Ethanol As Internal Standard for Determination of Volatile Compounds in Spirit Drinks by Gas Chromatography

Total Page:16

File Type:pdf, Size:1020Kb

Ethanol As Internal Standard for Determination of Volatile Compounds in Spirit Drinks by Gas Chromatography Ethanol as Internal Standard for Quantitative Determination of Volatile Compounds in Spirit Drinks by Gas Chromatography Siarhei V. Charapitsa, Anton N. Kavalenka, Nikita V. Kulevich, Nicolai M. Makoed, Arkadzi L. Mazanik, Svetlana N. Sytova Research Institute for Nuclear Problems of Belarusian State University, POB 220089, Gruschevskaya Str., 124, Minsk, Belarus, Tel/Fax: 375-172-26-2517, [email protected] Abstract The new methodical approach of using ethanol as internal standard in gas chromatographic analysis of volatile compounds in spirit drinks in daily practice of testing laboratories is proposed. This method provides determination of volatile compounds concentrations in spirit drinks directly expressed in milligrams per liter (mg/L) of absolute alcohol according to official methods without measuring of alcohol strength of analyzed sample. The experimental demonstration of this method for determination of volatile compounds in spirit drinks by gas chromatography is described. Its validation was carried out by comparison with experimental results obtained by internal standard method and external standard method. Keywords: spirit drinks; ethanol; internal standard; volatile compounds; gas chromatography Introduction According to the official methods (1–8) the analytical laboratories should determine the following volatile compounds in spirit drinks: acetaldehyde, methyl acetate, ethyl acetate, methanol, 2-propanol, 1- propanol, isobutyl alcohol, n-butanol, isoamyl alcohol. Concentrations of these compounds are expressed in milligrams per liter (mg/L) of absolute alcohol (AA). For calculation of concentrations the internal standard (IS) method is used (1–3, 9–11). Usually pental-3-ol is used as IS. Some researchers (4–8, 12) make calculations by means of the external standard (ES) method to avoid the introduction of another source of error, such as the addition of an internal standard. To get quantitative values of impurities concentration per liter of absolute alcohol it is also required to measure alcohol strength of analyzed sample (1–8). Early (13, 14) an idea to use the main component (solvent) for determination of impurities concentration was proposed. It is possible at the present time to introduce this approach for routine practice of analytical laboratories due to modern GC with wide range of signal registration from flame ionization detector (FID). The linear range of modern FID is generally more than 107. Signal registration from impurities compounds and from main component ethanol takes place without any distortions. In (15, 1 16) demonstration of possibility of using ethanol as internal standard method (“ethanol as ISTD”) for quantitative analysis of spirit drinks by gas chromatography was realized on results obtained in the Laboratory of Analytical Research of the Institute for Nuclear Problems (INP) of Belarusian State University. In this paper our aim is the further verification and validation of the method “ethanol as ISTD” by comparison of experimental results of all methods cited above. Results presented were obtained in INP and in the Control Laboratory of Bobruisk Hydrolysis Plant from Belarus (BHP). Theoretical background The main difference of the proposed method “ethanol as ISTD” from classical method of IS in this case is the following. In the classical case calibration of chromatograph includes the measuring of relative detector response factors for every analyzed compound relative to IS. Numeric values of these factors RFi are calculated from chromatographic data for standard solutions with known concentrations of analyzed compounds and may be expressed by the following equation: st st st st AIS CIS (/) mg L AIS ⋅ Ci (/) mg L RFi = st / st = st st , [1] Ai Ci (/) mg L Ai ⋅ CIS (/) mg L st st st st where Ai and AIS are peak areas of i-th compounds and IS respectively; Ci (/) mg L and CIS (/) mg L are concentrations of i-th compounds and IS respectively expressed in mg per 1 liter of solution. Concentration of i-th sample compound relative to absolute alcohol Ci [mg/L] is expressed by the following formula (1–3): Ai 100 Ci= RF i × × CIS (/) mg L × , [2] AIS Strength where Ai and AIS are the peak areas for i-th compound and IS respectively, CIS (/) mg L is concentration of IS, Strength is concentration of alcohol in solution expressed in % volume. In the case of “ethanol as ISTD” the formulas [1] and [2] looks as follows: st st st st AIS CEt ( mg / L ( AA )) AIS ⋅ Ci ( mg / L ( AA )) RFi ( Et__)/ as IS = st st = st , [3] Ai Ci ( mg / L ( AA )) Ai ⋅ ρEt st where Ci ( mg / L ( AA )) is concentration of i-th compounds expressed in mg per 1 liter of absolute alcohol, ρEt =789300 mg/L is the density of ethanol. Concentration of i-th sample compound relative to absolute alcohol Ci [mg/L(AA)] is expressed by the following formula: 2 Ai Ci= RF i (__) Et as IS × × ρEt . [4] AEt According to [4] we obtain value of i-th sample compound concentration directly expressed in mg per 1 liter of absolute alcohol directly without any additional measurement of strength and without of any procedure of IS adding in an analyzed sample. Standard and sample preparations All individual standard compounds were purchased from Sigma-Fluka-Aldrich (Berlin, Germany). The standard solutions for graduation and sample solutions were prepared by adding of individual standard compounds in ethanol-water mixture (96:4) by weight. Ethanol of high grade quality was purchased from Minsk-Kristall Winery and Distillery Plant (Minsk, Belarus). The state standard ethanol- water (96:4) solutions GSO-8404 (“ethanol solution”) and state standard ethanol-water (40:60) GSO-8405 (“vodka solution”) solutions were purchased from VNIIPBT (Moscow, Russia). Fig.1. Typical chromatogram of the standard ethanol-water (40:60) solution. 1 – acetaldehyde, 2 – methyl acetate, 3 – ethyl acetate, 4 – methanol, 5 – 2-propanol, 6 – ethanol, 7 – 1-propanol, 8 – isobutyl alcohol, 9 – n-butanol, 10 – isoamyl alcohol, 11 – 1-pentanol (internal standard). Gas Chromatographic conditions Analyses were carried out in laboratories of INP and BHP on the gas chromatographs Crystal5000 (JSC SDB Chromatec, Yoshkar-Ola, Russia) equipped with FID, a split/splitless injector, liquid autosampler, Unichrom software (New Analytical Systems Ltd., Minsk, Belarus), capillary column Rt- Wax, 60 m x 0.53 mm, phase thickness 1 μm (Restek, Bellefonte, PA, USA). The oven temperature was: initial isotherm at 75 °C (9 min), raised to 155 °C at rate 7 °C/min with final isotherm of 155 °C (2.6 min). 3 Carrier gas was nitrogen. Gas flow was 2.44 mL/min; injector temperature 160 °C; detector temperature 200 °C; injector volume 0.5 μL and split ratio 1:20. This high split ratio was chosen to achieve good separation between peaks of 2-propanol and ethanol. Once the gas chromatographic conditions had been optimized the satisfactory separation under these conditions has been achieved. Typical chromatogram of the used standard solutions is presented in Fig. 1–2. In Fig. 1 in order to show the dominant compound ethanol and another minor compounds synchronously the logarithm scale of response signal is chosen. Fig.2. The same chromatogram as in Fig. 1, but linear scale of response signal is chosen. Results and discussion To compare proposed methodical approach “ethanol as ISTD” with classical commonly used method of internal standard experimental researches were planned and executed in laboratories of INP and BHP. Seven standard ethanol-water (96:4) solutions VC and VCC were prepared by weight. Concentrations of analyzed volatile compounds in the prepared solutions are presented in Table 1. The standard solutions of volatile compounds VC-1, VC-2 and VC-3 were used to generate calibration curves. The standard solutions VCC-0, VCC-1, VCC-2, VCC-3 and certified reference materials GSO-8404 and GSO-8405 were used to control trueness (17) of the proposed methodical approach. Every standard solution was injected two times. 