Rove Beetles of the Genus Aleochara Gravenhorst

Total Page:16

File Type:pdf, Size:1020Kb

Rove Beetles of the Genus Aleochara Gravenhorst Rove Beetles of the Genus Aleochara Gravenhorst (Coleoptera: Staphylinidae) Parasitizing the Cabbage Maggot, Delia radicum (L.) (Diptera: Anthomyiidae), in the Northern Central Coast of California Author(s): Shimat V. Joseph, E. Richard Hoebeke and Joseph V. McHugh Source: Proceedings of the Entomological Society of Washington, 117(4):525-528. Published By: Entomological Society of Washington DOI: http://dx.doi.org/10.4289/0013-8797.117.4.525 URL: http://www.bioone.org/doi/full/10.4289/0013-8797.117.4.525 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/ terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. PROC. ENTOMOL. SOC. WASH. 117(4), 2015, pp. 525–528 NOTE Rove Beetles of the Genus Aleochara Gravenhorst (Coleoptera: Staphylinidae) Parasitizing the Cabbage Maggot, Delia radicum (L.) (Diptera: Anthomyiidae), in the Northern Central Coast of California DOI: 10.4289/0013-8797.117.4.525 Aleochara bilineata Gyllenhal and that was naturally infested with cabbage Aleochara verna Say (Coleoptera: maggot. An application of insecticidal Staphylinidae: Aleocharinae) are effective soap was administered to manage cab- predators and parasitoids of the puparia bage aphids seven weeks after planting of economically important anthomyiid the seeds. Broccoli root samples were flies of cruciferous crops including the collected on consecutive weeks (4, 11 and cabbage maggot, Delia radicum (Linnaeus) 18 April, 2014). Each week, 20 plants (Diptera: Anthomyiidae) (Maus et al. with root systems intact plus associated 1998, Turnock et al. 1995, Klimaszewski soil were sampled and carefully evalu- 1984). Delia radicum is one of the most ated for the presence of cabbage maggot destructive pests of cruciferous crops puparia. The puparia were labeled and worldwide (Coaker and Finch 1971). In stored in Petri dishes at ;21oC, L:D 16:8 the past decade, it has become a serious photoperiod, ;45% RH, and were ex- pest of Brassica crops in the Salinas amined twice-weekly for the emergence Valley (Monterey County) of the cen- of adult rove beetles and cabbage maggot tral coast of California (Johnsen and flies. Rove beetles reared from puparia Gutierrez 1997, Joseph and Martinez were stored in 95% ethyl alcohol for 2014). Adults of D. radicum move into identification. Aleochara species reared the fields at various stages of plant de- from puparia were determined using cur- velopment and lay eggs at the crown area rent identification keys (Klimaszewski of the plant. The emerging larvae of 1984). Voucher specimens were de- D. radicum feed on the taproot, inhibit- posited in the University of Georgia ing the translocation of nutrients and Collection of Arthropods (UGCA), Athens, water, which affects the normal growth GA, as well as the collection of the senior and development of plants. author. Aleochara bilineata has been reported Here, we report the occurrence of from most Brassica-producing areas A. bilineata and A. verna in a Brassica worldwide and is an effective biologi- field in the northern central coast of cal control agent against D. radicum California. This represents the first ver- (Hemachandra et al. 2005, 2007; Hummel ified record of A. bilineata in California; et al. 2010). To determine the status of A. verna previously was known to occur Aleochara species in the north central throughout most of the state. In the coast of California, a survey was con- Salinas Valley, Brassica crops such as ductedinanorganicallymanagedbroccoli broccoli (Brassica oleracea var. italica field in Salinas, CA. Seeds of ‘Marathon’ Plenck), cauliflower (B. oleracea L. var. broccoli (Brassica oleracea L.) were botrytis), cabbage (B. oleracea L. var. planted on 2 February, 2014, in a field capitata L.), broccoli raab (B. rapa L. 526 PROCEEDINGS OF THE ENTOMOLOGICAL SOCIETY OF WASHINGTON subspecies rapa), and Brussels sprouts the pronotum is densely pubescent with (B. oleracea L. var. gemmifera) are long setae and the dense pubescence of the grown in excess of 34,398 ha and are elytra is directed towards the apico-lateral valued at ca. $485 million USD (Crop angles. In contrast, Aleochara suffusa report, Monterey County 2013). The differs by the pronotum being sparsely economic impact of D. radicum on these pubescent and the dense pubescence of crops is considerable. Thus, the de- the elytra is directed posterad. Aleochara tection of these two rove beetle species verna is very similar to A. bilineata but is welcomed news since they add to the differs principally by possessing two pale, known predator and parasitoid fauna yellowish-brown to rust-colored apico- affecting anthomyiid pests in this region. median elytral