New Synthetic Methods for Biologically Active Aromatic Heterocycles Vinayak Gupta Iowa State University
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Alcohols Combined 1405
ALCOHOLS COMBINED 1405 Formulas: Table 1 MW: Table 1 CAS: Table 2 RTECS: Table 2 METHOD: 1405, Issue 1 EVALUATION: PARTIAL Issue 1: 15 March 2003 OSHA : Table 2 PROPERTIES: Table 1 NIOSH: Table 2 ACGIH: Table 2 COMPOUNDS: (1) n-butyl alcohol (4) n-propyl alcohol (7) cyclohexanol (2) sec-butyl alcohol (5) allyl alcohol (8) isoamyl alcohol (3) isobutyl alcohol (6) diacetone alcohol (9) methyl isobutyl carbinol SYNONYMS: See Table 3. SAMPLING MEASUREMENT SAMPLER: SOLID SORBENT TUBE TECHNIQUE: GAS CHROMATOGRAPHY, FID (Coconut shell charcoal, 100 mg/50 mg) ANALYTE: Compounds above FLOW RATE: 0.01 to 0.2 L/min DESORPTION: 1 mL 5% 2-propanol in CS2 Compounds: (1-3 ) (4-9) VOL-MIN: 2 L 1 L INJECTION -MAX: 10 L 10 L VOLUME: 1 µL SHIPMENT: Routine TEMPERATURE -INJECTION: 220 °C SAMPLE -DETECTOR: 250 - 300 °C STABILITY: See Evaluation of Method. -COLUMN: 35 °C (7 minutes), to 60 °C at 5 °C/minute, hold 5 minutes, up to BLANKS: 2 to 10 field blanks per set 120 °C at 10 °C /minute, hold 3 minutes. CARRIER GAS: He, 4 mL/min ACCURACY COLUMN: Capillary, fused silica, 30 m x 0.32-mm RANGE STUDIED: Not studied [1, 2]. ID; 0.5 µm film polyethylene glycol, DB- wax or equivalent BIAS: Not determined CALIBRATION: Solutions of analyte in eluent (internal OVERALL standard optional) PRECISION (Ö ): Not determined rT RANGE: See EVALUATION OF METHOD. ACCURACY: Not determined ESTIMATED LOD: 1 µg each analyte per sample PRECISION: See EVALUATION OF METHOD. APPLICABILITY: This method may be used to determine two or more of the specified analytes simultaneously. -
Website F Prolonged Or Repeated Exposure Can Cause Drying and ( Or in Your Facility’S RTK Cracking of the Skin
Right to Know Hazardous Substance Fact Sheet Common Name: ISOAMYL ALCOHOL Synonyms: Isopentyl Alcohol; Isobutylcarbinol CAS Number: 123-51-3 Chemical Name: 1-Butanol, 3-Methyl- RTK Substance Number: 1039 Date: April 1999 Revision: March 2008 DOT Number: UN 1105 Description and Use EMERGENCY RESPONDERS >>>> SEE BACK PAGE Isoamyl Alcohol is a colorless liquid with a strong Alcohol-like Hazard Summary odor. It is used in photographic chemicals and pharmaceutical Hazard Rating NJDOH NFPA products, as a solvent, as a flavor in food, and in the HEALTH - 1 manufacture of other chemicals. FLAMMABILITY - 2 REACTIVITY - 0 f ODOR THRESHOLD = 0.042 ppm COMBUSTIBLE f Odor thresholds vary greatly. Do not rely on odor alone to POISONOUS GASES ARE PRODUCED IN FIRE determine potentially hazardous exposures. CONTAINERS MAY EXPLODE IN FIRE Hazard Rating Key: 0=minimal; 1=slight; 2=moderate; 3=serious; Reasons for Citation 4=severe f Isoamyl Alcohol is on the Right to Know Hazardous Substance List because it is cited by OSHA, ACGIH, DOT, f Isoamyl Alcohol can affect you when inhaled and by NIOSH and NFPA. passing through the skin. f Contact can severely irritate and burn the skin and eyes with possible eye damage. f Inhaling Isoamyl Alcohol can irritate the nose, throat and lungs. f Isoamyl Alcohol can cause nausea, vomiting and diarrhea. f Exposure can cause headache, dizziness, lightheadedness, and passing out. f Prolonged or repeated exposure can cause drying and SEE GLOSSARY ON PAGE 5. cracking of the skin. f Isoamyl Alcohol may affect the liver and kidneys. FIRST AID Eye Contact f Immediately flush with large amounts of water for at least 15 Workplace Exposure Limits minutes, lifting upper and lower lids. -
