Conversion of Green Methanol to Methyl Formate

Total Page:16

File Type:pdf, Size:1020Kb

Conversion of Green Methanol to Methyl Formate catalysts Review Conversion of Green Methanol to Methyl Formate Doreen Kaiser, Luise Beckmann, Jan Walter and Martin Bertau * Institute of Chemical Technology, TU Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany; doreen.kaiser@chemie.tu-freiberg.de (D.K.); luise.beckmann@chemie.tu-freiberg.de (L.B.); jan.walter@chemie.tu-freiberg.de (J.W.) * Correspondence: martin.bertau@chemie.tu-freiberg.de; Tel.: +49-3731-392384 Abstract: Methyl formate is a key component for both defossilized industry and mobility. The current industrial production via carbonylation of methanol has various disadvantages such as high requirements on reactant purity and low methanol conversion rates. In addition, there is a great interest in replacing the conventional homogeneous catalyst with a heterogeneous one, among other things to improve the downstream processing. This is why new approaches for methyl formate are sought. This review summarizes promising approaches for methyl formate production using methanol as a reactant. Keywords: carbonylation; green chemistry; methanol; methyl formate; synfuel 1. Introduction Methyl formate (MF) is one of the most important building blocks in C1 chemistry and it is of great interest as an emission reducing fuel additive. MF can be synthesized from CO and methanol and can be understood as chemical storage for CO. If methanol is produced Citation: Kaiser, D.; Beckmann, L.; from CO2 and hydrogen, which is generated through water electrolysis by renewable Walter, J.; Bertau, M. Conversion of energy, an access to green MF is created. This way a (partial) substitution for classical i.e., Green Methanol to Methyl Formate. fossil feedstock borne petrochemicals can be realized while reducing CO2 emissions. Since Catalysts 2021, 11, 869. https:// 1925, MF has been produced by carbonylation of methanol with sodium methanolate as doi.org/10.3390/catal11070869 a catalyst on an industrial scale. With a global production capacity of >6 million tons in 2016 [1]. This is an industrial chemical of major interest. However, development has gone Academic Editor: Jaime Soler on since, and there are alternatives to the sodium methanolate process that may be more efficient or economically more attractive, or they are more sustainable. Received: 7 July 2021 Accepted: 17 July 2021 2. Why Convert Methanol into Methyl Formate? Published: 20 July 2021 MF is one of the most important industrial products and has been widely used for the production of more than 50 chemicals, including formic acid, N,N-dimethylformamide Publisher’s Note: MDPI stays neutral (DMF), formamide and dimethyl carbonate (DMC) (Figure1). Particularly, the synthesis of with regard to jurisdictional claims in formic acid is of great importance. In 2016, worldwide production of the acid was estimated published maps and institutional affil- to be 621,000 t/a, whereby about 80% was produced by hydrolysis of MF (Kemira-Leonard iations. process). Formic acid is largely used in pharmaceutical, food and textile industry [2]. Formamide and DMF are synthesized by the reaction of MF with ammonia or N,N- dimethylamine, respectively. Formamides perform as extraction solvents and are applied as solvents for inorganic salts, especially in polymer chemistry. Being dipolar aprotic Copyright: © 2021 by the authors. solvents, they are ideal for nucleophilic substitutions. Therefore, DMF and formamide are Licensee MDPI, Basel, Switzerland. mainly directly used by the manufactures [3]. MF can also react with olefins or halogenated This article is an open access article compounds to form esters via hydroesterification or alkoxyacarbonylation reactions [4]. distributed under the terms and Trichloromethyl carbonochloridate (diphosgene) is produced