spots (Fig. 1). It differs In one surveyed field in Salinas, 11.5%, from A. bimaculata Gravenhorst, another 18.2%, and 32.2% of D. radicum puparia species of the subgenus with elytral spots (collected on 4, 11, and 18 April, 2014, that occurs in California, by its smaller respectively) were parasitized by Aleo- body size (2.0–4.0 mm vs. 4.0–8.0mm chara beetles. Aleochara bilineata con- for A. bimaculata) and by the deeply stituted 83.3%, 88.9%, and 88.9% of the impressed, coarse, setigerous punctures emerged Aleochara specimens on 4, 11, of the pronotum (cf. the pronotum with and 18 April 2014, respectively. The re- slightly impressed, or not, inconspicuous maining specimens of reared Aleochara punctures and thin setae in A. bimaculata). represented the second species, A. verna. Aleochara bilineata is transcontinental All reared specimens of Aleochara in Canada, but ranges south into the belong to the subgenus Coprochara United States to Oregon, Wisconsin, Mulsant and Rey whose diagnostic char- Illinois, New York, Maine, and Massa- acters are elaborated on and illus- chusetts (Klimaszewski 1984). Although trated by Klimaszewski (1984). Species this species was probably accidentally of Coprochara are easily recognized by introduced from Europe, some consider the presence of two longitudinal, par- it to be a Holarctic species (Maus 1998). allel to subparallel rows of punctures on Aleochara verna is a common species the pronotum which are separated by widely distributed throughout North a distinct glabrous area extending down America, and, according to Klimaszewski the pronotal midline (Fig. 1). Members (1984) and Yamamoto and Maruyama of this subgenus also are recognized (2013), probably represents a true by the form of the mesosternum, which Holarctic species that has erroneously bears a longitudinal carina for its entire been regarded as introduced. length (Fig. 3). Aleochara bilineata Females of A. bilineata each lay ca. has unicolorous elytra (Fig. 2). In ad- 700 eggs during their lifespan, usually dition, it can be distinguished by char- near D. radicum puparia in the soil acters of the male aedaegus and female (Colhoun 1953, Fournet et al. 2000). spermatheca — the apex of the median Once eggs hatch, the first instar larvae of lobe of the aedeagus being strongly A. bilineata locate and enter D. radicum produced ventrally, a long bulbous, puparia. Aleochara bilineata larvae de- and fewer number of coils (4–6) of the velop inside D. radicum puparia con- spermatheca. Aleochara suffusa (Casey) suming the pupae and emerging as adults might be confused with A. bilineata, (Royer et al. 1998). Besides being par- but it possesses different pubescence on asitoids, A. bilineata adults are predators the pronotum and elytra. In A. bilineata, of D. radicum as well, with each capable VOLUME 117, NUMBER 4 527 Figs. 1–3. Aleochara (Coprochara). 1, Aleochara verna, dorsal, arrow denotes one of two parallel longitudinal rows of punctures on pronotum, scale bar = 1mm.2,Aleochara bilineata,dorsal,scalebar= 1 mm. 3, Aleochara bilineata, ventral, arrow denotes the complete mesosternal carina, scale bar = 0.5mm. of consuming ca. 23.8 eggs or 2.6 larvae in the California’s central coast Brassica per day (Read 1962). Aleochara verna production areas. These findings war- has a similar life history and relationship rant further investigation to determine with D. radicum (Hummel et al. 2010). the potential utility of these beetles as Until recently, D. radicum has been biological control agents. An assess- managed primarily using organophos- ment of the distribution and seasonality phate insecticides such as chlorpyrifos of A. bilineata and A. verna,andan and diazinon in the central coast of Cal- examination of the potential role of these ifornia (Natwick 2009). Because high species in the management of D. radicum concentrations of their residues were de- in organic and conventional Brassica tected in bodies of water (Hunt et al. fields is needed. 2003), the use of organophosphate in- We thank N. Harkleroad (Agriculture secticides is now stringently regulated and Land-Based Training Association leaving growers with limited options to [ALBA], Salinas, CA) for providing ac- combat D. radicum infestations (CEPA cess to Brassica fields for this project. 2013). In addition, it is likely that this Also, we appreciate the technical assis- widespread use of organophosphate in- tance provided by J. Martinez, C. Martinez, secticides has led to the development of C. Bettiga and J. Zarate in sample collec- resistance in D. radicum populations. tion, and UC IPM for providing funding for Under these circumstances, the occur- this project. rence of Aleochara spp. is noteworthy because these beetles represent additional Literature Cited potential tools for D.
