Understanding the Ecology of Ross River Virus; Novel Approaches and Insights Into Non-Human Reservoirs

Total Page:16

File Type:pdf, Size:1020Kb

Understanding the Ecology of Ross River Virus; Novel Approaches and Insights Into Non-Human Reservoirs Understanding the ecology of Ross River virus; novel approaches and insights into non-human reservoirs Author Stephenson, Eloise Published 2019-11-19 Thesis Type Thesis (PhD Doctorate) School School of Environment and Sc DOI https://doi.org/10.25904/1912/570 Copyright Statement The author owns the copyright in this thesis, unless stated otherwise. Downloaded from http://hdl.handle.net/10072/389694 Griffith Research Online https://research-repository.griffith.edu.au Understanding the ecology of Ross River virus; novel approaches and insights into non-human reservoirs. by Eloise Birgitta Stephenson BSc, MSc Submitted in fulfilment of the requirements of the degree Doctor of Philosophy School of Environment and Science Griffith University August 2019 Acknowledgements This dissertation does not represent the work of a sole individual; instead it is the product of generous support, guidance and inspiration from many people whom have woven into the fabric of my life. I would like to start off by thanking my supervisors, Prof. Hamish McCallum, Dr. Alison Peel, Dr. Cassie Jansen, Dr. Lara Herrero, and Ass. Prof. Simon Reid, who have been incredibly supportive of both my research and my overall growth throughout my PhD. I have a large supervisory team and have been very fortunate to receive advice, guidance and support from each of them in many shapes and forms. Very special thanks to Hamish, not just for sharing his vast knowledge on R, analyses and models with me, but for his quick wit and willingness to expand my networks through introductions. I owe a large thank you also to Ali, who has inspired and challenged me throughout my PhD. Ali is an incredible researcher who taught me to formulate and present my research questions clearly, and broadened my critical analysis skills. Ali is also a great mentor, and I am inspired by her work, her family and her fabulous earrings. I am also very grateful to Cassie, whose faith in me over the years has been unflappable! Thank you to Lara for her laboratory supervision and willingness to think outside the box across the multiple disciplines covered in this project, and to Simon who helped guide this project. Amanda Murphy has been a shining light during this PhD; and together we have tackled fieldwork, RRV notification data and many wines across Brisbane. Amanda is a fabulous sounding board and is always bubbling with ideas and enthusiasm for the disease system we both work on. She has kept me motivated, sane and excited about my research. I thank her, and her colleagues, for all of this. I am very lucky to work among two research groups at Griffith and am grateful for the support, laughter and feedback from the members of these groups; Lara Herreros’ group (Penny, Joyce, Aroon, Elina, Elisa, Eugene and Julie), and Hamish McCallums’ group (Doug, Laura, Tamika, Thais, Will, Mandy, Manuel, Remy and the bat catching team!). Griffith has taught me much about research, but in particular, the importance of a good support team. So I would also like to thank Dian, Isaac and Christina at EFRI for their assistance with much of the paperwork and applications that are required throughout a PhD. ii My project has led me to meet, and collaborate with many other researchers and institutions all over the world. I have had the great pleasure of discussing this project and ideas with many people, and ultimately sometimes these have led to my best analyses or interpretations. My family is a big part of my life, and throughout this PhD they offered to proof read sections, cook dinners, or just simply distract me. My family have been with me for all the moments of triumph and angst along the way. I am so fortunate to be able to speak with my Mum, Dad, sisters, grandparents and parents-in-law almost every week, and am always offered support, empathy and encouragement. The love and support of my family extends far beyond the duration of this project, and I wouldn’t have committed to a PhD without their encouragement to pursue my passions. To my friends, whether in academia or not, I am grateful for being able to share ideas, beers and tears with you along the way. I am inspired and motivated by so many of my friendships. My PhD friends, Jenna, Pat and Steph have been especially empathetic to the process and I can only wish that my future colleagues are as supportive and inspirational as you have been. Finally, I would like to thank my husband and best friend, Tim. Somewhere in between the lines of these pages we managed to travel, move house, get married and start a family. You have kept me grounded during all of this, recognising the little moments – like tea to keep going, a break to stop working, or even just space – as well as the big moments. Thank you