Biosynthesis Amino Acids & Nucleotides
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nucleotide Degradation
Nucleotide Degradation Nucleotide Degradation The Digestion Pathway • Ingestion of food always includes nucleic acids. • As you know from BI 421, the low pH of the stomach does not affect the polymer. • In the duodenum, zymogens are converted to nucleases and the nucleotides are converted to nucleosides by non-specific phosphatases or nucleotidases. nucleases • Only the non-ionic nucleosides are taken & phospho- diesterases up in the villi of the small intestine. Duodenum Non-specific phosphatases • In the cell, the first step is the release of nucleosides) the ribose sugar, most effectively done by a non-specific nucleoside phosphorylase to give ribose 1-phosphate (Rib1P) and the free bases. • Most ingested nucleic acids are degraded to Rib1P, purines, and pyrimidines. 1 Nucleotide Degradation: Overview Fate of Nucleic Acids: Once broken down to the nitrogenous bases they are either: Nucleotides 1. Salvaged for recycling into new nucleic acids (most cells; from internal, Pi not ingested, nucleic Nucleosides acids). Purine Nucleoside Pi aD-Rib 1-P (or Rib) 2. Oxidized (primarily in the Phosphorylase & intestine and liver) by first aD-dRib 1-P (or dRib) converting to nucleosides, Bases then to –Uric Acid (purines) –Acetyl-CoA & Purine & Pyrimidine Oxidation succinyl-CoA Salvage Pathway (pyrimidines) The Salvage Pathways are in competition with the de novo biosynthetic pathways, and are both ANABOLISM Nucleotide Degradation Catabolism of Purines Nucleotides: Nucleosides: Bases: 1. Dephosphorylation (via 5’-nucleotidase) 2. Deamination and hydrolysis of ribose lead to production of xanthine. 3. Hypoxanthine and xanthine are then oxidized into uric acid by xanthine oxidase. Spiders and other arachnids lack xanthine oxidase. -
Hereditary Galactokinase Deficiency J
Arch Dis Child: first published as 10.1136/adc.46.248.465 on 1 August 1971. Downloaded from Alrchives of Disease in Childhood, 1971, 46, 465. Hereditary Galactokinase Deficiency J. G. H. COOK, N. A. DON, and TREVOR P. MANN From the Royal Alexandra Hospital for Sick Children, Brighton, Sussex Cook, J. G. H., Don, N. A., and Mann, T. P. (1971). Archives of Disease in Childhood, 46, 465. Hereditary galactokinase deficiency. A baby with galactokinase deficiency, a recessive inborn error of galactose metabolism, is des- cribed. The case is exceptional in that there was no evidence of gypsy blood in the family concerned. The investigation of neonatal hyperbilirubinaemia led to the discovery of galactosuria. As noted by others, the paucity of presenting features makes early diagnosis difficult, and detection by biochemical screening seems desirable. Cataract formation, of early onset, appears to be the only severe persisting complication and may be due to the biosynthesis and accumulation of galactitol in the lens. Ophthalmic surgeons need to be aware of this enzyme defect, because with early diagnosis and dietary treatment these lens changes should be reversible. Galactokinase catalyses the conversion of galac- and galactose diabetes had been made in this tose to galactose-l-phosphate, the first of three patient (Fanconi, 1933). In adulthood he was steps in the pathway by which galactose is converted found to have glycosuria as well as galactosuria, and copyright. to glucose (Fig.). an unexpectedly high level of urinary galactitol was detected. He was of average intelligence, and his handicaps, apart from poor vision, appeared to be (1) Galactose Gackinase Galactose-I-phosphate due to neurofibromatosis. -
The Regulation of Carbamoyl Phosphate Synthetase-Aspartate Transcarbamoylase-Dihydroorotase (Cad) by Phosphorylation and Protein-Protein Interactions