Recommended publications
  • R. P. LANE (Department of Entomology), British Museum (Natural History), London SW7 the Diptera of Lundy Have Been Poorly Studied in the Past
    Swallow 3 Spotted Flytcatcher 28 *Jackdaw I Pied Flycatcher 5 Blue Tit I Dunnock 2 Wren 2 Meadow Pipit 10 Song Thrush 7 Pied Wagtail 4 Redwing 4 Woodchat Shrike 1 Blackbird 60 Red-backed Shrike 1 Stonechat 2 Starling 15 Redstart 7 Greenfinch 5 Black Redstart I Goldfinch 1 Robin I9 Linnet 8 Grasshopper Warbler 2 Chaffinch 47 Reed Warbler 1 House Sparrow 16 Sedge Warbler 14 *Jackdaw is new to the Lundy ringing list. RECOVERIES OF RINGED BIRDS Guillemot GM I9384 ringed 5.6.67 adult found dead Eastbourne 4.12.76. Guillemot GP 95566 ringed 29.6.73 pullus found dead Woolacombe, Devon 8.6.77 Starling XA 92903 ringed 20.8.76 found dead Werl, West Holtun, West Germany 7.10.77 Willow Warbler 836473 ringed 14.4.77 controlled Portland, Dorset 19.8.77 Linnet KC09559 ringed 20.9.76 controlled St Agnes, Scilly 20.4.77 RINGED STRANGERS ON LUNDY Manx Shearwater F.S 92490 ringed 4.9.74 pullus Skokholm, dead Lundy s. Light 13.5.77 Blackbird 3250.062 ringed 8.9.75 FG Eksel, Belgium, dead Lundy 16.1.77 Willow Warbler 993.086 ringed 19.4.76 adult Calf of Man controlled Lundy 6.4.77 THE DIPTERA (TWO-WINGED FLffiS) OF LUNDY ISLAND R. P. LANE (Department of Entomology), British Museum (Natural History), London SW7 The Diptera of Lundy have been poorly studied in the past. Therefore, it is hoped that the production of an annotated checklist, giving an indication of the habits and general distribution of the species recorded will encourage other entomologists to take an interest in the Diptera of Lundy.
    [Show full text]
  • On the Aleocharini of Turkey, with Notes on Some Species from Adjacent Regions
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Beiträge zur Entomologie = Contributions to Entomology (E-Journal) Beitr. Ent. Keltern ISSN 0005 - 805X 57 (2007) 1 S. 177 - 209 30.06.2007 On the Aleocharini of Turkey, with notes on some species from adjacent regions (Coleoptera: Staphylinidae, Aleocharinae) With 102 figures and 1 table VOLKER ASSING Summary Types and additional material of Aleocharini from Turkey and adjacent regions are revised. 6 species are (re-)described and illustrated: Megalogastria alata sp. n. (Bitlis, Erzurum), Aleochara caloderoides sp.sp. n. (Mer sin), A. (Ceranota) membranosa spsp.. n. (Antalya), A. (C.) bodemeyeri BERNHAUER, 1914, A. (C.) bitu- berculata BERNHAUER, 1900, and A. (C.) erythroptera GRAVENHORST, 1806. External and sexual characters of A. (C.) caucasica EPPELSHEIM, 1889, A. (Rheochara) leptocera EPPELSHEIM, 1889, and A. (R.) spalacis SCHEERPELTZ, 1969 are figured. The following synonymy is proposed: Aleochara moesta GRAVENHORST, 1802 = A. ebneri SCHEERPELTZ, 1929, syn. n. A lectotype is designated for A. spalacis SCHEERPELTZ. Additional records of Aleocharini from Turkey are reported, among them 7 first records. A checklist of the Aleocharini known from Turkish territory is compiled. Keywords Coleoptera, Staphylinidae, Aleocharinae, Aleocharini, Aleochara, Megalogastria, Pseudocalea, Tinotus, Palaearctic region, Turkey, taxonomy, new species, new records, distribution, checklist Zusammenfassung Typen und weiteres Material von Arten der Tribus Aleocharini aus der Türkei und angrenzenden Gebieten werden revidiert. 6 Arten werden beschrieben bzw. redeskribiert und abgebildet: Megalogastria alata sp. n. (Bitlis, Erzurum), Aleochara caloderoides sp.sp. n. (Mersin),(Mersin), A. (Ceranota) membranosa sp.sp. n. (Antalya),(Antalya), A. (C.) bodemeyeri BERNHAUER, 1914, A.