by radical chlorination of MF conditions of the Creative Commons under UV light. It was originally developed as a pulmonary agent for chemical warfare. Attribution (CC BY) license (https:// Today it is used as an alternative to phosgene, which is easier and safer to handle. Thus, creativecommons.org/licenses/by/ diphosgene has replaced phosgene in carbonates, polyurethane and isocyanate production 4.0/). Catalysts 2021, 11, 869. https://doi.org/10.3390/catal11070869 https://www.mdpi.com/journal/catalysts Catalysts 2021, 11, x FOR PEER REVIEW 2 of 22 Catalysts 2021, 11, 869 2 of 21 ation of MF under UV light. It was originally developed as a pulmonary agent for chemi- cal warfare. Today it is used as an alternative to phosgene, which is easier and safer to handle. Thus, diphosgene has replaced phosgene in carbonates, polyurethane and isocy- processes,anate production which act processes, as starting which materials act as for starting high valuematerials plastics, for high resins, value plant plastics, protection resins, productsplant protection and insecticides. products Furthermore, and insecticides. it is used Furthermore, in medical it field is used for synthesize in medical sulfonic field for acidsynthesize methyl pyrimidine,sulfonic acid sulfamonomethoxine, methyl pyrimidine, sulfamonomethoxine, antitussive dextromethorphan antitussive and dextrome- other drugsthorphan [1]. and other drugs [1]. Figure 1. Selection of important products derivable from MF as a C1 building block and their ap- Figure 1. Selection of important products derivable from MF as a C1 building block and their applicationplication [5] [5].. PurePure MF MF is is known known as as a refrigeranta refrigerant (R611), (R611), used used as as a blowinga blowing agent agent for for polymers, polymers, as as a a binderbinder in in foundry foundry process, process, as aas solvent a solvent for nitrocellulosefor nitrocellulose as well as well as cellulose as cellulose acetate acetate and can and becan used be asused a smoke as a smoke fumigant fumigant and bactericide and bactericide for treating for treating tobacco, tobacco, dried fruit dried and fruit grains. and Furthermore,grains. Further it ismore, used it in is the used pharmaceutical in the pharmaceutical industry forindustry producing for producing sulfonic acid sulfonic methyl acid pyrimidine,methyl pyrimidine, sulfamonomethoxine, sulfamonomethoxine, antitussive antitussive dextromethorphan dextromethorphan and other and drugs other [1]. drugs [1].A further application is fuel additive. Its research octane number (RON) and the motor octaneA number further (MON)application are similarlyis fuel additive. high (RON Its research = 115, o MONctane n =umber 114.8, (RON) Table1 )[and6]. the The mo- additiontor octa ofne MF number to fuel (MON) increases are knock similarly resistance high (RON and indirectly = 115, MON the efficiency = 114.8, Table of combustion 1) [6]. The process.addition When of MF blended to fuel withincreases diesel, knock MF lowersresistance the cloudand indirectly point and the avoids efficiency sedimentation of combus- oftion diverse process. fuel componentsWhen blended at low with temperatures. diesel, MF lowers This improves the cloud the point filtration and avoids and cold sedimen- start behavior,tation of as diverse well as fuel delays components aging [6, 7at]. low Moreover, temperatures. with MF This serves improves to reduce the emissions filtration ofand nitrogencold start oxides behavior, (NOx )as and well soot. as Mostdelays importantly, aging [6,7]. MFMoreover, shows lesswith toxicity MF serves compared to reduce to otheremissions hydrocarbons of nitrogen in gasoline oxides (NO or consideredx) and soot. fuel Most additives importantly, [6]. According MF shows to theless Global toxicity Harmonizedcompared to System other (GHS),hydrocarbons methanol in gasoline and