Field Survey of the 27 February 2010 Chile Tsunami

Total Page:16

File Type:pdf, Size:1020Kb

Field Survey of the 27 February 2010 Chile Tsunami Pure Appl. Geophys. 168 (2011), 1989–2010 Ó 2011 Springer Basel AG DOI 10.1007/s00024-011-0283-5 Pure and Applied Geophysics Field Survey of the 27 February 2010 Chile Tsunami 1 2 3 4 5 HERMANN M. FRITZ, CATHERINE M. PETROFF, PATRICIO A. CATALA´ N, RODRIGO CIENFUEGOS, PATRICIO WINCKLER, 6 7 8 8 8 NIKOS KALLIGERIS, ROBERT WEISS, SERGIO E. BARRIENTOS, GIANINA MENESES, CAROLINA VALDERAS-BERMEJO, 9 6 10 4 4 CARL EBELING, ATHANASSIOS PAPADOPOULOS, MANUEL CONTRERAS, RAFAEL ALMAR, JUAN CARLOS DOMINGUEZ, 11,12 and COSTAS E. SYNOLAKIS Abstract—On 27 February 2010, a magnitude Mw = 8.8 Islands of Santa Marı´a, Mocha, Juan Ferna´ndez Archipelago, and earthquake occurred off the coast of Chile’s Maule region causing Rapa Nui (Easter). The collected survey data include more than substantial damage and loss of life. Ancestral tsunami knowledge 400 tsunami flow depth, runup and coastal uplift measurements. from the 1960 event combined with education and evacuation The tsunami peaked with a localized runup of 29 m on a coastal exercises prompted most coastal residents to spontaneously evac- bluff at Constitucio´n. The observed runup distributions exhibit uate after the earthquake. Many of the tsunami victims were significant variations on local and regional scales. Observations tourists in coastal campgrounds. The international tsunami survey from the 2010 and 1960 Chile tsunamis are compared. team (ITST) was deployed within days of the event and surveyed 800 km of coastline from Quintero to Mehuı´n and the Pacific Key words: Tsunami, wave runup, coastal uplift, Chile, South Pacific Ocean. 1 School of Civil and Environmental Engineering, Georgia Institute of Technology, Savannah, GA 31407, USA. E-mail: 1. Introduction [email protected] 2 LP4 Associates LLC, Mercer island, WA, USA. E-mail: On 27 February 2010 at 06:34:14 UTC (local time [email protected] 3 Departamento de Obras Civiles, Universidad Te´cnica 03:34:14 am), a magnitude Mw = 8.8 earthquake Federico Santa Marı´a, Valparaı´so, Chile. E-mail: patricio.catalan@ occurred off the coast of Chile’s Maule region about usm.cl 100 km north of Concepcio´n(LAY et al., 2010;DELOUIS 4 Departamento de Ingenierı´a Hidra´ulica y Ambiental et al., 2010). The earthquake and tsunami caused sub- Escuela de Ingenierı´a, Pontificia Universidad Cato´lica de Chile, Santiago, Chile. E-mail: [email protected]; [email protected]; stantial damage and loss of life along Chile’s [email protected] continental coast, in the Juan Ferna´ndez Archipelago, 5 School of Ocean Engineering, Universidad de Valparaı´so, and on Easter Island (Rapa Nui). The number of tsu- Valparaı´so, Chile. E-mail: [email protected] 6 Department of Environmental Engineering, Technical nami victims among the total death toll was University of Crete, 73100 Chania, Greece. E-mail: nkalligeris@ significantly overestimated in initial reports and later isc.tuc.gr; [email protected] reduced to a ratio of one tsunami victim to every four 7 Department of Geology and Geophysics, Texas A&M University, College Station, TX, USA. E-mail: [email protected] deaths. The majority of the 521 fatalities are attributed 8 Departamento de Geofı´sica, Universidad de Chile, Santiago, to the earthquake, while the tsunami accounts for 124 Chile. E-mail: [email protected]; gianinameneses.p@gmail. victims concentrated in the coastal regions of Maule com; [email protected] (69) and Biobı´o (33), Juan Ferna´ndez Archipelago’s 9 Department of Earth and Planetary Sciences, Northwestern University, Evanston, IL, USA. E-mail: [email protected]. Robinson Crusoe Island (18), and Mocha Island (4). edu The 2010 Chile tsunami represents South America’s 10 Departamento de Ingenierı´a Informa´tica, Facultad de deadliest tsunami since the 1979 great Tumaco