    [Show full text]
  • Onion Maggot, Onion Fly
    Pest Profile Photo credit: Left and middle adult, right image pupae. Pest and Diseases Image Library, Bugwood.org licensed under a Creative Commons Attribution-Noncommercial 3.0 License. Common Name: Onion Maggot, Onion Fly Scientific Name: Delia antiqua Order and Family: Diptera: Anthomyiidae Size and Appearance: Length (mm) Appearance Egg I.25 mm Eggs are white and elongated. Can be found on the soil near the stem and occasionally on the young leaves and neck of the onion plant. Larva 8-10 mm Larvae are tapered and creamy white in color. Adult 3-6 mm Greyish, looks similar to a housefly, except they have a narrower abdomen, longer legs and overlap their wings when at rest. Pupae 7 mm They are chestnut brown and elongated, found in the soil at a depth of 5-10 cm. Type of feeder (Chewing, sucking, etc.): Chewing (hooked mouthparts) Host plant/s: Serious pest of onion and related Allium crops such as garlic and leeks. Description of Damage (larvae and adults): Only the larva causes damage. Larvae use their hooked mouth parts to enter the base of the plant and then feed on the internal plant tissues. The kind of damage varies depending on time of year and which of three generations is causing the damage. All three generations can be destructive, but the first generation is the most damaging because it can routinely reduce unprotected plant stands by over 50%. First generation: Younger plants are more vulnerable to larval feeding and damage than older plants because as the plants grow the underground portion of the plant and bulb become more difficult for the larvae to penetrate.
    [Show full text]
  • A New Cryptic Species of <I>Aleochara</I> Gravenhorst
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 12-29-2017 A new cryptic species of Aleochara Gravenhorst associated with Marmota monax (Linnaeus) burrows and caves in North America (Coleoptera: Staphylinidae: Aleocharinae) Jan Klimaszewski Canadian Forest Service, [email protected] Reginald P. Webster Charters Settlement, New Brunswick, Canada Adam Brunke Canadian National Collection of Insects Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Klimaszewski, Jan; Webster, Reginald P.; and Brunke, Adam, "A new cryptic species of Aleochara Gravenhorst associated with Marmota monax (Linnaeus) burrows and caves in North America (Coleoptera: Staphylinidae: Aleocharinae)" (2017). Insecta Mundi. 1110. https://digitalcommons.unl.edu/insectamundi/1110 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. December 29 December INSECTA 2017 0600 1–11 A Journal of World Insect Systematics MUNDI 0600 A new cryptic species of Aleochara Gravenhorst associated with Marmota monax (Linnaeus) burrows and caves in North America (Coleoptera: Staphylinidae: Aleocharinae) Jan Klimaszewski Natural Resources Canada Canadian Forest Service Laurentian Forestry Centre 1055 du P.E.P.S., P.O. Box 10380 Stn. Sainte-Foy, Québec, G1V 4C7, Canada Reginald P. Webster 24 Mill Stream Dr. Charters Settlement, New Brunswick, Canada E3C 1X1 Adam Brunke Canadian National Collection of Insects Arachnids and Nematodes, Agriculture and Agri-Food Canada Ottawa, Ontario, Canada K1A 0C6 Date of Issue: December 29, 2017 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Jan Klimaszewski, Reginald P.