higher or considered hydrocarbons fuel are additives classified [6] as. According acute or organ-specificto the Global toxins. Harmonized High protective System (GHS), measures methanol are prescribed and higher by law hydrocarbons for handling, are which classi- reducesfied as the acute acceptance or organ as-specific a fuel additive. toxins. High In contrary, protective MF measures is only classified are prescribed as harmful by (GHSlaw for 07).handling, Furthermore, which MFreduces does the not acceptance participate as in aanti-atmospheric fuel additive. In contrary, photochemical MF is only reactions classi- andfied thus as harmful does not (GHS contribute 07). Furthermore, to the formation MF does of ground-level not participate ozone in andanti- smogatmospheric [8]. pho- tochemical reactions and thus does not contribute to the formation of ground-level ozone Table 1. Properties of different fuels [7]. and smog [8]. Gasoline Methanol Methyl Formate Table 1. Properties of different fuels [7]. RON 97.7 108.7–115 115 MON Gasoline 89 Methanol 88.6 Methyl 114.8 Formate ρ [kg/m3] 720–780 800 957 RON◦ 97.7 108.7–115 115 TBoiling [ C] 25–210 64.6 31.5 Flash Point [◦C] −40 12 −19 Lower heating value (LHV) [MJ/kg] 44 19.7 15.8 Catalysts 2021,, 11,, xx FORFOR PEERPEER REVIEWREVIEW 3 of 22 MON 89 88.6 114.8 ρ [kg/m3] 720–780 800 957 TBoiling [°C] 25–210 64.6 31.5 Catalysts 2021, 11, 869 3 of 21 Flash Point [°C] −40 12 −19 Lower heating value (LHV) [MJ/kg] 44 19.7 15.8 3.3. Synthesis Synthesis Routes Routes ThereThere are are a avariety variety of of synthesis synthesis routes routes to to produce produce methyl methyl formate. formate. On On an an industrial industrial scale,scale, the the carbonylation carbonylation of of methanol methanol plays plays the the most most important important role. role. On On a asmaller smaller scale, scale, dehydrogenationdehydrogenation and and oxidation oxidation of of methanol methanol are
Recommended publications
  • Allyson M. Buytendyk
    DISCOVERING THE ELECTRONIC PROPERTIES OF METAL HYDRIDES, METAL OXIDES AND ORGANIC MOLECULES USING ANION PHOTOELECTRON SPECTROSCOPY by Allyson M. Buytendyk A dissertation submitted to Johns Hopkins University in conformity with the requirements for the degree of Doctor of Philosophy Baltimore, Maryland September, 2015 © 2015 Allyson M. Buytendyk All Rights Reserved ABSTRACT Negatively charged molecular ions were studied in the gas phase using anion photoelectron spectroscopy. By coupling theory with the experimentally measured electronic structure, the geometries of the neutral and anion complexes could be predicted. The experiments were conducted using a one-of-a-kind time- of-flight mass spectrometer coupled with a pulsed negative ion photoelectron spectrometer. The molecules studied include metal oxides, metal hydrides, aromatic heterocylic organic compounds, and proton-coupled organic acids. Metal oxides serve as catalysts in reactions from many scientific fields and understanding the catalysis process at the molecular level could help improve reaction efficiencies - - (Chapter 1). The experimental investigation of the super-alkali anions, Li3O and Na3O , revealed both photodetachment and photoionization occur due to the low ionization potential of both neutral molecules. Additionally, HfO- and ZrO- were studied, and although both Hf and Zr have very similar atomic properties, their oxides differ greatly where ZrO- has a much lower electron affinity than HfO-. In the pursuit of using hydrogen as an environmentally friendly fuel alternative, a practical method for storing hydrogen is necessary and metal hydrides are thought to be the answer (Chapter 2). Studies yielding structural and electronic information about the hydrogen - - bonding/interacting in the complex, such as in MgH and AlH4 , are vital to constructing a practical hydrogen storage device.