European Patent Office of Opposition to That Patent, in Accordance with the Implementing Regulations
(19) TZZ ¥Z_T (11) EP 2 655 308 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07C 45/45 (2006.01) C07C 49/84 (2006.01) 07.03.2018 Bulletin 2018/10 (86) International application number: (21) Application number: 11804542.6 PCT/EP2011/073172 (22) Date of filing: 19.12.2011 (87) International publication number: WO 2012/084770 (28.06.2012 Gazette 2012/26) (54) PROCESS FOR THE MANUFACTURE OF DIBENZOYLMETHANE DERIVATIVES VERFAHREN ZUR HERSTELLUNG VON DIBENZOYLMETHANDERIVATEN PROCÉDÉ DE PRODUCTION DE DÉRIVÉS DE DIBENZOYLMÉTHANE (84) Designated Contracting States: • NANDURKAR NITIN S ET AL: "Synthesis of AL AT BE BG CH CY CZ DE DK EE ES FI FR GB sterically hindered 1,3-diketones", SYNTHETIC GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO COMMUNICATIONS, TAYLOR & FRANCIS PL PT RO RS SE SI SK SM TR GROUP, PHILADELPHIA, PA, vol. 37, no. 23, 1 January 2007 (2007-01-01), pages 4111-4115, (30) Priority: 20.12.2010 EP 10195971 XP009144707, ISSN: 0039-7911, DOI: DOI:10.1080/00397910701572803 (43) Date of publication of application: • GUOQING ZHANG ET AL: "Polymorphism and 30.10.2013 Bulletin 2013/44 Reversible Mechanochromic Luminescence for Solid-State Difluoroboron Avobenzone", (73) Proprietor: DSM IP Assets B.V. JOURNAL OF THE AMERICAN CHEMICAL 6411 TE Heerlen (NL) SOCIETY, AMERICAN CHEMICAL SOCIETY, US, vol. 132, 1 January 2010 (2010-01-01), pages (72) Inventor: WEHRLI, Christof 2160-2162, XP007917212, ISSN: 0002-7863, DOI: CH-4002 Basel (CH) DOI:10.1021/JA9097719 [retrieved on 2010-01-28] • FRANEK W: "New Dithio-bis-(diaroylmethanes) (74) Representative: Berg, Katja et al and Acetyl Diaroylchloromethyl Disulfides: DSM Nutritional Products AG Attractive Synthons and Precursors for the Wurmisweg 576 Liberation of Highly Reactive Dithiiranes or CH-4303 Kaiseraugst (CH) Thiosulfines", MONATSHEFTE FUR CHEMIE, SPRINGER VERLAG WIEN, AT, vol. -
Hydrogen/Formic Acid Production from Natural Gas with Zero Carbon Dioxide Emissions MARK
Journal of Natural Gas Science and Engineering 49 (2018) 84–93 Contents lists available at ScienceDirect Journal of Natural Gas Science and Engineering journal homepage: www.elsevier.com/locate/jngse Hydrogen/formic acid production from natural gas with zero carbon dioxide emissions MARK ∗ Jorge A. Pena Lopez, Ibubeleye Somiari, Vasilios I. Manousiouthakis Department of Chemical and Biomolecular Engineering, University of California, Los Angeles (UCLA), 5531 Boelter Hall, Los Angeles, CA 90095-1592, USA ARTICLE INFO ABSTRACT Keywords: Presented in this work is a novel process flowsheet that co-produces hydrogen and formic acid from natural gas, Formic acid without emitting any carbon dioxide. This is achieved by employing a reaction cluster that involves commer- Hydrogen cially available technologies, such as combustion, dry reforming, water-gas shift reaction, pressure-swing ad- Natural gas sorption, and formic acid production via methyl formate hydrolysis. Thermodynamic and energetic self-suffi- Energetic self-sufficiency ciency analysis imposes operating limits on the proposed process, within which a feasible flowsheet is developed. Reaction cluster Heat and power integration analysis reveals that heat engine and heat pump subnetworks are sufficient to meet Heat and power integration the flowsheet's energy requirements without violating energetic self-sufficiency constraints. Operating cost analysis reveals a revenue to cost ratio of 8.8, when the system's operating point is chosen to maximize hydrogen production. 1. Introduction and thus its use would completely address air quality issues in cities. Finally, hydrogen's production from renewable energy would not lead The use of oil derived gasoline as fuel for light vehicle based to carbon dioxide emissions to the atmosphere. -