for not just for supporting me to follow my dreams, but for being a part of them too. I am just as much excited about our future, as I am when I look back on our past. iii This work has not previously been submitted for a degree or diploma in any university. To the best of my knowledge and belief, the dissertation contains no material previously published or written by another person except where due reference is made in the dissertation itself. --- Eloise B. Stephenson iv Abstract Arboviruses contribute a significant burden to human and animal health. Circulation of arboviruses comprises three components; blood-sucking arthropods, vertebrate hosts, and viruses that can infect vertebrates and invertebrates. Interaction of these components is dependent on ecological factors (such as species distributions and climate), epidemiological factors (including vector and host immunity) and behavioural determinants (such as vector feeding host preference or host defensive behaviours). Identifying these drivers of disease emergence can be complicated but informs efforts to mitigate on-going circulation. This dissertation generates new perspectives on the transmission dynamics of Australia’s most common arbovirus, Ross River virus (RRV), with a particular focus on non-human reservoirs. Specifically, I (a) critically analysed current and historic knowledge for non-human reservoirs and vector feeding patterns, (b) examined the natural exposure of RRV in human, free-living and domestic vertebrate populations, and (c) assessed the vertebrate and vector community ecology across areas of varying human notification rates. I began by undertaking a systematic literature review (Chapter 2) assessing evidence for non- human reservoirs of RRV. This chapter synthesised published serological, virus isolation and experimental infection studies in light of the long-held dogma that marsupials are the primary reservoir of RRV. A key finding of this chapter was emerging evidence that placental mammals and birds were also capable of transmitting RRV to mosquito vectors, suggesting a broader reservoir potential than marsupials alone. To further assess the current and historic knowledge, a meta-analysis was performed on mosquito blood meal analysis studies (Chapter 3). It was evident from this chapter that Australian mosquitoes have highly varied feeding patterns which did not reflect their taxonomic classification or larval ecology. To understand the natural exposure of RRV in vertebrate populations I used both existing literature and performed serological surveys. Although humans are largely thought to be RRV dead-end hosts (species which are incapable of pathogen amplification), circulation of the virus in human populations is well documented and provides insights into spatial-temporal patterns of transmission relevant to the understanding of non-human reservoirs. In Chapter 4, I assessed spatial-temporal patterns of seroprevalence in human populations reported from across the natural distribution of RRV in Australia and the Pacific Island Countries from 1958 to present day. A key finding was that RRV circulated in human populations at least since 1975 when v human seropositivity between 20 and 34% was reported in Indonesia and Papua New Guinea. This is important because these countries have different vertebrate fauna to Australia, suggesting different transmission cycles. I then assessed RRV exposure in non-human vertebrate species, focussing on South East Queensland, a RRV endemic area (Chapter 5). Samples were collected through a network of veterinary clinics over a 12-month period, and a total 595 samples from 31 species were obtained. The results showed that taxonomic relatedness is not an important determinant for seropositivity, but rather the ecology and physiology of a species including diet, body size and longevity is most important for exposure to RRV. This study not only tests the greatest diversity of vertebrate species in a single RRV seroprevalence study, but is also novel because it provides methodological advances for analysing seroprevalence data for other zoonotic pathogens. In my last data chapter (Chapter 6), I assessed the vertebrate-vector communities across sites with varied RRV human notification rates. Field surveys assessing ‘abundance’ and ‘diversity’ in light of human notifications were undertaken for six months. Human notifications were positively correlated with vertebrate biomass and total mosquito abundance. Although informative in highlighting variables for ongoing investigations, the data from this chapter was insufficient to determine whether this pattern was unique to the specific habitats in which the data was collected, or a true relationship between disease in humans and non-human reservoirs. Nevertheless, this result lends support to the complex
Recommended publications
  • Climate Change and Human Health: Risks and Responses