4 Table 1. Concentrations of analyzed volatile compounds are expressed in mg/L (AA), 1-pentanol was introduces as internal standard Concentration, mg/L (AA) Relative Compound error, % VC-1 VC-2 VC-3 VCC-0 VCC-1 VCC-2 VCC-3 (Р=0,95) acetaldehyde 111 11,2 1,13 4275 1096 56,2 2,22 ± 3 % methyl acetate 114 11,5 1,17 4397 1128 57,8 2,29 ± 3 % ethyl acetate 108 10,9 1,11 4173 1070 54,9 2,17 ± 3 % methanol 1092 113,3 14,3 41995 10774 555,5 24,96 ± 3 % 2-propanol 105 12,1 2,70 3991 1025 54,1 3,69 ± 3 % 1-propanol 104 10,5 1,06 4012 1029 52,8 2,08 ± 3 % isobutyl alcohol 103 10,4 1,05 3975 1020 52,3 2,06 ± 3 % n-butanol 106 10,7 1,08 4071 1044 53,5 2,11 ± 3 % isoamyl alcohol 106 10,7 1,08 4071 1044 53,5 2,11 ± 3 % 1-pentanol (IS) 27,13 27,13 27,13 27,13 27,13 27,13 27,13 ± 3 % In all cases calibration coefficients were been generated by the considered three methods. At the first case 1-pentanol was used as IS in accordance with (1–3). At the second case the ES method was used in accordance with (4–8). And in the third case the ethanol as IS was used. Analytical characteristics of the obtained calibration coefficients are presented in Table 2 and Table 3. Table 2. Analytical characteristics of the calibration coefficients from INP 1-pentanol as IS ES Ethanol as IS Slope Correlation Slope Correlation LOD* Compound Correlation coefficient, (mg/L)/ coefficient, Slope (mg/L) coefficient R2 R2 (pA*min) R2 acetaldehyde 2,396 0,9997 266,1 0,9997 1,710 0,9997 0,344 methyl acetate 2,491 0,9997 276,7 0,9996 1,779 0,9999 0,683 ethyl acetate 1,757 0,9997 195,1 0,9997 1,254 0,9999 0,322 methanol 2,133 0,9998 236,9 0,9997 1,523 0,9999 0,046 2-propanol 1,400 0,9998 155,5 0,9997 0,999 0,9999 0,119 ethanol 1,413 N/A 155,5 N/A 1 N/A N/A 1-propanol 1,179 0,9997 130,9 0,9996 0,841 0,9999 0,222 isobutyl 1,018 0,9998 113,0 0,9997 0,727 0,9999 alcohol 0,178 n-butanol 1,117 0,9999 124,1 0,9998 0,798 0,9999 0,189 isoamyl alcohol 1,030 0,9999 114,4 0,9998 0,735 0,9999 0,179 1-pentanol 1 N/A 110,1 N/A 0,708 N/A 0,271 * limit of detection (LOD) 5 Table 3.
Recommended publications
  • Alcohols Combined 1405
    ALCOHOLS COMBINED 1405 Formulas: Table 1 MW: Table 1 CAS: Table 2 RTECS: Table 2 METHOD: 1405, Issue 1 EVALUATION: PARTIAL Issue 1: 15 March 2003 OSHA : Table 2 PROPERTIES: Table 1 NIOSH: Table 2 ACGIH: Table 2 COMPOUNDS: (1) n-butyl alcohol (4) n-propyl alcohol (7) cyclohexanol (2) sec-butyl alcohol (5) allyl alcohol (8) isoamyl alcohol (3) isobutyl alcohol (6) diacetone alcohol (9) methyl isobutyl carbinol SYNONYMS: See Table 3. SAMPLING MEASUREMENT SAMPLER: SOLID SORBENT TUBE TECHNIQUE: GAS CHROMATOGRAPHY, FID (Coconut shell charcoal, 100 mg/50 mg) ANALYTE: Compounds above FLOW RATE: 0.01 to 0.2 L/min DESORPTION: 1 mL 5% 2-propanol in CS2 Compounds: (1-3 ) (4-9) VOL-MIN: 2 L 1 L INJECTION -MAX: 10 L 10 L VOLUME: 1 µL SHIPMENT: Routine TEMPERATURE -INJECTION: 220 °C SAMPLE -DETECTOR: 250 - 300 °C STABILITY: See Evaluation of Method. -COLUMN: 35 °C (7 minutes), to 60 °C at 5 °C/minute, hold 5 minutes, up to BLANKS: 2 to 10 field blanks per set 120 °C at 10 °C /minute, hold 3 minutes. CARRIER GAS: He, 4 mL/min ACCURACY COLUMN: Capillary, fused silica, 30 m x 0.32-mm RANGE STUDIED: Not studied [1, 2]. ID; 0.5 µm film polyethylene glycol, DB- wax or equivalent BIAS: Not determined CALIBRATION: Solutions of analyte in eluent (internal OVERALL standard optional) PRECISION (Ö ): Not determined rT RANGE: See EVALUATION OF METHOD. ACCURACY: Not determined ESTIMATED LOD: 1 µg each analyte per sample PRECISION: See EVALUATION OF METHOD. APPLICABILITY: This method may be used to determine two or more of the specified analytes simultaneously.