    [Show full text]
  • European Patent Office of Opposition to That Patent, in Accordance with the Implementing Regulations
    (19) TZZ ¥Z_T (11) EP 2 655 308 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07C 45/45 (2006.01) C07C 49/84 (2006.01) 07.03.2018 Bulletin 2018/10 (86) International application number: (21) Application number: 11804542.6 PCT/EP2011/073172 (22) Date of filing: 19.12.2011 (87) International publication number: WO 2012/084770 (28.06.2012 Gazette 2012/26) (54) PROCESS FOR THE MANUFACTURE OF DIBENZOYLMETHANE DERIVATIVES VERFAHREN ZUR HERSTELLUNG VON DIBENZOYLMETHANDERIVATEN PROCÉDÉ DE PRODUCTION DE DÉRIVÉS DE DIBENZOYLMÉTHANE (84) Designated Contracting States: • NANDURKAR NITIN S ET AL: "Synthesis of AL AT BE BG CH CY CZ DE DK EE ES FI FR GB sterically hindered 1,3-diketones", SYNTHETIC GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO COMMUNICATIONS, TAYLOR & FRANCIS PL PT RO RS SE SI SK SM TR GROUP, PHILADELPHIA, PA, vol. 37, no. 23, 1 January 2007 (2007-01-01), pages 4111-4115, (30) Priority: 20.12.2010 EP 10195971 XP009144707, ISSN: 0039-7911, DOI: DOI:10.1080/00397910701572803 (43) Date of publication of application: • GUOQING ZHANG ET AL: "Polymorphism and 30.10.2013 Bulletin 2013/44 Reversible Mechanochromic Luminescence for Solid-State Difluoroboron Avobenzone", (73) Proprietor: DSM IP Assets B.V. JOURNAL OF THE AMERICAN CHEMICAL 6411 TE Heerlen (NL) SOCIETY, AMERICAN CHEMICAL SOCIETY, US, vol. 132, 1 January 2010 (2010-01-01), pages (72) Inventor: WEHRLI, Christof 2160-2162, XP007917212, ISSN: 0002-7863, DOI: CH-4002 Basel (CH) DOI:10.1021/JA9097719 [retrieved on 2010-01-28] • FRANEK W: "New Dithio-bis-(diaroylmethanes) (74) Representative: Berg, Katja et al and Acetyl Diaroylchloromethyl Disulfides: DSM Nutritional Products AG Attractive Synthons and Precursors for the Wurmisweg 576 Liberation of Highly Reactive Dithiiranes or CH-4303 Kaiseraugst (CH) Thiosulfines", MONATSHEFTE FUR CHEMIE, SPRINGER VERLAG WIEN, AT, vol.
    [Show full text]
  • Methyl Formate
    SIGMA-ALDRICH sigma-aldrich.com Material Safety Data Sheet Version 5.0 Revision Date 09/17/2012 Print Date 03/13/2014 1. PRODUCT AND COMPANY IDENTIFICATION Product name : Methyl formate Product Number : 291056 Brand : Sigma-Aldrich Supplier : Sigma-Aldrich 3050 Spruce Street SAINT LOUIS MO 63103 USA Telephone : +1 800-325-5832 Fax : +1 800-325-5052 Emergency Phone # (For : (314) 776-6555 both supplier and manufacturer) Preparation Information : Sigma-Aldrich Corporation Product Safety - Americas Region 1-800-521-8956 2. HAZARDS IDENTIFICATION Emergency Overview OSHA Hazards Flammable liquid, Target Organ Effect, Harmful by ingestion., Irritant Target Organs Eyes, Kidney GHS Classification Flammable liquids (Category 1) Acute toxicity, Oral (Category 4) Acute toxicity, Inhalation (Category 4) Eye irritation (Category 2A) Specific target organ toxicity - single exposure (Category 3) GHS Label elements, including precautionary statements Pictogram Signal word Danger Hazard statement(s) H224 Extremely flammable liquid and vapour. H302 + H332 Harmful if swallowed or if inhaled H319 Causes serious eye irritation. H335 May cause respiratory irritation. Precautionary statement(s) P210 Keep away from heat/sparks/open flames/hot surfaces. - No smoking. P261 Avoid breathing dust/ fume/ gas/ mist/ vapours/ spray. P305 + P351 + P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. HMIS Classification Health hazard: 2 Sigma-Aldrich - 291056 Page 1 of 7 Chronic Health Hazard: * Flammability: 4 Physical hazards: 0 NFPA Rating Health hazard: 2 Fire: 4 Reactivity Hazard: 0 Potential Health Effects Inhalation May be harmful if inhaled. Causes respiratory tract irritation. Skin Harmful if absorbed through skin.