    Climate change and human health RISKS AND RESPONSES Editors A.J. McMichael The Australian National University, Canberra, Australia D.H. Campbell-Lendrum London School of Hygiene and Tropical Medicine, London, United Kingdom C.F. Corvalán World Health Organization, Geneva, Switzerland K.L. Ebi World Health Organization Regional Office for Europe, European Centre for Environment and Health, Rome, Italy A.K. Githeko Kenya Medical Research Institute, Kisumu, Kenya J.D. Scheraga US Environmental Protection Agency, Washington, DC, USA A. Woodward University of Otago, Wellington, New Zealand WORLD HEALTH ORGANIZATION GENEVA 2003 WHO Library Cataloguing-in-Publication Data Climate change and human health : risks and responses / editors : A. J. McMichael . [et al.] 1.Climate 2.Greenhouse effect 3.Natural disasters 4.Disease transmission 5.Ultraviolet rays—adverse effects 6.Risk assessment I.McMichael, Anthony J. ISBN 92 4 156248 X (NLM classification: WA 30) ©World Health Organization 2003 All rights reserved. Publications of the World Health Organization can be obtained from Marketing and Dis- semination, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel: +41 22 791 2476; fax: +41 22 791 4857; email: [email protected]). Requests for permission to reproduce or translate WHO publications—whether for sale or for noncommercial distribution—should be addressed to Publications, at the above address (fax: +41 22 791 4806; email: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]
  • Queensland Public Boat Ramps
    Queensland public boat ramps Ramp Location Ramp Location Atherton shire Brisbane city (cont.) Tinaroo (Church Street) Tinaroo Falls Dam Shorncliffe (Jetty Street) Cabbage Tree Creek Boat Harbour—north bank Balonne shire Shorncliffe (Sinbad Street) Cabbage Tree Creek Boat Harbour—north bank St George (Bowen Street) Jack Taylor Weir Shorncliffe (Yundah Street) Cabbage Tree Creek Boat Harbour—north bank Banana shire Wynnum (Glenora Street) Wynnum Creek—north bank Baralaba Weir Dawson River Broadsound shire Callide Dam Biloela—Calvale Road (lower ramp) Carmilla Beach (Carmilla Creek Road) Carmilla Creek—south bank, mouth of creek Callide Dam Biloela—Calvale Road (upper ramp) Clairview Beach (Colonial Drive) Clairview Beach Moura Dawson River—8 km west of Moura St Lawrence (Howards Road– Waverley Creek) Bund Creek—north bank Lake Victoria Callide Creek Bundaberg city Theodore Dawson River Bundaberg (Kirby’s Wall) Burnett River—south bank (5 km east of Bundaberg) Beaudesert shire Bundaberg (Queen Street) Burnett River—north bank (downstream) Logan River (Henderson Street– Henderson Reserve) Logan Reserve Bundaberg (Queen Street) Burnett River—north bank (upstream) Biggenden shire Burdekin shire Paradise Dam–Main Dam 500 m upstream from visitors centre Barramundi Creek (Morris Creek Road) via Hodel Road Boonah shire Cromarty Creek (Boat Ramp Road) via Giru (off the Haughton River) Groper Creek settlement Maroon Dam HG Slatter Park (Hinkson Esplanade) downstream from jetty Moogerah Dam AG Muller Park Groper Creek settlement Bowen shire (Hinkson
    [Show full text]
  • The Non-Human Reservoirs of Ross River Virus: a Systematic Review of the Evidence Eloise B
    Stephenson et al. Parasites & Vectors (2018) 11:188 https://doi.org/10.1186/s13071-018-2733-8 REVIEW Open Access The non-human reservoirs of Ross River virus: a systematic review of the evidence Eloise B. Stephenson1*, Alison J. Peel1, Simon A. Reid2, Cassie C. Jansen3,4 and Hamish McCallum1 Abstract: Understanding the non-human reservoirs of zoonotic pathogens is critical for effective disease control, but identifying the relative contributions of the various reservoirs of multi-host pathogens is challenging. For Ross River virus (RRV), knowledge of the transmission dynamics, in particular the role of non-human species, is important. In Australia, RRV accounts for the highest number of human mosquito-borne virus infections. The long held dogma that marsupials are better reservoirs than placental mammals, which are better reservoirs than birds, deserves critical review. We present a review of 50 years of evidence on non-human reservoirs of RRV, which includes experimental infection studies, virus isolation studies and serosurveys. We find that whilst marsupials are competent reservoirs of RRV, there is potential for placental mammals and birds to contribute to transmission dynamics. However, the role of these animals as reservoirs of RRV remains unclear due to fragmented evidence and sampling bias. Future investigations of RRV reservoirs should focus on quantifying complex transmission dynamics across environments. Keywords: Amplifier, Experimental infection, Serology, Virus isolation, Host, Vector-borne disease, Arbovirus Background transmission dynamics among arboviruses has resulted in Vertebrate reservoir hosts multiple definitions for the key term “reservoir” [9]. Given Globally, most pathogens of medical and veterinary im- the diversity of virus-vector-vertebrate host interactions, portance can infect multiple host species [1].