    [Show full text]
  • Website F Prolonged Or Repeated Exposure Can Cause Drying and ( Or in Your Facility’S RTK Cracking of the Skin
    Right to Know Hazardous Substance Fact Sheet Common Name: ISOAMYL ALCOHOL Synonyms: Isopentyl Alcohol; Isobutylcarbinol CAS Number: 123-51-3 Chemical Name: 1-Butanol, 3-Methyl- RTK Substance Number: 1039 Date: April 1999 Revision: March 2008 DOT Number: UN 1105 Description and Use EMERGENCY RESPONDERS >>>> SEE BACK PAGE Isoamyl Alcohol is a colorless liquid with a strong Alcohol-like Hazard Summary odor. It is used in photographic chemicals and pharmaceutical Hazard Rating NJDOH NFPA products, as a solvent, as a flavor in food, and in the HEALTH - 1 manufacture of other chemicals. FLAMMABILITY - 2 REACTIVITY - 0 f ODOR THRESHOLD = 0.042 ppm COMBUSTIBLE f Odor thresholds vary greatly. Do not rely on odor alone to POISONOUS GASES ARE PRODUCED IN FIRE determine potentially hazardous exposures. CONTAINERS MAY EXPLODE IN FIRE Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Reasons for Citation 4=severe f Isoamyl Alcohol is on the Right to Know Hazardous Substance List because it is cited by OSHA, ACGIH, DOT, f Isoamyl Alcohol can affect you when inhaled and by NIOSH and NFPA. passing through the skin. f Contact can severely irritate and burn the skin and eyes with possible eye damage. f Inhaling Isoamyl Alcohol can irritate the nose, throat and lungs. f Isoamyl Alcohol can cause nausea, vomiting and diarrhea. f Exposure can cause headache, dizziness, lightheadedness, and passing out. f Prolonged or repeated exposure can cause drying and SEE GLOSSARY ON PAGE 5. cracking of the skin. f Isoamyl Alcohol may affect the liver and kidneys. FIRST AID Eye Contact f Immediately flush with large amounts of water for at least 15 Workplace Exposure Limits minutes, lifting upper and lower lids.