    [Show full text]
  • Determination of Formic Acid in Acetic Acid for Industrial Use by Agilent 7820A GC
    Determination of Formic Acid in Acetic Acid for Industrial Use by Agilent 7820A GC Application Brief Wenmin Liu, Chunxiao Wang HPI With rising prices of crude oil and a future shortage of oil and gas resources, people Highlights are relying on the development of the coal chemical industry. • The Agilent 7820A GC coupled with Acetic acid is an important intermediate in coal chemical synthesis. It is used in the a µTCD provides a simple method production of polyethylene, cellulose acetate, and polyvinyl, as well as synthetic for analysis of formic acid in acetic fibres and fabrics. The production of acetic acid will remain high over the next three acid. years. In China, it is estimated that the production capacity of alcohol-to-acetic acid would be 730,000 tons per year in 2010. • ALS and EPC ensure good repeata- biltiy and ease of use which makes The purity of acetic acid determinates the quality of the final synthetic products. the 7820GC appropriate for routine Formic acid is one of the main impurities in acetic acid. Many analytical methods for analysis in QA/QC labs. the analysis of formic acid in acetic acid have been developed using gas chromatog- • Using a capillary column as the ana- raphy. For example, in the GB/T 1628.5-2000 method, packed column and manual lytical column ensures better sepa- sample injection is used with poor separation and repeatability which impacts the ration of formic acid in acetic acid quantification of formic acid. compared to the China GB method. In this application brief, a new analytical method was developed on a new Agilent GC platform, the Agilent 7820A GC System.
    [Show full text]
  • Hydrogen/Formic Acid Production from Natural Gas with Zero Carbon Dioxide Emissions MARK
    Journal of Natural Gas Science and Engineering 49 (2018) 84–93 Contents lists available at ScienceDirect Journal of Natural Gas Science and Engineering journal homepage: www.elsevier.com/locate/jngse Hydrogen/formic acid production from natural gas with zero carbon dioxide emissions MARK ∗ Jorge A. Pena Lopez, Ibubeleye Somiari, Vasilios I. Manousiouthakis Department of Chemical and Biomolecular Engineering, University of California, Los Angeles (UCLA), 5531 Boelter Hall, Los Angeles, CA 90095-1592, USA ARTICLE INFO ABSTRACT Keywords: Presented in this work is a novel process flowsheet that co-produces hydrogen and formic acid from natural gas, Formic acid without emitting any carbon dioxide. This is achieved by employing a reaction cluster that involves commer- Hydrogen cially available technologies, such as combustion, dry reforming, water-gas shift reaction, pressure-swing ad- Natural gas sorption, and formic acid production via methyl formate hydrolysis. Thermodynamic and energetic self-suffi- Energetic self-sufficiency ciency analysis imposes operating limits on the proposed process, within which a feasible flowsheet is developed. Reaction cluster Heat and power integration analysis reveals that heat engine and heat pump subnetworks are sufficient to meet Heat and power integration the flowsheet's energy requirements without violating energetic self-sufficiency constraints. Operating cost analysis reveals a revenue to cost ratio of 8.8, when the system's operating point is chosen to maximize hydrogen production. 1. Introduction and thus its use would completely address air quality issues in cities. Finally, hydrogen's production from renewable energy would not lead The use of oil derived gasoline as fuel for light vehicle based to carbon dioxide emissions to the atmosphere.