THE REGULATION OF CARBAMOYL PHOSPHATE SYNTHETASE-ASPARTATE TRANSCARBAMOYLASE-DIHYDROOROTASE (CAD) BY PHOSPHORYLATION AND PROTEIN-PROTEIN INTERACTIONS Eric M. Wauson A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Pharmacology. Chapel Hill 2007 Approved by: Lee M. Graves, Ph.D. T. Kendall Harden, Ph.D. Gary L. Johnson, Ph.D. Aziz Sancar M.D., Ph.D. Beverly S. Mitchell, M.D. 2007 Eric M. Wauson ALL RIGHTS RESERVED ii ABSTRACT Eric M. Wauson: The Regulation of Carbamoyl Phosphate Synthetase-Aspartate Transcarbamoylase-Dihydroorotase (CAD) by Phosphorylation and Protein-Protein Interactions (Under the direction of Lee M. Graves, Ph.D.) Pyrimidines have many important roles in cellular physiology, as they are used in the formation of DNA, RNA, phospholipids, and pyrimidine sugars. The first rate- limiting step in the de novo pyrimidine synthesis pathway is catalyzed by the carbamoyl phosphate synthetase II (CPSase II) part of the multienzymatic complex Carbamoyl phosphate synthetase, Aspartate transcarbamoylase, Dihydroorotase (CAD). CAD gene induction is highly correlated to cell proliferation. Additionally, CAD is allosterically inhibited or activated by uridine triphosphate (UTP) or phosphoribosyl pyrophosphate (PRPP), respectively. The phosphorylation of CAD by PKA and ERK has been reported to modulate the response of CAD to allosteric modulators. While there has been much speculation on the identity of CAD phosphorylation sites, no definitive identification of in vivo CAD phosphorylation sites has been performed. Therefore, we sought to determine the specific CAD residues phosphorylated by ERK and PKA in intact cells. -
Induction of Uridyl Transferase Mrna-And Dependency on GAL4 Gene Function (In Vitro Translation/Immunoprecipitation/GAL Gene Cluster/Positive Regulation) JAMES E
Proc. Nati. Acad. Sci. USA Vol. 75, No. 6, pp. 2878-2882, June 1978 Genetics Regulation of the galactose pathway in Saccharomyces cerevisiae: Induction of uridyl transferase mRNA-and dependency on GAL4 gene function (in vitro translation/immunoprecipitation/GAL gene cluster/positive regulation) JAMES E. HOPPER*, JAMES R. BROACHt, AND LUCY B. ROWE* * Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, Massachusetts 02154; and t Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724 Communicated by Norman H. Giles, April 10,1978 ABSTRACT In Saccharomyces cerevisiae, utilization of Genetic control of the inducible galactose pathway enzymes galactose requires four inducible enzyme activities. Three of involves the four structural genes GALI, GAL10, GAL7, and these activities (galactose-l-phosphate uridyl transferase, EC genes, GAL4, GAL81 (c), GAL80 2.7.7.10; uridine diphosphogalactose 4-epimerase, EC 5.1.3.2; GAL2 and four regulatory and galactokinase, EC 2.7.1.6) are specified by three tightly (i), and GALS.* Mutations in GALl, GAL10, GAL7, and GAL2 linked genes (GAL7, GALlO, and GALI, respectively) on chro- affect the individual appearance of galactokinase, epimerase, mosome II, whereas the fourth, galactose transport, is specified transferase, and galactose transport activities, respectively (6). by a gene (GALS) located on chromosome XIL Although classic Mutations defining the GALl, GAL10, and GAL7 genes have genetic analysis has revealed both positive and negative regu- invariably been recessive, and they map in three tightly linked latory genes that coordinately affect the appearance of ail four complementation groups near the centromere of chromosome enzyme activities, neither the basic events leading to the ap- pearance of enzyme activities nor the roles of the regulatory II (6, 9, 10). -
Chapter 23 Nucleic Acids
7-9/99 Neuman Chapter 23 Chapter 23 Nucleic Acids from Organic Chemistry by Robert C. Neuman, Jr. Professor of Chemistry, emeritus University of California, Riverside [email protected] <http://web.chem.ucsb.edu/~neuman/orgchembyneuman/> Chapter Outline of the Book ************************************************************************************** I. Foundations 1. Organic Molecules and Chemical Bonding 2. Alkanes and Cycloalkanes 3. Haloalkanes, Alcohols, Ethers, and Amines 4. Stereochemistry 5. Organic Spectrometry II. Reactions, Mechanisms, Multiple Bonds 6. Organic Reactions *(Not yet Posted) 7. Reactions of Haloalkanes, Alcohols, and Amines. Nucleophilic Substitution 8. Alkenes and Alkynes 9. Formation of Alkenes and Alkynes. Elimination Reactions 10. Alkenes and Alkynes. Addition Reactions 11. Free Radical Addition and Substitution Reactions III. Conjugation, Electronic Effects, Carbonyl Groups 12. Conjugated and Aromatic Molecules 13. Carbonyl Compounds. Ketones, Aldehydes, and Carboxylic Acids 14. Substituent Effects 15. Carbonyl Compounds. Esters, Amides, and Related Molecules IV. Carbonyl and Pericyclic Reactions and Mechanisms 16. Carbonyl Compounds. Addition and Substitution Reactions 17. Oxidation and Reduction Reactions 18. Reactions of Enolate Ions and Enols 19. Cyclization and Pericyclic Reactions *(Not yet Posted) V. Bioorganic Compounds 20. Carbohydrates 21. Lipids 22. Peptides, Proteins, and α−Amino Acids 23. Nucleic Acids ************************************************************************************** -
