN and, [13]. importantly, increased sensitivity to tamoxifen. ERb has Breast tumors overexpressing receptor tyrosine kinases sometimes been suggested as a predictor of endocrine (RTKs) are less likely to benefit from tamoxifen treat- response; however, the mechanisms underlying this ment [14-17]. Receptor tyrosine protein kinase erbB-3 response are still unknown. Here we suggest a link (HER3) and proto-oncogene c-ErbB-2 (HER2) are mem- between expression of ERb and endocrine sensitivity. bers of the epidermal growth factor receptor (EGFR) family. HER3 lacks intrinsic kinase activity and relies on Materials and methods heterodimerization with other members of the EGFR Cell cultures family for transduction of signals. There is growing T47-D cells with tetracycline-regulated expression of awareness of the importance of HER2/HER3 heterodi- ERb485 (T47-DERb) [4] were routinely grown not mer formation in breast cancer progression, where coex- expressing ERb (-ERb) in RPMI 1640 medium (Invitro- pression of HER2 and HER3 has been shown to be a gen, Paisley, United Kingdom) supplemented with 5% poor prognostic indicator associated with resistance to heat-inactivated fetal bovine serum (FBS) (Invitrogen), endocrine therapy and to HER tyrosine kinase inhibitors 1% penicillin-streptomycin (Invitrogen) and 10 ng/mL [18-22]. The majority of HER2-positive tumors are doxycycline (Sigma, Stockholm, Sweden). For experi- strongly positive for HER3 [18], which is also seen in ments, cells were grown for 24 to 168 hours prior to mouse models of breast cancers, where high expression analysis in phenol red-free RPMI 1640 medium supple- of HER2 is commonly associated with activated and mented with 2% heat-inactivated FBS, 1% penicillin- overexpressed HER3 [23]. Furthermore, inhibition of streptomycin, 10 ng/mL -ERb or 0.01 ng/mL doxycy- HER2 correlates with reduction in HER3 phosphoryla- cline +ERb in the presence of vehicle alone, ethanol tion [24] and, correspondingly, inhibition of HER3 and/or dimethyl sulfoxide (Sigma), or in 10 nM 2,3-bis reduces phosphorylation of HER2 and abrogates HER2- (4-hydroxy-phenyl)-propionitrile (DPN) (Tocris, Bristol, mediated tamoxifen resistance [25]. United Kingdom), 10 nM 4,4’,4"-(4-propyl-[1H]-pyra- Phosphatidylinositol 3-kinase (PI3K) promotes genera- zole-1,3,5-triyl)trisphenol (PPT) (Tocris), 10 nM 17b- tion of phosphatidylinositol (3,4,5)-triphosphate (PIP3), estradiol (E2) (Sigma), 10 nM 7-bromo-2-(4-hydroxy- which leads to phosphorylation and activation of the phenyl)-1,3-benzoxazol-5-ol (WAY) (Tocris), 100 nM serine/threonine kinase Akt. The PI3K/Akt pathway ICI 182, 789 (ICI) (Tocris) or 100 to 1,000 nM 4- plays important roles in regulating cell proliferation, hydroxy-tamoxifen (4-OH-T) (Sigma). MCF-7 breast growth, apoptosis and motility. Increased activity due to cancer cells with tetracycline-regulated expression of genetic changes is frequently seen in breast cancer, ERb485 were treated in a similar manner. T47-DPBI resulting in tumor progression, metastases and resis- cells (Mock) were used as controls. tance to endocrine treatment [26-29]. Mutation of the PIK3CA gene, which encodes the p110a catalytic subu- Quantitative real-time polymerase chain reaction assays nit of PI3K, leads to activation of Akt and is found in Cells were grown in six-well tissue culture plates for 24 18% to 40% of human breast cancers [30-32]. Stimula- to 96 hours and lysed in TRIzol reagent (Invitrogen), tion of RTKs also activates Akt [33-35], and overexpres- then RNA was extracted and cDNA was synthesized as sion of HER2 is linked to elevated Akt activities [36-38]. described previously [46]. Quantitative real-time poly- In ERa-positive breast cancers treated with tamoxifen, merase reaction assays (qRT-PCR) were performed with detection of activated Akt at diagnosis has been shown SYBR Green PCR Master Mix in an ABI PRISM 7500 to correlate to decreased overall survival [39]. (Applied Biosystems, Foster City, USA). The following Constitutive active Akt is also associated with loss of primers were used: 18S forward 5’-CCTGCGGCTTAA- phosphatase and tensin homologue deleted on chromo- TTTGACTCA-3’, reverse 5’-AGCTATCAATCTGT- some 10 (PTEN) expression [40]. PTEN is a tumor sup- CAATCCTGTCC-3’; ERb forward 5’-ACTTGCTG- pressor whose expression is often lost in breast cancers AACGCCGTGACC-3’,reverse5’-CAGATGTTCCA- Lindberg et al. Breast Cancer Research 2011, 13:R43 Page 3 of 13 http://breast-cancer-research.com/content/13/2/R43