Chemicals That Form Explosive Levels of Peroxides Without Concentration (Safe Storage Time After Opening - 3 Months) Chemical CAS # Synonym State Ref
Group A- Chemicals that form explosive levels of peroxides without concentration (Safe storage time after opening - 3 months) Chemical CAS # Synonym State Ref. 000106- Butadiene(1,3) 1,3-Butadiene gas 4 99-0 000126- 2-Chloro-1,3- Chloroprene (1,3) liquid 4 99-8 butadiene 000821- Divinyl acetylene 1,5-Hexadien- 3-yne liquid 5 08-9 000108- Isopropyl ether liquid 5 20-3 000116- Tetrafluoroethylene gas 4 14-3 000109- Vinyl ether Divinyl ether liquid 5 93-3 000075- 1,1- Vinylidene chloride liquid 5 35-4 Dichloroethylene Group B-Chemicals that form explosive levels of peroxides on concentration (Safe storage time after opening - 12 months) Chemical CAS # Synonym State Ref. 000105- Acetal liquid 5 57-7 000075- Acetaldehyde liquid 4 07-0 000100- Benzyl alcohol liquid 4 51-6 000078- 2-Butanol liquid 4 92-2 000108- Cyclohexanol liquid 4 93-0 000110- Cyclohexene liquid 5 83-8 000822- 2-Cyclohexen-1-ol liquid 4 67-3 000142- Cyclopentene liquid 5 29-0 000091- Decahydronaphthalene liquid 4 17-8 000460- Diacetylene gas 5 12-8 000077- Dicyclopentadiene liquid 5 73-6 Diethylene glycol 000111- Diglyme liquid 5 dimethyl ether 96-6 000123- Dioxane 1,4-Dioxane liquid 5 91-1 Ethylene glycol 000110- Glyme liquid 5 dimethyl ether 71-4 000060- Ethyl ether Diethyl ether liquid 5 29-7 000110- Furan liquid 5 00-9 000589- 4-Heptanol liquid 4 55-9 000626- 2-Hexanol liquid 4 93-7 000098- Isopropyl benzene Cumene liquid 5 82-8 000074- Methyl acetylene Propyne gas 5 99-7 000123- 3-Methyl-1-butanol Isoamyl alcohol liquid 4 51-3 000096- Methyl cyclopentane liquid 5 37-7 -
Synthesis of Higher Alcohols During Alcoholic Fermentation of Rye Mashes
SCIENTIFIC BULLETIN OF THE TECHNICAL UNIVERSITY OF LODZ No. 1081 Food Chemistry and Biotechnology, Vol. 74 2010 MARTA PIETRUSZKA KATARZYNA PIELECH-PRZYBYLSKA JÓZEF STANISŁAW SZOPA Institute of Fermentation Technology and Microbiology Technical University of Lodz SYNTHESIS OF HIGHER ALCOHOLS DURING ALCOHOLIC FERMENTATION OF RYE MASHES Review: Edyta Kordialik-Bogacka Ph.D. Formation of by-products during alcoholic fermentation is a complex process. Particular attention should be paid to generation of higher alcohols because of its complex mechanism and dynamics. In XIX century the higher alcohols were thought about as “bacterial metabolites of spoilage” that contaminate alcoholic beverages. At the beginning of XX century Ehrlich proved that these compounds were produced by yeast from amino acids and they naturally occurred in all alcoholic beverages derived from spirits of agricultural origin. The quantity and profile of fusel alcohols in the wash depend on many factors such as raw materials used to prepare the sweet mash, yeast strain and the inoculum dose, supplements added to the mash. Investigations of many researchers prove that higher alcohols are formed through catabolic and anabolic pathways. They are either products of amino acid catabolism – as was found by Ehrlich or by-products of amino acid synthesis from pyruvate through the anabolic pathway. The occurrence of fusel alcohols in raw spirits from agricultural distilleries is a result of the presence of amino acids, sugars and products of their metabolism mainly aldehydes, in fermented mashes. Introduction One of Polish Standards regulates allowable concentrations of alcoholic fermentation by-products like methanol, aldehydes, esters and organic acids in raw spirits from agricultural distilleries but it does not refer to higher alcohols [1]. -