earth- Ingenierı´a, Universidad de Playa Ancha, Valparaı´so, Chile. E-mail: [email protected] quake and tsunami off Colombia’s Pacific coast, which 11 Department of Civil and Environmental Engineering, washed away more than 220 coastal residents in San University of Southern California, Los Angeles, CA 90089, USA. Juan, Narin˜o alone (HERD et al., 1981). E-mail: [email protected] 12 Hellenic Center for Marine Research, 19013 Anavyssos, During the 2010 Chile tsunami, the Pacific Tsu- Greece. nami Warning Center (PTWC) responded and issued 1990 H. M. Fritz et al. Pure Appl. Geophys. warnings 5 min after the earthquake, but because the from Quintero to Mehuı´n, including Santa Marı´a tsunami arrived within 30 min at many locations, Island in the Gulf of Arauco, Easter Island and official evacuations and warnings by local authorities Robinson Crusoe Island in the Juan Ferna´ndez were often not in place prior to the arrival of the Archipelago. A follow-up survey from 21 to 23 May tsunami. Fortunately, most coastal residents in Chile 2010 focused on Mocha Island. Aerial reconnaissance were aware of the tsunami risk and evacuated to high flights were conducted between Pelluhue and the ground as a result of ancestral tsunami knowledge, Arauco peninsula as well as over Robinson Crusoe regular evacuation drills and education programs and Mocha Islands. The survey teams documented (MARI´N et al., 2010). Most of the tsunami victims tsunami runup, flow depth and inundation; wave were Chilean tourists enjoying a late summer week- induced deposition or erosion, structural damage and end and staying overnight in low-lying coastal interviewed eyewitnesses using established protocols campgrounds. (SYNOLAKIS and OKAL, 2005). The Chile survey data The 27 February 2010 Maule earthquake was at recorded 419 tsunami runup and flow depth mea- the time the fifth largest event instrumentally recorded surements shown in Fig. 1 and Appendix Table 1.At and filled the longest standing seismic gap in Chile. most locations, the tsunami arrived as sea levels The epicenter was located in the center of the Con- passed through low tide (Fig. 2). Measured data were cepcio´n–Constitucio´n area [35–37°S] in south-central corrected for tide level at the time of tsunami arrival Chile, identified as a mature seismic gap by RUEGG on the basis of tide predictions provided by the et al. (2009). Pre-event estimates of a potential United Kingdom Hydrographic Office (pers. comm.: earthquake of 8.0 \ Mw \ 8.5 based on the accumu- Christopher Jones, Head of Tides, UKHO). A sig- lated slip deficit over the past 175 years were nificant variation in tsunami impact was observed conservative. The last large subduction zone earth- along Chile’s mainland at both local and regional quake in this south-central Chile region occurred on scales (Fig. 3). 20 February 1835 (DARWIN, 1851) and was of a similar The tsunami impact peaked with a localized estimated magnitude, close to Mw & 8.5 (LOMNITZ, maximum runup of 29 m at Constitucio´n along a 1970;BECK et al., 1998). The rupture zone of the 2010 steep coastal bluff (Fig. 3a). To the north of Con- event was situated immediately to the north of the stitucio´n the runup distribution exhibited a decaying rupture zone associated with the great 1960 earth- trend with runup heights typically between 5 and quake with Mw = 9.5 (PLAFKER and SAVAGE, 1970; 10 m exceeded only by a high point of 14 m runup on KANAMORI, 1977;CIFUENTES, 1989) and south of the a coastal bluff within 70 m of the shoreline at Caleta rupture zones corresponding to the 1928 Talca de Mostazal (Fig. 3c), 35 km south of San Antonio. earthquake (BECK et al., 1998) and the 1906 and 1985 Further to the north, runup remained uniformly below Valparaiso earthquakes (BARRIENTOS, 1995). Part of 5 m with typical heights of 3 m in the greater Val- the region was affected by the 1939 Chilla´n earth- paraı´so