Recommended publications
  • Regulation of Specific Target Genes and Biological Responses by Estrogen Receptor Subtype Agonists Leitman Et Al
    COPHAR-861; NO. OF PAGES 8 Available online at www.sciencedirect.com Regulation of specific target genes and biological responses by estrogen receptor subtype agonists Dale C Leitman1, Sreenivasan Paruthiyil2, Omar I Vivar1, Elise F Saunier2, Candice B Herber1, Isaac Cohen2, Mary Tagliaferri2 and Terence P Speed3,4 Estrogenic effects are mediated through two estrogen receptor adverse effects. The most troublesome side-effect of (ER) subtypes, ERa and ERb. Estrogens are the most estrogens is the increased risk of breast and endometrial commonly prescribed drugs to treat menopausal conditions, cancer [1,2]. Estrogens also increase blood clotting that but by non-selectively triggering both ERa and ERb pathways can lead to venous thromboembolisms, and possibly in different tissues they can cause serious adverse effects. The strokes and heart disease, particularly in older women different sizes of the binding pockets and sequences of their [1]. activation function domains indicate that ERa and ERb should have different specificities for ligands and biological responses Estrogens in hormone therapy (HT) were formulated that can be exploited for designing safer and more selective long before there was a significant understanding of estrogens. ERa and ERb regulate different genes by binding to the mechanism of action of estrogens. The identification different regulatory elements and recruiting different of ERa and ERb (Figure 1) and the crystal structures of transcription and chromatin remodeling factors that are their ligand binding domain (LBD), the discovery of a expressed in a cell-specific manner. ERa-selective and ERb- variety of coregulatory proteins involved in the genomic selective agonists have been identified that demonstrate that pathway and the demonstration of the nongenomic the two ERs produce distinct biological effects.
    [Show full text]
  • UC Berkeley UC Berkeley Electronic Theses and Dissertations
    UC Berkeley UC Berkeley Electronic Theses and Dissertations Title Statistical Methods for Dose-Response Assays Permalink https://escholarship.org/uc/item/9295t422 Author Tong, Frances Poyen Publication Date 2010 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California Statistical Methods for Dose-Response Assays by Frances Poyen Tong A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Statistics in the GRADUATE DIVISION of the UNIVERSITY OF CALIFORNIA, BERKELEY Committee in charge: Professor Terence P. Speed, Chair Professor Haiyan Huang Professor John Ngai Professor Deborah Nolan Spring 2010 Statistical Methods for Dose-Response Assays Copyright 2010 by Frances Poyen Tong 1 Abstract Statistical Methods for Dose-Response Assays by Frances Poyen Tong Doctor of Philosophy in Statistics University of California, Berkeley Professor Terence P. Speed, Chair Dose-response assays are a common and increasingly high throughput method of as- sessing the toxicity of potential drug targets on test populations of cells. Such assays typically involve serial dilutions of the compounds in question applied to cell samples to determine the level of cell activity across a broad range of concentrations. Another factor in such experiments may be the change in activity under different enzyme com- binations and the use of controls to adjust for interassay variations. Typically, the decreasing number in the population of cells due to increasing concentrations of the drug can be modeled with a logistic curve. Since the appropriate range of concen- trations of the drug to test in order to see these reactions cannot be predetermined fully, frequently the data available for a given experimental unit may not be enough to fit such curves on their own successfully.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,815,949 B2 Cohen (45) Date of Patent: Oct