    [Show full text]
  • Chemicals That Form Explosive Levels of Peroxides Without Concentration (Safe Storage Time After Opening - 3 Months) Chemical CAS # Synonym State Ref
    Group A- Chemicals that form explosive levels of peroxides without concentration (Safe storage time after opening - 3 months) Chemical CAS # Synonym State Ref. 000106- Butadiene(1,3) 1,3-Butadiene gas 4 99-0 000126- 2-Chloro-1,3- Chloroprene (1,3) liquid 4 99-8 butadiene 000821- Divinyl acetylene 1,5-Hexadien- 3-yne liquid 5 08-9 000108- Isopropyl ether liquid 5 20-3 000116- Tetrafluoroethylene gas 4 14-3 000109- Vinyl ether Divinyl ether liquid 5 93-3 000075- 1,1- Vinylidene chloride liquid 5 35-4 Dichloroethylene Group B-Chemicals that form explosive levels of peroxides on concentration (Safe storage time after opening - 12 months) Chemical CAS # Synonym State Ref. 000105- Acetal liquid 5 57-7 000075- Acetaldehyde liquid 4 07-0 000100- Benzyl alcohol liquid 4 51-6 000078- 2-Butanol liquid 4 92-2 000108- Cyclohexanol liquid 4 93-0 000110- Cyclohexene liquid 5 83-8 000822- 2-Cyclohexen-1-ol liquid 4 67-3 000142- Cyclopentene liquid 5 29-0 000091- Decahydronaphthalene liquid 4 17-8 000460- Diacetylene gas 5 12-8 000077- Dicyclopentadiene liquid 5 73-6 Diethylene glycol 000111- Diglyme liquid 5 dimethyl ether 96-6 000123- Dioxane 1,4-Dioxane liquid 5 91-1 Ethylene glycol 000110- Glyme liquid 5 dimethyl ether 71-4 000060- Ethyl ether Diethyl ether liquid 5 29-7 000110- Furan liquid 5 00-9 000589- 4-Heptanol liquid 4 55-9 000626- 2-Hexanol liquid 4 93-7 000098- Isopropyl benzene Cumene liquid 5 82-8 000074- Methyl acetylene Propyne gas 5 99-7 000123- 3-Methyl-1-butanol Isoamyl alcohol liquid 4 51-3 000096- Methyl cyclopentane liquid 5 37-7
    [Show full text]
  • Synthesis of Higher Alcohols During Alcoholic Fermentation of Rye Mashes
    SCIENTIFIC BULLETIN OF THE TECHNICAL UNIVERSITY OF LODZ No. 1081 Food Chemistry and Biotechnology, Vol. 74 2010 MARTA PIETRUSZKA KATARZYNA PIELECH-PRZYBYLSKA JÓZEF STANISŁAW SZOPA Institute of Fermentation Technology and Microbiology Technical University of Lodz SYNTHESIS OF HIGHER ALCOHOLS DURING ALCOHOLIC FERMENTATION OF RYE MASHES Review: Edyta Kordialik-Bogacka Ph.D. Formation of by-products during alcoholic fermentation is a complex process. Particular attention should be paid to generation of higher alcohols because of its complex mechanism and dynamics. In XIX century the higher alcohols were thought about as “bacterial metabolites of spoilage” that contaminate alcoholic beverages. At the beginning of XX century Ehrlich proved that these compounds were produced by yeast from amino acids and they naturally occurred in all alcoholic beverages derived from spirits of agricultural origin. The quantity and profile of fusel alcohols in the wash depend on many factors such as raw materials used to prepare the sweet mash, yeast strain and the inoculum dose, supplements added to the mash. Investigations of many researchers prove that higher alcohols are formed through catabolic and anabolic pathways. They are either products of amino acid catabolism – as was found by Ehrlich or by-products of amino acid synthesis from pyruvate through the anabolic pathway. The occurrence of fusel alcohols in raw spirits from agricultural distilleries is a result of the presence of amino acids, sugars and products of their metabolism mainly aldehydes, in fermented mashes. Introduction One of Polish Standards regulates allowable concentrations of alcoholic fermentation by-products like methanol, aldehydes, esters and organic acids in raw spirits from agricultural distilleries but it does not refer to higher alcohols [1].