area. Nevertheless, at Llolleo, a campground quake Mw = 7.9, which was a slab-pull event with on low-lying ground along a lagoon adjacent to the release of tensional stresses within the down-going south of Chile’s main container terminal at San slab (CAMPOS and KAUSEL, 1990;BECK et al., 1998). Antonio was washed away during the tsunami. Low- Further north, the Talca earthquake of 1 December lying coastal dunes stabilized by vegetation offered 1928, was interpreted as a shallow dipping thrust partial protection to some coastal communities such event (LOMNITZ, 1970;BECK et al., 1998). as Punta de Lobos. Variable runup heights within a 5–15 m range were observed between Constitucio´n and Punta Morguilla some 300 km to the south. In a 2. Post-Tsunami Reconnaissance few significant cases, however, runup heights decreased below 5 m along this stretch of coastline. The surveys took place using three integrated These included the epicentral area at Cobquecura as survey groups from 7 to 24 March 2010 covering an well as the east coasts inside the Bay of Concepcio´n 800 km stretch of south-central Chilean coastline and the Gulf of Arauco. Further to the south between Vol. 168, (2011) Field Survey of the 27 February 2010 Chile Tsunami 1991 Tsunami Height [m] 30 25 20 15 10 5 0 2010 EQ Valparaíso Robinson 1960 EQ 33 Crusoe Island San Antonio Santiago o elag Archip Juan Fernández Navidad 34 Pichilemu Iloca 35 Constitución n Pelluhue S) a Curanipe o e CHILE 36 c Cobquecura O Dichato Kilometers 050100 150 c i Santa Concepción/ f i Maria Talcahuano 0 25 50 75 c Miles Latitude ( a 37 P Arauco h Lebu t u o Punta Morguilla S 38 Tirúa Mocha Puerto Saavedra 39 Mehuín Flow Depth Runup 40 80 79 78 77 76 75 74 73 72 71 70 69 Figure 1 Tsunami flow depths and runup heights measured along 800 km of Chilean coastline from Quintero to Mehuı´n including the Islands of Santa Marı´a, Mocha, and Robinson Crusoe (Juan Ferna´ndez Archipelago) Punta Morguilla and Mehuı´n the runup remained observed and recorded on cell phone videos by eye- mostly below 5 m with exception of the greater Tiru´a witnesses on the south shores of the U-shaped and area.
Recommended publications
  • The Mw 8.8 Chile Earthquake of February 27, 2010
    EERI Special Earthquake Report — June 2010 Learning from Earthquakes The Mw 8.8 Chile Earthquake of February 27, 2010 From March 6th to April 13th, 2010, mated to have experienced intensity ies of the gap, overlapping extensive a team organized by EERI investi- VII or stronger shaking, about 72% zones already ruptured in 1985 and gated the effects of the Chile earth- of the total population of the country, 1960. In the first month following the quake. The team was assisted lo- including five of Chile’s ten largest main shock, there were 1300 after- cally by professors and students of cities (USGS PAGER). shocks of Mw 4 or greater, with 19 in the Pontificia Universidad Católi- the range Mw 6.0-6.9. As of May 2010, the number of con- ca de Chile, the Universidad de firmed deaths stood at 521, with 56 Chile, and the Universidad Técni- persons still missing (Ministry of In- Tectonic Setting and ca Federico Santa María. GEER terior, 2010). The earthquake and Geologic Aspects (Geo-engineering Extreme Events tsunami destroyed over 81,000 dwell- Reconnaissance) contributed geo- South-central Chile is a seismically ing units and caused major damage to sciences, geology, and geotechni- active area with a convergence of another 109,000 (Ministry of Housing cal engineering findings. The Tech- nearly 70 mm/yr, almost twice that and Urban Development, 2010). Ac- nical Council on Lifeline Earthquake of the Cascadia subduction zone. cording to unconfirmed estimates, 50 Engineering (TCLEE) contributed a Large-magnitude earthquakes multi-story reinforced concrete build- report based on its reconnaissance struck along the 1500 km-long ings were severely damaged, and of April 10-17.