    US007815949B2 (12) United States Patent (10) Patent No.: US 7,815,949 B2 Cohen (45) Date of Patent: Oct. 19, 2010 (54) ESTROGENIC EXTRACTS OF MORUS ALBA 6,348,204 B1 2/2002 Touzan AND USES THEREOF 6,551,627 B1 4/2003 Yoon et al. FOREIGN PATENT DOCUMENTS (75) Inventor: Isaac Cohen, Piedmont, CA (US) CN 1105252 A 7, 1995 (73) Assignee: BioNovo, Inc., Emeryville, CA (US) N E. A R (*) Notice: Subject to any disclaimer, the term of this N o g 3. patent is extended or adjusted under 35 JP 2001.002568 1, 2001 U.S.C. 154(b) by 473 days. JP 2002142717. A 5/2002 JP 2004 189609 A T 2004 (21) Appl. No.: 11/298,080 WO WO 2004/OO6946 * 1, 2004 (22) Filed: Dec. 9, 2005 OTHER PUBLICATIONS O O Supplemental EP Search Report mailed Apr. 14, 2008. (65) Prior Publication Data Ray et al., “Histological study on the effect of phytoestrogen on uterus and ovary of animal.” 196601.01, Indian Science Congress US 2006/0134245A1 Jun. 22, 2006 Association Proceedings 53(nr3);461, ISSN 0085-1817. Related U.S. Application Data EP 05853.308.4 Official Action mailed Jul. 13, 2010. AV * cited by examiner (60) Provisional application No. 60/637,302, filed on Dec. y 17, 2004. Primary Examiner Christopher R Tate Assistant Examiner—Randall Winston (51) Int. Cl. (74) Attorney, Agent, or Firm Wilson Sonsini Goodrich & A6 IK36/00 (2006.01) Rosati A6 IK9/00 (2006.01) A6 IK 47/00 (2006.01) (57) ABSTRACT (52) U.S. Cl. ....................... 424/774; YSE Extracts of various species of the Moraceae family have estro 58) Field of Classification S h s N genic properties.
    [Show full text]
  • Metastatic Breast Cancer
    THE INSIDER’S GUIDE TO METASTATIC BREAST CANCER A Summary of the Disease and its Treatments by Anne Loeser THE INSIDER’S GUIDE TO METASTATIC BREAST CANCER TABLE OF CONTENTS Dedication ........................................................................................................................................................................................................... 0 1. Disclaimer ...................................................................................................................................................................................................... 1 2. Introduction .................................................................................................................................................................................................. 2 3. About the Author ........................................................................................................................................................................................ 3 4. Overview and Suggestions ...................................................................................................................................................................... 4 5. Helpful Hints and Facts ........................................................................................................................................................................... 6 6. Types of Breast Cancer and Related Tests ..................................................................................................................................
    [Show full text]
  • MF101, a Selective Estrogen Receptor a Modulator for the Treatment of Menopausal Hot Flushes: a Phase II Clinical Trial
    Menopause: The Journal of The North America Menopause Society Vol. 16, No. 3, pp. 458/465 DOI: 10.1097/gme.0b013e31818e64dd * 2009 by The North American menopause Society MF101, a selective estrogen receptor A modulator for the treatment of menopausal hot flushes: a phase II clinical trial Deborah Grady, MD, MPH,1,2 George F. Sawaya, MD,1 Karen C. Johnson, MD, MPH,3 William Koltun, MD,4 Rachel Hess, MD,5 Eric Vittinghoff, PhD,1 Margaret Kristof, MS, RN,1 Mary Tagliaferri, MD, LAC,6 Isaac Cohen, OMD, LAC,6 and Kristine E. Ensrud, MD, MPH7,8 Abstract Objective: To determine the optimal dose, safety, and efficacy of an estrogen receptor A selective Chinese herbal extract, menopausal formula 101 (MF101), for treating hot flushes. Methods: A randomized, blinded trial in 217 postmenopausal women with hot flushes randomized to 5 or 10 g/day of MF101 or placebo for 12 weeks. Results: The effects of 5 g/day of MF101 did not differ from those of placebo. After 12 weeks, the mean percent decrease in frequency of hot flushes in the 10 g/day group was 12.9% greater than that in the placebo group (P =0.15), the median percent decrease was 11.7% greater than that in the placebo group (P = 0.05), and the proportion of women with at least a 50% reduction in hot flushes was 16.2% greater than that in the placebo group (P =0.03). Conclusions: Treatment with 10 g/day of MF101 reduces the frequency of hot flushes. Trials with higher doses are planned.