    [Show full text]
  • UC Irvine UC Irvine Electronic Theses and Dissertations
    UC Irvine UC Irvine Electronic Theses and Dissertations Title Steps Toward CO2 Reduction to Methanol via Electrochemical Cascade Catalysis Permalink https://escholarship.org/uc/item/4wx6g1vm Author Mercer, Ian Patrick Publication Date 2020 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed|Thesis/dissertation eScholarship.org Powered by the California Digital Library University of California UNIVERSITY OF CALIFORNIA, IRVINE Steps Toward CO2 Reduction to Methanol via Electrochemical Cascade Catalysis THESIS submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Chemistry by Ian Patrick Mercer Dissertation Committee: Professor Jenny Y. Yang, Chair Professor William J. Evans Professor Andy S. Borovik 2020 © 2020 Ian Patrick Mercer ii Table of Contents Acknowledgements iv Abstract v Chapter 1: Methyl Formate and Formaldehyde Reduction by Metal Hydrides 1 Chapter 2: Synthesis of Group 8 Metal Complexes of LDMA for the Study of Outer Sphere Interactions 25 Conclusion 33 Experimental 34 References 37 iii Acknowledgements I would like to express my sincere appreciation to my committee, especially my chair, Professor Jenny Y. Yang. Her commitment to science, mentoring, and ‘doing the right thing’ will forever inspire me. Financial support was provided by the University of California, Irvine and US Department of Energy, Office of Science, Office of Basic Energy Sciences Awards DE-SC0012150 and DE- 0000243266. iv Abstract of the Thesis Steps Toward CO2 Reduction to Methanol via Electrochemical Cascade Catalysis by Ian Patrick Mercer Master of Science in Chemistry University of California, Irvine, 2020 Professor Jenny Y. Yang, Chair Research on two independent projects is presented: (1) Homogeneous cascade catalysis has been used for the hydrogenation of CO2 to methanol as it allows for rational tuning of catalyst reactivity and lower reaction temperatures compared to heterogeneous catalysis.
    [Show full text]
  • Ester Synthesis Lab (Student Handout)
    Name: ________________________ Lab Partner: ____________________ Date: __________________________ Class Period: ____________________ Ester Synthesis Lab (Student Handout) Lab Report Components: The following must be included in your lab book in order to receive full credit. 1. Purpose 2. Hypothesis 3. Procedure 4. Observation/Data Table 5. Results 6. Mechanism (In class) 7. Conclusion Introduction The compounds you will be making are also naturally occurring compounds; the chemical structure of these compounds is already known from other investigations. Esters are organic molecules of the general form: where R1 and R2 are any carbon chain. Esters are unique in that they often have strong, pleasant odors. As such, they are often used in fragrances, and many artificial flavorings are in fact esters. Esters are produced by the reaction between alcohols and carboxylic acids. For example, reacting ethanol with acetic acid to give ethyl acetate is shown below. + → + In the case of ethyl acetate, R1 is a CH3 group and R2 is a CH3CH2 group. Naming esters systematically requires naming the functional groups on both sides of the bridging oxygen. In the example above, the right side of the ester as shown is a CH3CH2 1 group, or ethyl group. The left side is CH3C=O, or acetate. The name of the ester is therefore ethyl acetate. Deriving the names of the side from the carboxylic acid merely requires replacing the suffix –ic with –ate. Materials • Alcohol • Carboxylic Acid o 1 o A o 2 o B o 3 o C o 4 Observation Parameters: • Record the combination of carboxylic acid and alcohol • Observe each reactant • Observe each product Procedure 1.
    [Show full text]
  • Supplement of Investigation of Secondary Formation of Formic Acid: Urban Environment Vs
    Supplement of Atmos. Chem. Phys. Discuss., 14, 24863–24914, 2014 http://www.atmos-chem-phys-discuss.net/14/24863/2014/ doi:10.5194/acpd-14-24863-2014-supplement © Author(s) 2014. CC Attribution 3.0 License. Supplement of Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region B. Yuan et al. Correspondence to: B. Yuan (bin.yuan@noaa.gov) 31 Table S1. Comparisons of measured and modeled formic acid in previous studies. Studies Location and time Model Notes Atlantic Ocean 1 MOGUNTIA Model results are 8 times lower than observations. (1996.10-11) Amazonia, Congo, Model underestimates HCOOH both in free 2 MOGUNTIA Virginia troposphere and boundary layer. Marine air, and MATCH- Measurements are underestimated by a factor of 2 or 3 those in Poisson et MPIC more, except in Amazon. al. MATCH- Measured concentrations are substantially higher than 4 Kitt Peak, US MPIC the model-calculated values. Model underestimates HCOOH compared to 5 Various sites IMPACT observations at most sites. Various sites Sources of formic acid may be up to 50% greater than 6 (MILAGRO, GEOS-Chem the estimates and the study reports evidence of a long- INTEX-B) lived missing secondary source of formic acid. Model underestimates HCOOH concentrations by up Trajectory to a factor of 2. The missing sources are considered to model with 7 North Sea (2010.3) be both primary emissions of HCOOH of MCM V3.2 & anthropogenic origin and a lack of precursor CRI emissions, e.g. isoprene. The globally source of formic acid (100-120 Tg) is 2-3 Satellite times more than that estimated from known sources.