    [Show full text]
  • Towards Classical Biological Control of Leek Moth
    ____________________________________________________________________________ Ateyyat This project seeks to provide greater coherence for the biocontrol knowledge system for regulators and researchers; create an open access information source for biocontrol re- search of agricultural pests in California, which will stimulate greater international knowl- edge sharing about agricultural pests in Mediterranean climates; and facilitate the exchange of information through a cyberinfrastructure among government regulators, and biocontrol entomologists and practitioners. It seeks broader impacts through: the uploading of previ- ously unavailable data being made openly accessible; the stimulation of greater interaction between the biological control regulation, research, and practitioner community in selected Mediterranean regions; the provision of more coherent and useful information to enhance regulatory decisions by public agency scientists; a partnership with the IOBC to facilitate international data sharing; and progress toward the ultimate goal of increasing the viability of biocontrol as a reduced risk pest control strategy. No Designated Session Theme BIOLOGY OF CIRROSPILUS INGENUUS GAHAN (HYMENOPTERA: EULOPHIDAE), AN ECTOPARASITOID OF THE CITRUS LEAFMINER, PHYLLOCNISTIS CITRELLA STAINTON (LEPIDOPTERA: GRACILLARIIDAE) ON LEMON 99 Mazen A. ATEYYAT Al-Shoubak University College, Al-Balqa’ Applied University, P.O. Box (5), Postal code 71911, Al-Shawbak, Jordan [email protected] The citrus leafminer (CLM), Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) in- vaded the Jordan Valley in 1994 and was able to spread throughout Jordan within a few months of its arrival. It was the most common parasitoid from 1997 to 1999 in the Jordan Valley. An increase in the activity of C. ingenuus was observed in autumn and the highest number of emerged C. ingenuus adults was in November 1999.
    [Show full text]
  • Biological Control of Delia Sp. in Cole Crops with Rove Beetles, Aleochara Sp
    Organic farming research project report submitted to: Organic Farming Research Foundation P.O. Box 440 Santa Cruz, CA 95061 (831) 426-6606 www.ofrf.org Date: January 17, 2001 Project title: Biological Control of Delia sp. in Cole Crops with Rove Beetles, Aleochara sp. (Part 1) Principal investigators: Renee Prasad and Dr. Deborah Henderson E.S. Cropconsult Ltd., 3041 W. 33rd Ave. Vancouver, BC V6N 2G6 (604) 266-6560 Project budget: $20,000 (2 years) Funding provided by OFRF: $6,200 (yr 1) Project period: 2000-2001 Additional support provided by: Lower Mainland Horticultural Association, Abbotsford, BC Fraserland Farms Ltd, Delta, BC OFRF project number: 00-25, awarded Spring 2000 Note: OFRF awarded additional funding for this project for a second year, which is reported under project No. 00-69. Organic Farming Research Foundation Project Report #00-25: Biological control of Delia sp. in cole crops with rove beetles Renee Prasad and Deborah Henderson, E.S. Cropconsult, Ltd., Vancouver, British Columbia Project Summary The results of this study demonstrated that Aleochara sp. beetles were present in both organic and conventional cole crop fields, in southwestern British Columbia. 301 Staphylinid beetles were captured in pitfall traps over the course of 14 weeks from June to early September. Of these 59 have been tentatively identified as belonging to the genus Aleochara. The native population of Aleochara beetles does have some impact on the D. radicum population, as was demonstrated by parasitism of overwintering pupae. More rove beetles, in general, were trapped in the grass margins around fields than in tree/shrub margins or within the field.
    [Show full text]
  • What Do Rove Beetles (Coleoptera: Staphy- Linidae) Indicate for Site Conditions? 439-455 ©Faunistisch-Ökologische Arbeitsgemeinschaft E.V
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Faunistisch-Ökologische Mitteilungen Jahr/Year: 2000-2007 Band/Volume: 8 Autor(en)/Author(s): Irmler Ulrich, Gürlich Stephan Artikel/Article: What do rove beetles (Coleoptera: Staphy- linidae) indicate for site conditions? 439-455 ©Faunistisch-Ökologische Arbeitsgemeinschaft e.V. (FÖAG);download www.zobodat.at Faun.-6kol.Mitt 8, 439-455 Kiel, 2007 What do rove beetles (Coleoptera: Staphy- linidae) indicate for site conditions? By Ulrich Irmler & Stephan Giirlich Summary Although the rove beetle family is one of the most species rich insect families, it is ecologically rarely investigated. Little is known about the influence of environmental demands on the occurrence of the species. Thus, the present investigation aims to relate rove beetle assemblages and species to soil and forest parameters of Schleswig- Holstein (northern Germany). In the southernmost region of Schleswig-Holstein near Geesthacht, 65 sites were investigated by pitfall traps studying the relationship be­ tween the rove beetle fauna and the following environmental parameters: soil pH, organic matter content, habitat area and canopy cover. In total 265 rove beetle species have been recorded, and of these 69 are listed as endangered in Schleswig-Holstein. Four assemblages could be differentiated, but separation was weak. Wood area and canopy cover were significantly related with the rove beetle composition using a multivariate analysis. In particular, two assemblages of loosely wooded sites, or heath-like vegetation, were significantly differentiated from the densely forested assemblages by canopy cover and Corg-content of soil. Spearman analysis revealed significant results for only 30 species out of 80.