    [Show full text]
  • Demographic Consequences of Superabundance in Krefft's River
    i The comparative ecology of Krefft’s River Turtle Emydura krefftii in Tropical North Queensland. By Dane F. Trembath B.Sc. (Zoology) Applied Ecology Research Group University of Canberra ACT, 2601 Australia A thesis submitted in fulfilment of the requirements of the degree of Masters of Applied Science (Resource Management). August 2005. ii Abstract An ecological study was undertaken on four populations of Krefft’s River Turtle Emydura krefftii inhabiting the Townsville Area of Tropical North Queensland. Two sites were located in the Ross River, which runs through the urban areas of Townsville, and two sites were in rural areas at Alligator Creek and Stuart Creek (known as the Townsville Creeks). Earlier studies of the populations in Ross River had determined that the turtles existed at an exceptionally high density, that is, they were superabundant, and so the Townsville Creek sites were chosen as low abundance sites for comparison. The first aim of this study was to determine if there had been any demographic consequences caused by the abundance of turtle populations of the Ross River. Secondly, the project aimed to determine if the impoundments in the Ross River had affected the freshwater turtle fauna. Specifically this study aimed to determine if there were any difference between the growth, size at maturity, sexual dimorphism, size distribution, and diet of Emydura krefftii inhabiting two very different populations. A mark-recapture program estimated the turtle population sizes at between 490 and 5350 turtles per hectare. Most populations exhibited a predominant female sex-bias over the sampling period. Growth rates were rapid in juveniles but slowed once sexual maturity was attained; in males, growth basically stopped at maturity, but in females, growth continued post-maturity, although at a slower rate.
    [Show full text]
  • Wetlands of the Townsville Area
    A Final Report to the Townsville City Council WETLANDS OF THE TOWNSVILLE AREA ACTFR Report 96/28 25 November 1996 Prepared by G. Lukacs of the Australian Centre for Tropical Freshwater Research, James Cook University of North Queensland, Townsville Q 4811 Telephone (077 814262 Facsimile (077) 815589 Wetlands of the TCC LGA: Report No.96/28 TABLE OF CONTENTS 1. INTRODUCTION .................................................................................................................................. 1 1.1 Wetlands and the Community............................................................................................................. 1 1.2 The Wetlands of the Townsville Region ............................................................................................. 1 1.3 Values and Functions of Wetlands..................................................................................................... 3 2. METHODOLOGY ................................................................................................................................. 4 2.1 Scope .................................................................................................................................................. 4 2.2 Mapping ............................................................................................................................................. 4 2.3 Classification ..................................................................................................................................... 5 2.4 Sampling............................................................................................................................................
    [Show full text]
  • A Short History of Thuringowa
    its 0#4, Wdkri Xdor# of fhurrngoraa Published by Thuringowa City Council P.O. Box 86, Thuringowa Central Queensland, 4817 Published October, 2000 Copyright The City of Thuringowa This book is copyright. Apart from any fair dealing for the purposes of private study, research, criticism or review, as permitted under the Copyright Act no part may be reproduced by any process without written permission. Inquiries should be addressed to the Publishers. All rights reserved. ISBN: 0 9577 305 3 5 kk THE CITY of Centenary of Federation i HURINGOWA Queensland This publication is a project initiated and funded by the City of Thuringowa This project is financially assisted by the Queensland Government, through the Queensland Community Assistance Program of the Centenary of Federation Queensland Cover photograph: Ted Gleeson crossing the Bohle. Gleeson Collection, Thuringowa Conienis Forward 5 Setting the Scene 7 Making the Land 8 The First People 10 People from the Sea 12 James Morrill 15 Farmers 17 Taking the Land 20 A Port for Thuringowa 21 Travellers 23 Miners 25 The Great Northern Railway 28 Growth of a Community 30 Closer Settlement 32 Towns 34 Sugar 36 New Industries 39 Empires 43 We can be our country 45 Federation 46 War in Europe 48 Depression 51 War in the North 55 The Americans Arrive 57 Prosperous Times 63 A great city 65 Bibliography 69 Index 74 Photograph Index 78 gOrtvard To celebrate our nations Centenary, and the various Thuringowan communities' contribution to our sense of nation, this book was commissioned. Two previous council publications, Thuringowa Past and Present and It Was a Different Town have been modest, yet tantalising introductions to facets of our past.