    [Show full text]
  • CHM205 Chemicals by Experiment Tuesday, November 17, 2015 3:14:15 PM Experiment Title Chemical Name Concentration Acetaminophen Synthesis Acetic Anhydride Liquid
    CHM205 Chemicals by Experiment Tuesday, November 17, 2015 3:14:15 PM Experiment Title Chemical Name Concentration Acetaminophen Synthesis Acetic anhydride liquid Acetaminophen Synthesis p-aminophenol solid Alcohols to Alkyl chlorides 2-pentanol liquid Alcohols to Alkyl chlorides Hydrochloric acid 12 M Alcohols to Alkyl chlorides Sodium carbonate solid Alcohols to Alkyl chlorides Hydrobromic acid 48% w/v Alcohols to Alkyl chlorides Sodium sulfate anhydrous solid Alcohols to Alkyl chlorides sec-phenethyl alcohol liquid Alcohols to Alkyl chlorides Benzyl alcohol liquid Alcohols to Alkyl chlorides t-butanol liquid Alcohols to Alkyl chlorides 1-pentanol liquid Alcohols to Alkyl chlorides Sodium carbonate 10% w/v Diels Alder Reaction 2,3-dimethyl-1,3-butadiene liquid Diels Alder Reaction Maleic anhydride solid Diels Alder Reaction Ethanol 95% Liquid Diels Alder Reaction Hexane liquid Diels Alder Reaction Cyclohexane liquid Diels Alder Reaction Calcium chloride solid Esterification methanol liquid Esterification Sodium carbonate 10% w/v Esterification 1-propanol liquid Esterification 1-butanol liquid Esterification trans-cinnamic acid solid Esterification Isoamyl alcohol liquid Esterification Isopropyl alcohol liquid Esterification Benzyl alcohol liquid Esterification Sulfuric acid conc. 18 M Esterification 1-pentanol liquid Esterification Isobutyl alcohol liquid Esterification Ethanol 95% liquid Page 1 of 3 Experiment Title Chemical Name Concentration Extraction of Beta Carotene Cyclohexane liquid Extraction of Beta Carotene Beta carotene UV
    [Show full text]
  • Equilibrium Structures and Vibrational Assignments for Isoamyl Alcohol and Tert-Amyl Alcohol: a Density Functional Study
    Equilibrium Structures and Vibrational Assignments for Isoamyl Alcohol and tert-Amyl Alcohol: A Density Functional Study Wolfgang Forner¨ and Hassan M. Badawi Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia Reprint requests to Wolfgang Forner.¨ E-mail: [email protected] Z. Naturforsch. 2013, 68b, 841 – 851 / DOI: 10.5560/ZNB.2013-3003 Received February 9, 2013 We have calculated the vibrational spectra of isoamyl alcohol and of tert-amyl alcohol using Den- sity Functional Theory (DFT) with the Becke-3 Lee Yang Parr (B3LYP) functional and a 6-311+G** atomic basis set. The energies of the conformers were also calculated with ab initio Perturbation Theory of second (MP2) and fourth order restricted to single, double and quadruple excitations (MP4 SDQ) with the same basis set. We found rather complicated equilibria of four conformations in each case, counting only those with appreciable abundancies. PED data were compared with GAUSSVIEW animations. The calculated wavenumbers agree rather well with the experimental ones when the gauche-trans conformer is assumed as the most important one for isoamyl alcohol, and the gauche- gauche one for tert-amyl alcohol. However, some of the experimental bands had to be assigned also to other conformers, indicating their presence in the equilibrium mixture. Due to sterical reasons both the CO and the OH bonds appear to be weaker in the tertiary alcohol, considering the wavenumbers of the CO and OH bond stretching vibrations. The bond lengths point into the same direction, however, the OH bond in the tertiary alcohol is only slightly longer than that in the primary alcohol.
    [Show full text]
  • Calorimetry of 4-Aminopyridine Alan Everett Av N Til Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1976 Calorimetry of 4-aminopyridine Alan Everett aV n Til Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Analytical Chemistry Commons Recommended Citation Van Til, Alan Everett, "Calorimetry of 4-aminopyridine " (1976). Retrospective Theses and Dissertations. 6229. https://lib.dr.iastate.edu/rtd/6229 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This material was produced from a microfilm copy of the original document. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the original submitted. The following explanation of techniques is provided to help you understand markings or patterns which may appear on this reproduction. 1.The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to obtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting thru an image and duplicating adjacent pages to insure you complete continuity. 2. When an image on the film is obliterated with a large round black mark, it is an indication that the photographer suspected that the copy may have moved during exposure and thus cause a blurred image.