    [Show full text]
  • Biomass Oxidation to Formic Acid in Aqueous Media Using Polyoxometalate Catalysts – Boosting FA Selectivity by In-Situ Extraction
    Electronic Supplementary Material (ESI) for Energy & Environmental Science. This journal is © The Royal Society of Chemistry 2015 Biomass Oxidation to Formic Acid in Aqueous Media Using Polyoxometalate Catalysts – Boosting FA Selectivity by In-situ Extraction Supplementary Information Determination of distribution coefficients A model reaction solution containing 0.91 g of the HPA-5 catalyst, 10.18 g FA and 50.0 g water was prepared. This solution was stirred with 50.91 g of the extracting solvent at 363 K for one hour and then transferred into a separation funnel. After phase separation, a sample of each phase was taken and analysed by means of 1H-NMR to determine the formic acid concentration. Extraction Solvent Screening Table S1: Solvent screening to identify a suitable extraction solvent - extraction of a simulated product solution. Distribution coefficient K Selectivity Extracting agent a b cFA,org./cFA,aqu KFA/Kwater 1-Hexanol 0.94 8.6 1-Heptanol 0.67 4.4 Butylethylether 0.49 2.7 Benzyl formate 0.46 2.6 Heptyl formate 0.42 2.2 Di-isopropylether 0.40 2.5 Di-n-butylether 0.22 1.2 Conditions: 10.18 g formic acid, 0.91 g (0.5 mmol) HPA-5 catalyst dissolved in 50.0 mL H2O, together with 50.91 g of the extracting solvent; stirred at 363 K; 1 h. a) as determined by 1H-NMR using benzene as external standard; b) ratio of the distribution coefficients of formic acid and water. Table S2: Esterification activity of formic acid with 1-hexanol and 1-heptanol, respectively.
    [Show full text]
  • A DFT Study of Synthesis of Acetic Acid from Methane and Carbon Dioxide
    _______________________________________________________________________________www.paper.edu.cn Chemical Physics Letters 368 (2003) 313–318 www.elsevier.com/locate/cplett A DFT study of synthesis of acetic acid from methane and carbon dioxide Jian-guo Wang a, Chang-jun Liu a,*, Yue-ping Zhang b, Baldur Eliasson c a State Key Laboratory of C1 Chemistry and Technology, ABB Plasma Greenhouse Gas Chemistry Laboratory and School of Chemical Engineering, Tianjin University, Tianjin 300072, PR China b Department of Chemistry, Tianjin University, Tianjin 300072, PR China c ABB Switzerland Ltd., CH5405, Baden, Switzerland Received 2 October 2002; in final form 20 November 2002 Abstract We have previously reported an experimental investigation on synthesis of acetic acid directly from CH4 and CO2 via dielectric-barrier discharge. In this work, a DFT study was conducted using three hybrid DFT methods in order to À understand the mechanism of such direct synthesis. It suggests that the synthesis is via two pathways with CO2 and CO À as key intermediates. The energy requirement with CO2 pathway is much less than that with CO. The methyl radical formation and the dissociation of CO2 are two limiting steps for the synthesis of acetic acid directly from CH4 and CO2. Ó 2002 Elsevier Science B.V. All rights reserved. 1. Introduction [1,2]. But methane utilization still remains as a big challenge to chemists all over the world. Methane is the principal component of natural One of the important target molecules of direct gas, coalbed methane, associated gas of oil fields methane conversion is acetic acid [5–9] and some by-product gases of chemical plants.