CHM205 Chemicals by Experiment Tuesday, November 17, 2015 3:14:15 PM Experiment Title Chemical Name Concentration Acetaminophen Synthesis Acetic Anhydride Liquid
CHM205 Chemicals by Experiment Tuesday, November 17, 2015 3:14:15 PM Experiment Title Chemical Name Concentration Acetaminophen Synthesis Acetic anhydride liquid Acetaminophen Synthesis p-aminophenol solid Alcohols to Alkyl chlorides 2-pentanol liquid Alcohols to Alkyl chlorides Hydrochloric acid 12 M Alcohols to Alkyl chlorides Sodium carbonate solid Alcohols to Alkyl chlorides Hydrobromic acid 48% w/v Alcohols to Alkyl chlorides Sodium sulfate anhydrous solid Alcohols to Alkyl chlorides sec-phenethyl alcohol liquid Alcohols to Alkyl chlorides Benzyl alcohol liquid Alcohols to Alkyl chlorides t-butanol liquid Alcohols to Alkyl chlorides 1-pentanol liquid Alcohols to Alkyl chlorides Sodium carbonate 10% w/v Diels Alder Reaction 2,3-dimethyl-1,3-butadiene liquid Diels Alder Reaction Maleic anhydride solid Diels Alder Reaction Ethanol 95% Liquid Diels Alder Reaction Hexane liquid Diels Alder Reaction Cyclohexane liquid Diels Alder Reaction Calcium chloride solid Esterification methanol liquid Esterification Sodium carbonate 10% w/v Esterification 1-propanol liquid Esterification 1-butanol liquid Esterification trans-cinnamic acid solid Esterification Isoamyl alcohol liquid Esterification Isopropyl alcohol liquid Esterification Benzyl alcohol liquid Esterification Sulfuric acid conc. 18 M Esterification 1-pentanol liquid Esterification Isobutyl alcohol liquid Esterification Ethanol 95% liquid Page 1 of 3 Experiment Title Chemical Name Concentration Extraction of Beta Carotene Cyclohexane liquid Extraction of Beta Carotene Beta carotene UV -
Equilibrium Structures and Vibrational Assignments for Isoamyl Alcohol and Tert-Amyl Alcohol: a Density Functional Study
Equilibrium Structures and Vibrational Assignments for Isoamyl Alcohol and tert-Amyl Alcohol: A Density Functional Study Wolfgang Forner¨ and Hassan M. Badawi Department of Chemistry, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia Reprint requests to Wolfgang Forner.¨ E-mail: [email protected] Z. Naturforsch. 2013, 68b, 841 – 851 / DOI: 10.5560/ZNB.2013-3003 Received February 9, 2013 We have calculated the vibrational spectra of isoamyl alcohol and of tert-amyl alcohol using Den- sity Functional Theory (DFT) with the Becke-3 Lee Yang Parr (B3LYP) functional and a 6-311+G** atomic basis set. The energies of the conformers were also calculated with ab initio Perturbation Theory of second (MP2) and fourth order restricted to single, double and quadruple excitations (MP4 SDQ) with the same basis set. We found rather complicated equilibria of four conformations in each case, counting only those with appreciable abundancies. PED data were compared with GAUSSVIEW animations. The calculated wavenumbers agree rather well with the experimental ones when the gauche-trans conformer is assumed as the most important one for isoamyl alcohol, and the gauche- gauche one for tert-amyl alcohol. However, some of the experimental bands had to be assigned also to other conformers, indicating their presence in the equilibrium mixture. Due to sterical reasons both the CO and the OH bonds appear to be weaker in the tertiary alcohol, considering the wavenumbers of the CO and OH bond stretching vibrations. The bond lengths point into the same direction, however, the OH bond in the tertiary alcohol is only slightly longer than that in the primary alcohol. -