    [Show full text]
  • Lecture 10. Analytical Chemistry
    Lecture 10. Analytical Chemistry Basic concepts 1 What is Analytical Chemistry ? It deals with: • separation • identification • determination of components in a sample. It includes coverage of chemical equilibrium and statistical treatment of data. It encompasses any type of tests that provide information relating to the chemical composition of a sample. 2 • Analytical chemistry is divided into two areas of analysis: • Qualitative – recognizes the particles which are present in a sample. • Quantitative – identifies how much of particles is present in a sample. 3 • The substance to be analyzed within a sample is known as an analyte, whereas the substances which may cause incorrect or inaccurate results are known as chemical interferents. 4 Qualitative analysis 5 Qualitative analysis is used to separate an analyte from interferents existing in a sample and to detect the previous one. ➢It gives negative, positive, or yes/no types of data. ➢It informs whether or not the analyte is present in a sample. 6 Examples of qualitative analysis 7 8 9 Analysis of an inorganic sample The classical procedure for systematic analysis of an inorganic sample consists of several parts: ➢preliminary tests (heating, solubility in water, appearance of moisture) ➢ more complicated tests e.g. ✓introducing the sample into a flame and noting the colour produced; ➢determination of anionic or cationic constituents of solute dissolved in water 10 Flame test Solutions of ions, when mixed with concentrated HCl and heated on a nickel/chromium wire in a flame, cause the
    [Show full text]
  • Downloaded 10/4/2021 5:28:15 AM
    Organic & Biomolecular Chemistry View Article Online REVIEW View Journal | View Issue Recent advances in homogeneous borrowing hydrogen catalysis using earth-abundant first Cite this: Org. Biomol. Chem., 2019, 17, 1595 row transition metals Benjamin G. Reed-Berendt,† Kurt Polidano† and Louis C. Morrill * The review highlights the recent advances (2013-present) in the use of earth-abundant first row transition Received 3rd August 2018, metals in homogeneous borrowing hydrogen catalysis. The utility of catalysts based on Mn, Fe, Co, Ni and Accepted 4th September 2018 Cu to promote a diverse array of important C–C and C–N bond forming reactions is described, including DOI: 10.1039/c8ob01895b discussion on reaction mechanisms, scope and limitations, and future challenges in this burgeoning area rsc.li/obc of sustainable catalysis. row transition metals in catalysis.4 In this context, this review Creative Commons Attribution 3.0 Unported Licence. 1. Introduction will describe the recent advances (2013-present) in homo- The borrowing hydrogen (BH) approach, also known as hydro- geneous borrowing hydrogen catalysis using earth-abundant gen autotransfer, combines a transfer hydrogenation process first row transition metal catalysts based on Mn, Fe, Co, Ni with a concurrent reaction on the in situ generated reactive and Cu for various C–C and C–N bond forming processes.5 intermediate.1 This one-pot oxidation–reaction–reduction Heterogeneous borrowing hydrogen catalysis,6 in addition to sequence has received much attention due to its inherent high net (de)hydrogenative processes,7 which have been previously atom economy, permitting alcohols or amines to be employed reviewed,8 are outside the scope of this review.
    [Show full text]
  • Atomic Absorption Spectroscopy
    ATOMIC ABSORPTION SPECTROSCOPY Edited by Muhammad Akhyar Farrukh Atomic Absorption Spectroscopy Edited by Muhammad Akhyar Farrukh Published by InTech Janeza Trdine 9, 51000 Rijeka, Croatia Copyright © 2011 InTech All chapters are Open Access distributed under the Creative Commons Attribution 3.0 license, which allows users to download, copy and build upon published articles even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. After this work has been published by InTech, authors have the right to republish it, in whole or part, in any publication of which they are the author, and to make other personal use of the work. Any republication, referencing or personal use of the work must explicitly identify the original source. As for readers, this license allows users to download, copy and build upon published chapters even for commercial purposes, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. Notice Statements and opinions expressed in the chapters are these of the individual contributors and not necessarily those of the editors or publisher. No responsibility is accepted for the accuracy of information contained in the published chapters. The publisher assumes no responsibility for any damage or injury to persons or property arising out of the use of any materials, instructions, methods or ideas contained in the book. Publishing Process Manager Anja Filipovic Technical Editor Teodora Smiljanic Cover Designer InTech Design Team Image Copyright kjpargeter, 2011. DepositPhotos First published January, 2012 Printed in Croatia A free online edition of this book is available at www.intechopen.com Additional hard copies can be obtained from [email protected] Atomic Absorption Spectroscopy, Edited by Muhammad Akhyar Farrukh p.