Differential Effects of the Poly (ADP-Ribose)Polymerase (PARP
British Journal of Cancer (2001) 84(1), 106–112 © 2001 Cancer Research Campaign doi: 10.1054/ bjoc.2000.1555, available online at http://www.idealibrary.com on http://www.bjcancer.com Differential effects of the poly (ADP-ribose) polymerase (PARP) inhibitor NU1025 on topoisomerase I and II inhibitor cytotoxicity in L1210 cells in vitro KJ Bowman*, DR Newell, AH Calvert and NJ Curtin Cancer Research Unit, University of Newcastle upon Tyne Medical School, Framlington Place, Newcastle upon Tyne NE2 4HH, UK Summary The potent novel poly(ADP-ribose) polymerase (PARP) inhibitor, NU1025, enhances the cytotoxicity of DNA-methylating agents and ionizing radiation by inhibiting DNA repair. We report here an investigation of the role of PARP in the cellular responses to inhibitors of topoisomerase I and II using NU1025. The cytotoxicity of the topoisomerase I inhibitor, camptothecin, was increased 2.6-fold in L1210 cells by co-incubation with NU1025. Camptothecin-induced DNA strand breaks were also increased 2.5-fold by NU1025 and exposure to camptothecin-activated PARP. In contrast, NU1025 did not increase the DNA strand breakage or cytotoxicity caused by the topoisomerase II inhibitor etoposide. Exposure to etoposide did not activate PARP even at concentrations that caused significant levels of apoptosis. Taken together, these data suggest that potentiation of camptothecin cytotoxicity by NU1025 is a direct result of increased DNA strand breakage, and that activation of PARP by camptothecin-induced DNA damage contributes to its repair and consequently cell survival. However, in L1210 cells at least, it would appear that PARP is not involved in the cellular response to etoposide-mediated DNA damage. -
Evidence Suggests That RNA Was a Product of Evolution
Putting together the pieces: Evidence suggests that RNA was a product of evolution Brian Cafferty and Nicholas V. Hud, Georgia Institute of Technology, Atlanta, GA, USA For the past four decades, prebiotic chemists have attempted to demonstrate the formation of RNA polymers by plausible prebiotic reactions. There have been notable advances, but to be certain, the spontaneous formation of RNA remains a grand challenge in origins of life research. From a different perspective, there are reasons to seriously consider the possibility that RNA is a product of evolution. If so, there may have never been a prebiotic mechanism that produced RNA polymers. We subscribe to this latter view and hypothesize that RNA is the penultimate member of continuous lineage of genetic polymers, with DNA being the ultimate member of this lineage. In this essay, we briefly summarize the case for why RNA is likely the descendant of one or more pre-RNA polymers that spontaneous assembled on the prebiotic earth. Nucleosides are each an assemblage of a nucleobase and a ribose sugar, whereas nucleotides, the monomeric units of RNA, are phosphorylated nucleosides (Figure 1). Prebiotic chemists have typically sought to form RNA in a seQuential fashion, starting with the formation of nucleotides, followed by their polymerization (Figure 1). However, of the four canonical RNA bases (adenine, cytosine, guanine, uracil), only adenine has been found to react with ribose in a model prebiotic reaction to produce nucleosides in appreciable yields (i.e., about 2%). The other three canonical nucleobases do not produce nucleosides when dried and heated with ribose. This apparent roadblock in RNA synthesis motivated the Orgel laboratory and, more recently, Sutherland and co-workers, to investigate the possibility that the nucleobases were first formed on a pre-existing sugar. -
Developmental Outcomes with Early Orthotopic Liver Transplantation For