    [Show full text]
  • Doh Multi-Page Template
    Medical Entomology 2016/2017 Annual Report Environmental Health Hazards Unit Environmental Health Directorate Public Health Division Department of Health, Western Australia PO Box 8172, Perth Business Centre Perth, 6849 Acknowledgements The extensive and diverse work program undertaken by the Department of Health’s Medical Entomology team outlined in this Annual Report could not have been completed without significant assistance and collaboration from many partners and stakeholders. In particular, the Medical Entomology team wishes to thank the Department of Health for its ongoing support in regards to this important public health program including: o the Environmental Health Directorate; o the Communicable Disease Control Directorate; o Population Health Units/Area Health Services o PathWest; and o Communications Directorate. The Pathwest laboratory continued to have a significant involvement in the program through provision of laboratory services for key components of the surveillance program for detection of arboviruses of public health significance to the State. We also acknowledge and thank the Population Health Units and the Western Australian Country Health Service for their role in reporting and follow-up of human cases of disease, and especially the role of Local Governments in the management of mosquitoes and the diseases they transmit. These organisations play an active role in the provision of data, case follow up investigations, care and bleeding of chickens for the sentinel chicken program, trapping of mosquitoes, mosquito control treatments and advice to the Western Australian community about disease risk through the media. In particular we thank Environmental Health Officers from the 139 Local Governments across WA, especially those within Contiguous Local Authority Groups (CLAGs), who respond to public complaints, undertake larval and adult mosquito surveys, and undertake mosquito control activities as part of their complex, integrated programs to manage the risks to public health and amenity within their regions.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • WQ1181 - Ros! S River Basin
    ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! ! Bohle River ! ! Stony Creek ! ! estuarine waters Town Common ! estuarine waters ! ! fresh waters ! ! ! ! ! Town Common ! ! ! estuarine waters ! ! ek ! e Cr ! ! ! r ! ! te a ! w ! ! ! *# e u ! l ek ! B re ! C ! ! ! ! ! ! ! ! y l a ! k e ! ! e r e Pallarenda fresh waters C H k ! ! ! ! ! e e ! ! r ! ! ! Deep C Cleveland Red Rock ! ! ! k ic l Pallarenda ! ! ! Bay A estuarine waters Ross Creek Bay ! ! Cape Cleveland ! estuarine waters ! ! fresh waters ! r ! ! e ! v ! ! i ! r R e ! v ! ! i R Rowes ! ! k c a e l l ! ! B Bay
    [Show full text]
  • Schedule of Speed Limits in Queensland
    Schedule of speed limits in Queensland Description of area Speed Ships affected Date gazetted 1. The waters of all canals (unless otherwise prescribed) 6 knots All 21 May 2004 2. The waters of all boat harbours and marinas 6 knots All 21 May 2004 3. Smooth water limits (unless otherwise prescribed) 40 knots All 21 May 2004 Hire and drive personal 4. All Queensland waters 30 knots 27 May 2011 watercraft 5. Areas exempted from speed limit Note: this only applies if item 3 is the only valid speed limit for an area (a) the waters of Perserverance Dam, via Toowoomba Unlimited All 21 May 2004 (b) the waters of the Bjelke Peterson Dam at Murgon Unlimited All 21 May 2004 (c) the waters locally known as Sandy Hook Reach approximately Unlimited All 17 August 2010 between Branyan and Tyson Crossing on the Burnett River (d) the waters upstream of the Barrage on the Fitzroy River Unlimited All 21 May 2004 (e) the waters of Peter Faust Dam at Proserpine Unlimited All 21 May 2004 (f) the waters of Ross Dam at Townsville Unlimited All 9 October 2013 (g) the waters of Tinaroo Dam in the Atherton Tableland (unless Unlimited All 21 May 2004 otherwise prescribed) (h) the waters of Trinity Inlet in front of the Esplanade at Cairns Unlimited All 21 May 2004 (i) the waters of Marian Weir Unlimited All 21 May 2004 (j) the waters of Plantation Creek known as Hutchings Lagoon Unlimited All 21 May 2004 (k) the waters in Kinchant Dam at Mackay Unlimited All 21 May 2004 (l) the waters of Lake Maraboon at Emerald Unlimited All 6 May 2005 (m) the waters of Bundoora Dam, Middlemount 6 knots All 20 May 2016 6.