    [Show full text]
  • Quantitative NMR As a Versatile Tool for the Reference Material Preparation
    magnetochemistry Review Quantitative NMR as a Versatile Tool for the Reference Material Preparation Kihwan Choi 1,* , Sangki Myoung 2, Yejin Seo 2 and Sangdoo Ahn 2,* 1 Organic Metrology Group, Division of Chemical and Biological Metrology, Korea Research Institute of Standards and Science, Daejeon 34113, Korea 2 Department of Chemistry, Chung-Ang University, Seoul 06974, Korea; [email protected] (S.M.); [email protected] (Y.S.) * Correspondence: [email protected] (K.C.); [email protected] (S.A.); Tel.: +82-42-868-5557 (K.C.); +82-2-820-5230 (S.A.) Abstract: The assessment of primary calibrator purity is critical for establishing traceability to the International System of Units (SI). Recently, quantitative nuclear magnetic resonance (qNMR) has been used as a purity determination method for reference material development, and many related measurement techniques have been designed to acquire accurate and reliable results. This review introduces the recent advances in these techniques (including multidimensional methods), focusing on the application of qNMR to reference material preparation. Keywords: qNMR; reference material; purity assay 1. Introduction The establishment of metrological traceability is important for achieving the compa- Citation: Choi, K.; Myoung, S.; Seo, Y.; rability of measurement results [1]. In regard to chemical measurements, traceability to Ahn, S. Quantitative NMR as a the International System of Units (SI) is realized through the use of calibration standards Versatile Tool for the Reference having certified purity values [2]. The purity of primary calibrators has been traditionally Material Preparation. determined by the mass balance method, that is, by subtracting the total amount of im- Magnetochemistry 2021, 7, 15.
    [Show full text]
  • Isoamyl Alcohol Iaa
    ISOAMYL ALCOHOL IAA CAUTIONARY RESPONSE INFORMATION 4. FIRE HAZARDS 7. SHIPPING INFORMATION 4.1 Flash Point: 114°F O.C. 7.1 Grades of Purity: Pure; fusel oil Common Synonyms Liquid Colorless Mild, choking 4.2 Flammable Limits in Air: 1.2%-9.0% 7.2 Storage Temperature: Ambient Fermentation amyl alcohol alcohol odor (212°F) Fusel oil 7.3 Inert Atmosphere: No requirement 4.3 Fire Extinguishing Agents: Water spray, Isobutylcarbinol 7.4 Venting: Open (flame arrester) Floats and mixes with water. Irritating vapor is produced. dry chemical, alcohol foam, or carbon Isopentyl alcohol 7.5 IMO Pollution Category: D 3-Methyl-1-butanol dioxide. Potato spirit oil 4.4 Fire Extinguishing Agents Not to Be 7.6 Ship Type: Data not avaialable Used: Not pertinent 7.7 Barge Hull Type: Currently not available Keep people away. 4.5 Special Hazards of Combustion Products: Not pertinent Call fire department. 8. HAZARD CLASSIFICATIONS Avoid contact with liquid and vapor. 4.6 Behavior in Fire: Not pertinent Notify local health and pollution control agencies. 4.7 Auto Ignition Temperature: 662°F 8.1 49 CFR Category: Not listed Protect water intakes. 4.8 Electrical Hazards: Class I, Group C 8.2 49 CFR Class: Not pertinent 8.3 49 CFR Package Group: Not listed. Combustible. 4.9 Burning Rate: 3.6 mm/min. Fire Extinguish with water, dry chemical, alcohol foam, or carbon dioxide. 4.10 Adiabatic Flame Temperature: Currently 8.4 Marine Pollutant: No Cool exposed containers with water. not available 8.5 NFPA Hazard Classification: 4.11 Stoichometric Air to Fuel Ratio: 35.7 Category Classification Exposure CALL FOR MEDICAL AID.
    [Show full text]