Chemical Engineering Transactions
1705 A publication of CHEMICAL ENGINEERING TRANSACTIONS The Italian Association VOL. 39, 2014 of Chemical Engineering www.aidic.it/cet Guest Editors: Petar Sabev Varbanov, Jiří Jaromír Klemeš, Peng Yen Liew, Jun Yow Yong Copyright © 2014, AIDIC Servizi S.r.l., ISBN 978-88-95608-30-3; ISSN 2283-9216 DOI: 10.3303/CET1439285 Simulation of Reactive Distillation Column for Biodiesel Production at Optimum Conditions Süleyman Karacan*a, Filiz Karacanb aAnkara University, Engineering Faculty, Department of Chemical Engineering, Tandoğan 06100, Ankara, Turkey. bTurkish Atomic Energy Authority, Sarayköy Nuclear Research and Training Centre, Istanbul Road 30 km., 06983 Saray, Ankara, Turkey. [email protected] Biodiesel is defined as a mixture of fatty acid alkyl esters which are commonly produced from triglycerides and alcohol through transesterification reaction in the presence of alkali catalysts. In this work canola oil and methanol were used in this research as the feedstocks, and potassium hydroxide, potassium methoxide, were used as different formulations of catalysts. A laboratory-scale continuous-flow Reactive Distillation column system was simulated at optimum conditions by Aspen HYSYS. The homogeneous alkali and acid catalyzed was applied to the system. The non-catalytic reaction, where the absence of catalyst simplifies the purification procedures and the products can be easily separated. The critical operating conditions and high consumption of methanol and energy make it uneconomical. Based on the optimization of energy integration and methanol recovery strategies, optimization strategies were assessed for saving energy and recovery methanol. 1. Introduction Biodiesel is a clean burning fuel derived from a renewable feedstock such as vegetable oil or animal fat. -
WO 2008/122988 Al
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date PCT 16 October 2008 (16.10.2008) WO 2008/122988 Al (51) International Patent Classification: (74) Agents: SUBRAMANIAM, Hariharan et al; SUBRA- C07C 46/10 (2006.01) C07C 50/32 (2006.01) MANIAM, NATARAJ & ASSOCIATES, Patent & Trade mark Attorneys, E 556, Greater Kailash-II, New Dehli 110 (21) International Application Number: 048 (IN). PCT/IN2008/000216 (81) Designated States (unless otherwise indicated, for every (22) International Filing Date: 3 April 2008 (03.04.2008) kind of national protection available): AE, AG, AL, AM, AO, AT,AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, CA, (25) Filing Language: English CH, CN, CO, CR, CU, CZ, DE, DK, DM, DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, HR, HU, ID, (26) Publication Language: English IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, (30) Priority Data: MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PG, PH, 686/MUM/2007 5 April 2007 (05.04.2007) IN PL, PT, RO, RS, RU, SC, SD, SE, SG, SK, SL, SM, SV, SY, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, (71) Applicant and ZA, ZM, ZW (72) Inventor: CADILA HEALTHCARE LIMITED (84) Designated States (unless otherwise indicated, for every [IN/IN]; Zydus Tower, Satellite Cross Roads, Amedad- kind of regional protection available): ARIPO (BW, GH, abad 380 015, Gujara (IN). -