    [Show full text]
  • Vietnam PRA Analysis by APHIS 2014
    A Pathway-Initiated Risk Analysis for the Animal and Plant Health Inspection export seed of Zea mays, Cynodon spp., Service Festuca spp., Lolium spp., Oryza spp., Plant Protection and Panicum spp., Paspalum spp., Solanum Quarantine lycopersicum, Brassica spp. Capsicum spp., Lactuca spp., Cucurbita spp., Cucumis spp., November 18, 2013 and Citrullus spp. from the United States to the Republic of Vietnam Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Center for Plant Health Science and Technology United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 1730 Varsity Drive, Ste. 300 Raleigh, NC 27606 DRAFT Executive Summary The Plant Epidemiology and Risk Analysis Laboratory of the United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Center for Plant Health Science and Technology (USDA-APHIS-PPQ-CPHST) has evaluated the potential introduction of quarantine pests into the Republic of Vietnam with the importation of commercially produced Zea mays, Cynodon spp., Festuca spp., Lolium spp., Oryza spp., Panicum spp., and Paspalum spp. (Poaceae plant species) and Solanum lycopersicum, Brassica spp., Capsicum spp., Lactuca spp., Cucurbita spp., Cucumis spp., and Citrullus spp. (non- Poaceae plant species) seeds from the United States. A total of 580 pests were evaluated as potential pests that could be introduced with the importation of Zea mays, Cynodon spp., Festuca spp., Lolium spp., Oryza spp., Panicum spp., and Paspalum spp. (Poaceae) and Solanum lycopersicum, Brassica spp., Capsicum spp., Lactuca spp., Cucurbita spp., Cucumis spp.,and Citrullus spp. (non-Poaceae) seeds into the Republic of Vietnam. From this analysis, we identified 46 pests of quarantine significance to the Republic of Vietnam that can follow the seed pathway; these include nine bacteria, 22 fungi, three insects, one nematode, and 11 viruses.
    [Show full text]
  • Insect Pest Control Newsletter No
    Insect Pest Control Newsletter No. 66 January 2006 Joint FAO/IAEA Programme http://www-naweb.iaea.org/nafa/index.html ISSN 1011-274X Nuclear Techniques in Food and Agriculture http://www.fao.org/WAICENT/Agricul.htm Sterile Insect Technique Principles and Practice in Area-Wide Integrated Pest Management Contents • To Our Readers 1 • Staff 4 • Forthcoming Events 5 • Past Events 6 • Technical Cooperation Projects 7 • Status of Coordinated Research Projects It is a challenge to bring together all relevant information related to the (CRPs) 13 Sterile Insect Technique (SIT) and its application in area-wide integrated pest management (A W-IPM) programmes; this book, published in 2005, • Developments at the is the first attempt to do this in a thematic way. Entomology Unit Seibersdorf 17 • Special News and Reports 22 To Our Readers • Annoucements 27 I would like to thank all our collaborators in many parts of the world, as well as all staff at the Entomology Unit and the Section at headquarters, for a very productive • In Memoriam 30 and successful year 2005. During the last twelve months the Insect Pest Control Sub- • Publications 31 programme implemented an international conference, eight research coordination meetings and several consultants meetings, participated in many interesting and suc­ cessful research activities, provided technical support to over thirty technical coopera­ tion projects in FAO and IAEA Member States, and actively contributed to a number of other international events, panels and advisory committees. In this Newsletter you will find details about some of the above-enumerated activities. These reflect not only our growing commitments and increasing research and norma­ tive responsibilities, but also our expanding involvement with additional pest species, although our budget and staff have not increased in proportion.