Developmental Outcomes With Early Orthotopic Liver Transplantation for Infants With Neonatal-Onset Urea Cycle Defects and a Female Patient With Late-Onset Ornithine Transcarbamylase Deficiency Kim L. McBride, MD*; Geoffrey Miller, MD‡; Susan Carter, BSN*; Saul Karpen, MD, PhD‡; John Goss, MD§; and Brendan Lee, MD, PhD* ABSTRACT. Urea cycle defects (UCDs) typically nherited disorders of the urea cycle are character- present with hyperammonemia, the duration and peak ized by high ammonia levels and altered amino levels of which are directly related to the neurologic acid metabolism. There are 6 well-characterized outcome. Liver transplantation can cure the underlying I urea cycle defects (UCDs), ie, N-acetylyglutamate defect for some conditions, but the preexisting neuro- synthase, carbamoyl phosphate synthase (CPS), X- logic status is a major factor in the final outcome. Mul- linked ornithine transcarbamylase (OTC), arginosuc- ticenter data indicate that most of the children who re- cinate synthase, arginosuccinate lyase, and arginase ceive transplants remain significantly neurologically deficiencies. Arginase deficiency is not typical of the impaired. We wanted to determine whether aggressive other UCDs, because it presents not with hyperam- metabolic management of ammonia levels after early monemia but with spastic diplegia. Presentation of referral/transfer to a metabolism center and early liver transplantation would result in better neurologic out- the other UCDs can be quite variable, from cata- comes. We report on 5 children with UCDs, ie, 2 male strophic neonatal illness and acute episodic enceph- patients with X-linked ornithine transcarbamylase defi- alopathy in childhood or adulthood to chronic neu- 1 ciency and 2 male patients with carbamoyl phosphate rologic disorders. -
Role of Glucokinase and Glucose-6 Phosphatase in the Nutritional Regulation of Endogenous Glucose Production G Mithieux
Role of glucokinase and glucose-6 phosphatase in the nutritional regulation of endogenous glucose production G Mithieux To cite this version: G Mithieux. Role of glucokinase and glucose-6 phosphatase in the nutritional regulation of endogenous glucose production. Reproduction Nutrition Development, EDP Sciences, 1996, 36 (4), pp.357-362. hal-00899845 HAL Id: hal-00899845 https://hal.archives-ouvertes.fr/hal-00899845 Submitted on 1 Jan 1996 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Review Role of glucokinase and glucose-6 phosphatase in the nutritional regulation of endogenous glucose production G Mithieux Unité 197 de l’Inserm, faculté de médecine René-Laënnec, rue Guillaume-Paradin, 69372 Lyon cedex 08, France (Received 29 November 1995; accepted 6 May 1996) Summary ― Two specific enzymes, glucokinase (GK) and glucose-6 phosphatase (Gic6Pase) enable the liver to play a crucial role in glucose homeostasis. The activity of Glc6Pase, which enables the liver to produce glucose, is increased during short-term fasting, in agreement with the enhancement of liver gluconeogenesis. During long-term fasting, Glc6Pase activity is increased in the kidney, which con- tributes significantly to the glucose supply at that time. -
Carbamoyl Phosphate Synthetase I Deficiency
Carbamoyl phosphate synthetase I deficiency Description Carbamoyl phosphate synthetase I deficiency is an inherited disorder that causes ammonia to accumulate in the blood (hyperammonemia). Ammonia, which is formed when proteins are broken down in the body, is toxic if the levels become too high. The brain is especially sensitive to the effects of excess ammonia. In the first few days of life, infants with carbamoyl phosphate synthetase I deficiency typically exhibit the effects of hyperammonemia, which may include unusual sleepiness, poorly regulated breathing rate or body temperature, unwillingness to feed, vomiting after feeding, unusual body movements, seizures, or coma. Affected individuals who survive the newborn period may experience recurrence of these symptoms if diet is not carefully managed or if they experience infections or other stressors. They may also have delayed development and intellectual disability. In some people with carbamoyl phosphate synthetase I deficiency, signs and symptoms may be less severe and appear later in life. Frequency Carbamoyl phosphate synthetase I deficiency is a rare disorder; its overall incidence is unknown. Researchers in Japan