Downloaded 10/4/2021 5:28:15 AM
Organic & Biomolecular Chemistry View Article Online REVIEW View Journal | View Issue Recent advances in homogeneous borrowing hydrogen catalysis using earth-abundant first Cite this: Org. Biomol. Chem., 2019, 17, 1595 row transition metals Benjamin G. Reed-Berendt,† Kurt Polidano† and Louis C. Morrill * The review highlights the recent advances (2013-present) in the use of earth-abundant first row transition Received 3rd August 2018, metals in homogeneous borrowing hydrogen catalysis. The utility of catalysts based on Mn, Fe, Co, Ni and Accepted 4th September 2018 Cu to promote a diverse array of important C–C and C–N bond forming reactions is described, including DOI: 10.1039/c8ob01895b discussion on reaction mechanisms, scope and limitations, and future challenges in this burgeoning area rsc.li/obc of sustainable catalysis. row transition metals in catalysis.4 In this context, this review Creative Commons Attribution 3.0 Unported Licence. 1. Introduction will describe the recent advances (2013-present) in homo- The borrowing hydrogen (BH) approach, also known as hydro- geneous borrowing hydrogen catalysis using earth-abundant gen autotransfer, combines a transfer hydrogenation process first row transition metal catalysts based on Mn, Fe, Co, Ni with a concurrent reaction on the in situ generated reactive and Cu for various C–C and C–N bond forming processes.5 intermediate.1 This one-pot oxidation–reaction–reduction Heterogeneous borrowing hydrogen catalysis,6 in addition to sequence has received much attention due to its inherent high net (de)hydrogenative processes,7 which have been previously atom economy, permitting alcohols or amines to be employed reviewed,8 are outside the scope of this review. -
Process for the Preparation of Statins in the Presence of Base
(19) TZZ ¥_T (11) EP 2 665 723 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 405/06 (2006.01) C07D 413/12 (2006.01) 22.07.2015 Bulletin 2015/30 C07D 419/12 (2006.01) (21) Application number: 12701325.8 (86) International application number: PCT/EP2012/050470 (22) Date of filing: 13.01.2012 (87) International publication number: WO 2012/098049 (26.07.2012 Gazette 2012/30) (54) PROCESS FOR THE PREPARATION OF STATINS IN THE PRESENCE OF BASE VERFAHREN ZUR HERSTELLUNG VON STATINEN UNTER VERWENDUNG EINER BASE PROCÉDÉ DE PRÉPARATION DE STATINES EN PRÉSENCE D’UNE BASE (84) Designated Contracting States: • LANGE, DE, Ben AL AT BE BG CH CY CZ DE DK EE ES FI FR GB NL-6100 AA Echt (NL) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR (74) Representative: De Vroom, Erik DSM Intellectual Property (30) Priority: 18.01.2011 EP 11151280 P.O. Box 4 11.10.2011 EP 11184685 6100 AA Echt (NL) (43) Date of publication of application: (56) References cited: 27.11.2013 Bulletin 2013/48 WO-A1-2005/042522 WO-A2-01/96311 WO-A2-02/098854 WO-A2-2010/077062 (73) Proprietor: DSM Sinochem Pharmaceuticals WO-A2-2010/140765 Netherlands B.V. 2613 AX Delft (NL) • BAN-CHI CHEN ET AL: "Synthesis of d3- cerivastatin for use as internal standard in a (72) Inventors: LC/MS/MS method developed for quantitation of • BESSEMBINDER, Karin, Henderika, Maria the drug in human serum", JOURNAL OF NL-6100 AA Echt (NL) LABELLED COMPOUNDS AND • HEEMSKERK, Dennis RADIOPHARMACEUTICALS, vol.