    [Show full text]
  • Status of Non-Native Freshwater Fishes in Tropical Northern
    Journal & Proceedings of the Royal Society of New South Wales, Vol. 140, p. 63–78, 2007 ISSN 0035-9173/07/020063–16 $4.00/1 Status of Non-native Freshwater Fishes in Tropical Northern Queensland, Including Establishment Success, Rates of Spread, Range and Introduction Pathways alan charles webb Abstract: At least 20 non-native fishes have been reported from northern Queensland fresh waters, a 75% increase since 1994. Eleven of these species have established breeding populations and some are locally abundant and highly invasive, such as the tilapiine cichlids (Oreochromis mossambicus and Tilapia mariae) and the poeciliids (Gambusia holbrooki and Poecilia reticulata). Besides the continued introduction of non-native species, of great concern is the further spread of the tilapias, especially Oreochromis mossambicus and its hybrid form, and of another invasive, the three-spot gourami, Trichopterus trichogaster. Initial introductions are most probably releases of unwanted aquarium fish directly into open waters, or indirectly from ornamental ponds by flood waters. While natural dispersal is occurring, most of the range expansion of the tilapiine cichlids, particularly into impoundments in flood- prone areas, has been as a result of human translocation, and possibly the use of live bait by anglers. Keywords: Cichlidae, distribution patterns, Gambusia, Gourami, introduction pathways, invasive fishes, Oreochromis mossambicus, Poeciliidae, Tilapia INTRODUCTION native fishes in northern Queensland (McKay (1978, 1989, Arthington et al. 1984, Lear 1987), The history of non-native fishes, i.e., those orig- while McKay (1989) also referred to a previ- inating from overseas, introduced into northern ous, though unsuccessful, introduction of Jor- Queensland fresh waters has been well docu- danella sp.
    [Show full text]
  • Mosquito-Borne Viruses and Non-Human Vertebrates in Australia: a Review
    viruses Review Mosquito-Borne Viruses and Non-Human Vertebrates in Australia: A Review Oselyne T. W. Ong 1,2 , Eloise B. Skinner 3,4 , Brian J. Johnson 2 and Julie M. Old 5,* 1 Children’s Medical Research Institute, Westmead, NSW 2145, Australia; [email protected] 2 Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Herston, QLD 4006, Australia; [email protected] 3 Environmental Futures Research Institute, Griffith University, Gold Coast, QLD 4222, Australia; [email protected] 4 Biology Department, Stanford University, Stanford, CA 94305, USA 5 School of Science, Western Sydney University, Hawkesbury, Locked bag 1797, Penrith, NSW 2751, Australia * Correspondence: [email protected] Abstract: Mosquito-borne viruses are well recognized as a global public health burden amongst humans, but the effects on non-human vertebrates is rarely reported. Australia, houses a number of endemic mosquito-borne viruses, such as Ross River virus, Barmah Forest virus, and Murray Valley encephalitis virus. In this review, we synthesize the current state of mosquito-borne viruses impacting non-human vertebrates in Australia, including diseases that could be introduced due to local mosquito distribution. Given the unique island biogeography of Australia and the endemism of vertebrate species (including macropods and monotremes), Australia is highly susceptible to foreign mosquito species becoming established, and mosquito-borne viruses becoming endemic alongside novel reservoirs. For each virus, we summarize the known geographic distribution, mosquito vectors, vertebrate hosts, clinical signs and treatments, and highlight the importance of including non-human vertebrates in the assessment of future disease outbreaks. The mosquito-borne viruses discussed can impact wildlife, livestock, and companion animals, causing significant changes to Australian Citation: Ong, O.T.W.; Skinner, E.B.; ecology and economy.
    [Show full text]