    [Show full text]
  • Frank and Thomas 1984 Qev20n1 7 23 CC Released.Pdf
    This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 United States License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/us/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA. COCOON-SPINNING AND THE DEFENSIVE FUNCTION OF THE MEDIAN GLAND IN LARVAE OF ALEOCHARINAE (COLEOPTERA, STAPHYLINIDAE): A REVIEW J. H. Frank Florida Medical Entomology Laboratory 200 9th Street S.E. Vero Beach, Fl 32962 U.S.A. M. C. Thomas 4327 NW 30th Terrace Gainesville, Fl 32605 U.S.A. Quaestiones Entomologicae 20:7-23 1984 ABSTRACT Ability of a Leptusa prepupa to spin a silken cocoon was reported by Albert Fauvel in 1862. A median gland of abdominal segment VIII of a Leptusa larva was described in 1914 by Paul Brass who speculated that it might have a locomotory function, but more probably a defensive function. Knowledge was expanded in 1918 by Nils Alarik Kemner who found the gland in larvae of 12 aleocharine genera and contended it has a defensive function. He also suggested that cocoon-spinning may be a subfamilial characteristic of Aleocharinae and that the Malpighian tubules are the source of silk. Kemner's work has been largely overlooked and later authors attributed other functions to the gland. However, the literature yet contains no proof that Kemner was wrong even though some larvae lack the gland and even though circumstantial evidence points to another (perhaps peritrophic membrane) origin of the silk with clear evidence in some species that the Malpighian tubules are the source of a nitrogenous cement.
    [Show full text]
  • Effects of Intercropping on the Life Cycle of the Turnip Root Fly (Delia Floralis)
    Effects of Intercropping on the Life Cycle of the Turnip Root Fly (Delia floralis) Behaviour, Natural Enemies and Host Plant Quality Maria Björkman Faculty of Natural Resources and Agricultural Sciences Department of Crop Production Ecology Uppsala Doctoral thesis Swedish University of Agricultural Sciences Uppsala 2007 1 Acta Universitatis Agriculturae Sueciae 2007: 125 ISSN 1652-6880 ISBN 978-91-85913-24-4 © 2007 Maria Björkman, Uppsala Tryck: SLU Service/Repro, Uppsala 2007 2 Abstract Björkman, M. 2007. Effects of Intercropping on the Life Cycle of the Turnip Root Fly (Delia floralis) – Behaviour, Natural Enemies and Host Plant Quality. ISSN: 1652-6880, ISBN: 978-91-85913-24-4 The turnip root fly (Delia floralis) is a pest insect in the northern temperate regions of the world. If uncontrolled, it can cause severe problems in the production of brassica crops. This thesis examines how intercropping of cabbage (Brassica oleracea) and red clover (Trifolium pratense) affects the different life cycle stages of D. floralis. Such knowledge about the mechanisms involved is needed for developing intercropping systems with optimal pest reduction. A field trial was performed in Umeå, northern Sweden (63º45’N; 20º15’E), to study the effects of intercropping on D. floralis oviposition behaviour, and the impact of predators and parasitoids on D. floralis in the field. Intercropping was found to reduce D. floralis oviposition compared with monoculture. Furthermore, analysis of the spatial distribution of eggs within plots showed that the difference in egg numbers was greatest close to the border between the cultivation systems. This indicates that the effect of intercropping can be enhanced if D.
    [Show full text]
  • Cabbage Root Fly (Delia Radicum
    Cabbage root fly (Delia radicum L.) www.diptera.info The adult fly is similar at first look to the housefly in shape and colouring, but it is smaller (body length 6-7 mm). The males are darker, hairier and usually smaller than the females. Reliable determination of species identity requires special taxonomic knowledge and can be performed only by experts. The larva can reach the length of 8-9 mm, it is The adult fly which whitish, a typical maggot. is caught in the trap Host plants of the larvae include: cruciferous plants, i.e. cabbage relatives (cauliflower, kohlrabi, common white cabbage, etc.), radishes, rape (canola), mustard, etc. Its importance appears to be growing in rape production. Damage: the larvae damage inside the roots. Occasionally they can come up to the stem also. As a result of their damage seedlings wither, there is a blueish colouring on the leaves, finally the plants die. The trap should be placed inside the field or to its edge, in the height of 20-30 cm (in the spring) or at the upper level of vegetation (summer- autumn). Recommended beginning of trapping in Hungary is beginning of April. ® Selectivity of the CSALOMON trap: the lure in the cabbage root fly trap is NOT a pheromone, rather a feeding attractant, therefore it catches both https://extension.entm.purdue.edu/ female and male flies. It can attract other related flies with cruciferous http://apps.rhs.org.uk host plants (i.e. Delia floralis). The lure is attractive also to flea beetles (Phyllotreta spp.) and some weevils of the genus Ceutorrhynchus.
    [Show full text]