    [Show full text]
  • Process for Producing Methyl Methacrylate Verfahren Zur Herstellung Von Methylmethacrylat Procede Pour La Fabrication De Methacrylate De Methyle
    ~™ II 1 1 III II II 1 1 II II I Ml II I II I II (19) J European Patent Office Office europeen des brevets (11) EP 0 406 676 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publicationation and mention (51 ) |nt. CI.6: C07C 69/54, C07C 67/20 of the grant of the patent: 27.03.1996 Bulletin 1996/13 (21) Application number: 90112194.7 (22) Date of filing: 27.06.1990 (54) Process for producing methyl methacrylate Verfahren zur Herstellung von Methylmethacrylat Procede pour la fabrication de methacrylate de methyle (84) Designated Contracting States: • Ebata, Shuji, DE ES FR GB IT NL C/o Mitsubishi Gas Chem. Com. Tayuhama, Niigata-shi, Niigata-ken (JP) (30) Priority: 04.07.1989 JP 171190/89 (74) Representative: Turk, Gille, Hrabal, Leifert (43) Date of publication of application: Brucknerstrasse 20 09.01.1991 Bulletin 1991/02 D-40593 Dusseldorf (DE) (73) Proprietor: MITSUBISHI GAS CHEMICAL (56) References cited: COMPANY, INC. DE-A- 3 436 608 Chiyoda-ku, Tokyo (JP) • PATENT ABSTRACTS OF JAPAN vol. 14, no. 68 (72) Inventors: (C- 686)(401 1 ), 8 February 1 990; & JP-A-1 290653 • Higuchi, Hirofumi, (MITSUBISHI GAS CHEM) 22.11. 1989 C/o Mitsubishi Gas Chem. Com. Tayuhama, Niigata-shi, Niigata-ken (JP) Remarks: • Kida, Koichi, The file contains technical information submitted C/o Mitsubishi Gas Chem. Com. after the application was filed and not included in this Tayuhama, Niigata-shi, Niigata-ken (JP) specification CO CO CO o Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted.
    [Show full text]
  • Process of Formic Acid Production by Hydrolysis
    (19) TZZ ¥_T (11) EP 2 747 883 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: B01J 14/00 (2006.01) C07C 51/09 (2006.01) 15.02.2017 Bulletin 2017/07 C07C 53/02 (2006.01) B01J 10/00 (2006.01) B01D 3/10 (2006.01) C07C 51/44 (2006.01) (21) Application number: 12751504.7 (86) International application number: (22) Date of filing: 27.08.2012 PCT/EP2012/066622 (87) International publication number: WO 2013/030162 (07.03.2013 Gazette 2013/10) (54) PROCESS OF FORMIC ACID PRODUCTION BY HYDROLYSIS OF METHYL FORMATE VERFAHREN ZUR HERSTELLUNG VON AMEISENSÄURE DURCH HYDROLYSE VON METHYLFORMIAT PROCÉDÉ DE PRODUCTION D’ACIDE FORMIQUE PAR HYDROLYSE DE FORMIATE DE MÉTHYLE (84) Designated Contracting States: • TREJBAL, Jiri AL AT BE BG CH CY CZ DE DK EE ES FI FR GB 278 01 Kralupy nad Vltavou (CZ) GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO • ROOSE, Peter PL PT RO RS SE SI SK SM TR 9831 Sint-Martens-Latem (BE) (30) Priority: 27.08.2011 US 201161528204 P (74) Representative: Gevers Patents Intellectual Property House (43) Date of publication of application: Holidaystraat 5 02.07.2014 Bulletin 2014/27 1831 Diegem (BE) (73) Proprietor: Taminco (56) References cited: 9000 Gent (BE) WO-A1-00/39067 US-A- 4 262 140 US-B1- 6 713 649 US-B2- 6 696 603 (72) Inventors: • PASEK, Josef 160 00 Praha 6 (CZ) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]