    [Show full text]
  • Estrogen Receptor Beta Growth-Inhibitory Effects Are Repressed Through Activation of MAPK and PI3K Signalling in Mammary Epithelial and Breast Cancer Cells
    Oncogene (2013) 32, 2390–2402 & 2013 Macmillan Publishers Limited All rights reserved 0950-9232/13 www.nature.com/onc ORIGINAL ARTICLE Estrogen receptor beta growth-inhibitory effects are repressed through activation of MAPK and PI3K signalling in mammary epithelial and breast cancer cells CZ Cotrim1, V Fabris2, ML Doria1, K Lindberg3, J-Å Gustafsson3,4, F Amado5, C Lanari2 and LA Helguero1,6 Two thirds of breast cancers express estrogen receptors (ER). ER alpha (ERa) mediates breast cancer cell proliferation, and expression of ERa is the standard choice to indicate adjuvant endocrine therapy. ERbeta (ERb) inhibits growth in vitro; its effects in vivo have been incompletely investigated and its role in breast cancer and potential as alternative target in endocrine therapy needs further study. In this work, mammary epithelial (EpH4 and HC11) and breast cancer (MC4-L2) cells with endogenous ERa and ERb expression and T47-D human breast cancer cells with recombinant ERb (T47-DERb) were used to explore effects exerted in vitro and in vivo by the ERb agonists 2,3-bis (4–hydroxy–phenyl)-propionitrile (DPN) and 7-bromo-2-(4–hydroxyphenyl)-1,3-benzoxazol-5- ol (WAY). In vivo, ERb agonists induced mammary gland hyperplasia and MC4-L2 tumour growth to a similar extent as the ERa agonist 4,40,400-(4-propyl-(1H)-pyrazole-1,3,5-triyl) trisphenol (PPT) or 17b-estradiol (E2) and correlated with higher number of mitotic and lower number of apoptotic features. In vitro, in MC4-L2, EpH4 or HC11 cells incubated under basal conditions, ERb agonists induced apoptosis measured as upregulation of p53 and apoptosis-inducible factor protein levels and increased caspase 3 activity, whereas PPT and E2 stimulated proliferation.
    [Show full text]
  • Genome-Wide Mapping of Estrogen Receptor-Β–Binding Regions Reveals Extensive Cross-Talk with Transcription Factor Activator Protein-1
    Published OnlineFirst May 25, 2010; DOI: 10.1158/0008-5472.CAN-09-4407 Published OnlineFirst on May 25, 2010 as 10.1158/0008-5472.CAN-09-4407 Tumor and Stem Cell Biology Cancer Research Genome-Wide Mapping of Estrogen Receptor-β–Binding Regions Reveals Extensive Cross-Talk with Transcription Factor Activator Protein-1 Chunyan Zhao1, Hui Gao1, Yawen Liu2, Zoi Papoutsi1, Sadaf Jaffrey1, Jan-Åke Gustafsson1,3, and Karin Dahlman-Wright1 Abstract Estrogen signaling can occur through a nonclassical pathway involving the interaction of estrogen receptors (ER) with other transcription factors such as activator protein-1 (AP-1) and SP-1. However, there is little mechanistic understanding about this pathway, with conflicting results from in vitro investigations. In this study, we applied the ChIP-on-chip approach to identify ERβ-binding sites on a genome-wide scale, identifying 1,457 high-confidence binding sites in ERβ-overexpressing MCF7 breast cancer cells. Genes containing ERβ-binding sites can be regulated by E2. Notably, ∼60% of the genomic regions bound by ERβ contained AP-1–like binding regions and estrogen response element–like sites, suggesting a functional association between AP-1 and ERβ signaling. Chromatin im- munoprecipitation (ChIP) analysis confirmed the association of AP-1, which is composed of the oncogenic tran- scription factors c-Fos and c-Jun, to ERβ-bound DNA regions. Using a re-ChIP assay, we showed co-occupancy of ERβ and AP-1 on chromatin. Short interfering RNA–mediated knockdown of c-Fos or c-Jun expression decreased ERβ recruitment to chromatin, consistent with the role of AP-1 in mediating estrogen signaling in breast cancer cells.