have estimated that it occurs in 1 in 800,000 newborns in that country. Causes Mutations in the CPS1 gene cause carbamoyl phosphate synthetase I deficiency. The CPS1 gene provides instructions for making the enzyme carbamoyl phosphate synthetase I. This enzyme participates in the urea cycle, which is a sequence of biochemical reactions that occurs in liver cells. The urea cycle processes excess nitrogen, generated when protein is broken down by the body, to make a compound called urea that is excreted by the kidneys. The specific role of the carbamoyl phosphate synthetase I enzyme is to control the first step of the urea cycle, a reaction in which excess nitrogen compounds are incorporated into the cycle to be processed. -
Terminal Deoxynucleotidyl Transferase Protocol
Certificate of Analysis Terminal Deoxynucleotidyl Transferase, Recombinant: Part No. Size (units) Part# 9PIM187 M828A 300 Revised 4/18 M828C 1,500 Description: This enzyme catalyzes the repetitive addition of mononucleotides to the terminal 3´-OH of a DNA initiator accompanied by the release of inorganic phosphate. Single-stranded DNA is preferred as an initiator. Polymerization is not template-dependent. The addition of 1mM Co2+ (as CoCl2) in the reaction buffer allows the tailing of 3´-ends with varying degrees of efficiency. Enzyme Storage Buffer: Terminal Deoxynucleotidyl Transferase, Recombinant, is supplied in 50mM potassium phosphate *AF9PIM187 0418M187* (pH 6.4), 100mM NaCl, 1mM β-mercaptoethanol, 0.1% Tween® 20 and 50% glycerol. AF9PIM187 0418M187 Source: Recombinant E. coli strain. Storage Conditions: See the Product Information Label for storage recommendations. Avoid multiple freeze-thaw cycles and exposure to frequent temperature changes. See the expiration date on the Product Information Label. Terminal Transferase 5X Buffer (M189A): 500mM cacodylate buffer (pH 6.8), 5mM CoCl2 and 0.5mM DTT. Unit Definition: One unit of activity catalyzes the transfer of 0.5 picomoles of ddATP to oligo(dT)16 per minute at 37°C in 1X Terminal Transferase Buffer. The resulting oligo(dT)17 is measured by HPLC. Usage Notes for 3´-End Labeling Reaction 1. Not all dNTPs are tailed with the same efficiency. Actual concentration of dNTP will depend on the individual application. 2. The provided buffer (5X) is to be used in the tailing reaction. The recommended reaction conditions are as described under Quality Control Assays, 3´-End Labeling Reaction, and in Section III overleaf. -
Allopurinol Sodium) for Injection 500 Mg
ALOPRIM® (allopurinol sodium) for Injection 500 mg [al'-ō-prĭm] For Intravenous Infusion Only Rx only DESCRIPTION: ALOPRIM (allopurinol sodium) for Injection is the brand name for allopurinol, a xanthine oxidase inhibitor. ALOPRIM (allopurinol sodium) for Injection is a sterile solution for intravenous infusion only. It is available in vials as the sterile lyophilized sodium salt of allopurinol equivalent to 500 mg of allopurinol. ALOPRIM (allopurinol sodium) for Injection contains no preservatives. The chemical name for allopurinol sodium is 1,5-dihydro-4H-pyrazolo[3,4-d]pyrimidin 4-one monosodium salt. It is a white amorphous mass with a molecular weight of 158.09 and molecular formula C5H3N4NaO. The structural formula is: The pKa of allopurinol sodium is 9.31. CLINICAL PHARMACOLOGY: Allopurinol acts on purine catabolism without disrupting the biosynthesis of purines. It reduces the production of uric acid by inhibiting the biochemical reactions immediately preceding its formation. The degree of this decrease is dose dependent. Allopurinol is a structural analogue of the natural purine base, hypoxanthine. It is an inhibitor of xanthine oxidase, the enzyme responsible for the conversion of hypoxanthine to xanthine and of xanthine to uric acid, the end product of purine metabolism in man. Allopurinol is metabolized to the corresponding xanthine analogue, oxypurinol (alloxanthine), which also is an inhibitor of xanthine oxidase. Reutilization of both hypoxanthine and xanthine for nucleotide and nucleic acid synthesis is markedly enhanced when their oxidations are inhibited by allopurinol and oxypurinol. This reutilization does not disrupt normal nucleic acid anabolism, however, because feedback inhibition is an integral part of purine biosynthesis.