    [Show full text]
  • Phytochemical Disruption of Hormone Receptor Expression And
    Phytochemical Disruption of Hormone Receptor Expression and Intracellular Signaling in Human Reproductive Cancer Cells By Crystal Nicole Marconett B.S. (University of California, Santa Cruz) 2005 A dissertation submitted in partial satisfaction of the Requirements for the degree of Doctor of Philosophy In Molecular and Cell Biology in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Gary L. Firestone, Chair Professor Len F. Bjeldanes Professor G. Steven Martin Professor Lin He Fall 2009 ABSTRACT Phytochemical Disruption of Hormone Receptor Expression and Intracellular Signaling in Human Reproductive Cancer Cells By Crystal Nicole Marconett Doctor of Philosophy in Molecular and Cell Biology University of California, Berkeley Professor Gary Firestone, Chair ERα is a critical target of therapeutic strategies to control the proliferation of hormone dependent breast cancers. Preferred clinical options have significant adverse side effects that can lead to treatment resistance due to the persistence of active estrogen receptors. This thesis details the molecular mechanism indole-3-carbinol (I3C) initiates to ablate ERα expression and subsequent downstream targets of ERα transcriptional activity; IRS1, IGF1R, and hTERT and the ability of an aqueous mixture from the Scutellaria Barbata plant, BZL101, to arrest the proliferation of human reproductive cancer cells, regardless of hormonal status. I3C dependent activation of the aryl hydrocarbon receptor (AhR) initiates Rbx-1 E3 ligase-mediated ubiquitination and proteasomal degradation of ERα protein. I3C disrupts endogenous GATA3 interactions with the ERα promoter, leading to a loss of GATA3 and ERα expression. Ectopic expression of GATA3 has no effect on I3C induced ERα protein degradation but does prevent I3C inhibition of ERα promoter activity, demonstrating the importance of GATA3 in this I3C triggered cascade.
    [Show full text]
  • Management of Osteoporosis in Postmenopausal Women: 2010 Position Statement of the North American Menopause Society
    Menopause: The Journal of The North American Menopause Society Vol. 17, No. 1, pp. 23/24 DOI: 10.1097/gme.0b013e3181cdd4a7 * 2010 by The North American Menopause Society 5 Text printed on acid-free paper NAMS continuing medical education activity Management of osteoporosis in postmenopausal women: 2010 position statement of The North American Menopause Society This position statement, which begins on page 25, has been COMMERCIAL SUPPORT designated a continuing medical education (CME) activity from The CME activity is supported by an unrestricted educa- The North American Menopause Society (NAMS). tional grant from the Alliance for Better Bone Health, a collaboration between Warner Chilcott plc and its affiliates GOAL and sanofi-aventis (US). To demonstrate an increase in, or affirmation of, current knowledge regarding the management of osteoporosis in ACKNOWLEDGMENTS postmenopausal women. NAMS appreciates the contributions of the following members of the Osteoporosis Editorial Board: Sydney L. Bonnick, MD, FACP, LEARNING OBJECTIVES Medical Director, Clinical Research Center of North Texas, Adjunct After reading this position statement, participants should Professor, Departments of Biology and Kinesiology, University of be able to: North Texas, Denton, TX; Steven T. Harris, MD, FACP, Clinical Professor of Medicine, University of California, San Francisco, San & Describe the effect of menopause and aging on bone Francisco, CA; David L. Kendler, MD, FRCPC, Associate Professor health. of Medicine, University of British Columbia, Vancouver, BC, Canada; Michael R. McClung, MD, Director, Oregon Osteoporosis & Identify risk factors that contribute to fracture risk. Center, Portland, OR; and Stuart L. Silverman, MD, FACP, FACR, & Discuss the assessments of risk factors for fracture and Attending Physician, Cedars-Sinai Medical Center, Clinical Professor how to rule out secondary causes of osteoporosis.
    [Show full text]
  • Biocentury the BERNSTEIN REPORT on BIOBUSINESS
    WEEK OF SEPTEMBER 9, 2013 BioCentury THE BERNSTEIN REPORT ON BIOBUSINESS Volume 21 • Number 34 • Page A1 of 22 Regulation Breakthrough encore By Steve Usdin BioCentury This Week Washington Editor Friends of Cancer Research, the Cover Story which are prescribed off label for the condi- advocacy organization that conceived of tion./A13 and persuaded Congress to enact FDA’s Breakthrough Encore — Friends of breakthrough therapies program, last week Cancer Research is trying to create a Regulation unveiled a proposal to expedite develop- breakthrough diagnostics program to ensure ment of companion diagnostics that are companion Dx are ready when breakthrough Better Decisions Post-Avandia — Three intended for use with a breakthrough therapies are approved. While FDA agrees in cardiologists have asked FDA to ease its CV drug. principle, it warns money could be an issue. requirements on diabetes drugs in the aftermath In contrast to the breakthrough thera- of Avandia. But the bigger question is how FDA pies program, which was incorporated Strategy will react to the next post-market crisis./A14 into the FDA Safety and Innovation Act, FOCR’s new proposal focuses on steps Setting Amgen’s Targets — Acquiring Onyx Finance the agency and diagnostics companies can will more than double the bellwether’s portfolio take to streamline development and re- of marketed targeted cancer therapies, and puts Amgen’s Poker Face — SEC filings show view within existing law. it into a tie with GSK for second place behind Amgen shaved more than $400 million off the Senior agency officials, including Jef- Roche/Genentech. But it has to execute./A5 sticker price for Onyx after Kyprolis failed to frey Shuren, director of the Center for meet the early stopping criteria in the Phase III Devices and Radiological Health (CDRH), Product Discovery & Development FOCUS trial during negotiations./A16 and Janet Woodcock, director of the Cen- Ebb & Flow — Argos takes E round in the ter for Drug Evaluation and Research Checkpoint Complementarity — hand vs.
    [Show full text]
  • Update on Alternative Therapies for Vulvovaginal Atrophy
    Patient Preference and Adherence Dovepress open access to scientific and medical research Open Access Full Text Article REVIEW Update on alternative therapies for vulvovaginal atrophy Janet A Chollet1,2 Abstract: Although systemic absorption of estrogen with local treatment for vulvovaginal 1Beth Israel Deaconess Medical atrophy (VVA) is most likely to be negligible, it is unknown whether this minimal absorption Center, Boston, 2Pear Tree will affect outcomes in women with breast cancer. Use of adjuvant therapy with aromatase Pharmaceuticals, Waltham, MA, USA inhibitors for breast cancer is associated with high incidence of VVA symptoms. Because of the impact of moderate to severe VVA symptoms on the quality of life in breast cancer survivors, there has been an intense search for alternative therapies. Further, the publicity that followed the publication of data from the Women’s Health Initiative Study has led to the suggestion by the medical community to use the lowest dose therapy possible for minimal time duration in order to avoid risks. This article will highlight the progress in alternative therapies for VVA. For personal use only. Keywords: vulvovaginal atrophy, hormone therapy, alternative therapy Introduction In general, only 20%–25% of symptomatic women seek medical help for the treat- ment of vulvovaginal atrophy (VVA), despite the availability of US Food and Drug Administration–approved treatment. The fear of breast cancer associated with the prescription of hormone therapy (HT) is the main reason for lack of acceptance of
    [Show full text]
  • Management of Menopausal Symptoms
    The new england journal of medicine clinical practice Management of Menopausal Symptoms Deborah Grady, M.D., M.P.H. This Journal feature begins with a case vignette highlighting a common clinical problem. Evidence supporting various strategies is then presented, followed by a review of formal guidelines, when they exist. The article ends with the author’s clinical recommendations. A 51-year-old woman has frequent and distressing hot flushes that interfere with her work and sleep, and vaginal dryness that makes sexual intercourse with her husband uncomfortable. She is otherwise healthy. How should her case be managed? The Clinical Problem Menopausal Transition From the Women’s Health Clinical Re- All healthy women transition from a reproductive, or premenopausal, period, marked search Center, University of California, by regular ovulation and cyclic menstrual bleeding, to a postmenopausal period, San Francisco, and the San Francisco Veter- ans Affairs Medical Center — both in San marked by amenorrhea (Table 1). The onset of the menopausal transition is marked Francisco. Address reprint requests to by changes in the menstrual cycle and in the duration or amount of menstrual Dr. Grady at the Women’s Health Clinical flow.1 Subsequently, cycles are missed, but the pattern is often erratic early in the Research Center, 1635 Divisadero St., Suite 600, San Francisco, CA 94115. menopausal transition. Menopause is defined retrospectively after 12 months of amenorrhea. N Engl J Med 2006;355:2338-47. The menopausal transition usually begins in the mid-to-late 40s and lasts about Copyright © 2006 Massachusetts Medical Society. 4 years, with menopause occurring at a median age of 51 years.
    [Show full text]