    [Show full text]
  • The Magnitude 8.8 Offshore Maule Region Chile Earthquake of February 27, 2010
    THE MAGNITUDE 8.8 OFFSHORE MAULE REGION CHILE EARTHQUAKE OF FEBRUARY 27, 2010 Public Disclosure Authorized PRELIMINARY SUMMARY OF DAMAGE AND ENGINEERING RECOMMENDATIONS A Report to the World Bank Public Disclosure Authorized by FRANCISCO MEDINA - PETER I. YANEV - ALEXANDER P. YANEV Public Disclosure Authorized Public Disclosure Authorized April 18, 2010 Rev. 01: 07/07/10 Cover: Torre O’Higgins office building in Concepción. Back Cover: Constitución. The Magnitude 8.8 Offshore Maule Region, Chile Earthquake CONTENTS Acknowledgments, iv Executive Summary, v Prologue (by V.V. Bertero), vii 1. Background and Summary of the Investigation .......................................................... 1 2. General Engineering Observations.............................................................................. 3 3. Detailed Engineering Observations............................................................................. 4 3.1. Effects of the earthquake duration on building performance, 4 3.2. Effects of soil conditions on building performance, 5 3.3. Ground motion records, 6 3.4. Low-rise buildings (up to 4 stories), 6 Old and non-engineered buildings Engineered confined-masonry buildings Post-1950 buildings Steel-framed buildings Tsunami effects to buildings 3.5. Mid-rise and high-rise buildings (over 4 stories), 13 Damage to shear wall buildings Damage to exterior building cladding Damage to unusual architectural exterior details 3.6. Interior architectural and equipment damage, 20 3.7. Other structures, 23 Hospitals Historic public buildings
    [Show full text]
  • Res 381-2017.Pdf
    —–——– INFORME DEFINITIVO DE INSTALACIONES DE TRANSMISIÓN ZONAL DE EJECUCIÓN OBLIGATORIA SISTEMA INTERCONECTADO CENTRAL Y SISTEMA INTERCONECTADO DEL NORTE GRANDE Julio de 2017 Santiago de Chile —–——– ÍNDICE 1 INTRODUCCIÓN ................................................................................................................... 10 2 RESUMEN EJECUTIVO .......................................................................................................... 16 3 LISTADO DE OBRAS DE EJECUCIÓN OBLIGATORIA, EN CONSTRUCCIÓN AL 31 DE OCTUBRE DE 2016 ............................................................................................................... 18 3.1 CHILQUINTA ENERGÍA S.A. ............................................................................................................ 18 3.1.1 Nueva línea 2x110 kV Tap Off Mayaca - Mayaca............................................................................... 19 3.1.2 Nueva línea 2x110 kV Tap Off Peñablanca – Peñablanca .................................................................. 19 3.1.3 Nueva S/E Mayaca 110/12 kV 30 MVA .............................................................................................. 19 3.1.4 Nueva S/E Peñablanca 110/12 kV 30 MVA ........................................................................................ 19 3.1.5 Nueva S/E Tap Off Mayaca 110 kV .................................................................................................... 19 3.1.6 Aumento de capacidad en S/E La Calera ..........................................................................................
    [Show full text]
  • Descargar Mapa Cartera De Proyectos
    100.000 140.000 180.000 220.000 260.000 300.000 73°O 72°O 71°O SITUACIÓN BASE PROGRAMACIÓN 2012 N° FINANCIA INICIATIVA DETALLE MEDIANO PLAZO : INICIO DE LA ETAPA DESDE 2015 al 2021 N° FINANCIA INICIATIVA DETALLE Pullay Retiro !> AGUA POTABLE RURAL 1 MEJORAMIENTO Y AMPLIACIÓN SISTEMA DE APR DE QUILACOYA AGUA POTABLE RURAL CONSTRUCCIÓN SERVICIO APR SANTA LAURA - TUCUMÁN 36°S 2 CONSTRUCCIÓN SERVICIO APR LA GENERALA 188 Detalle 4 189 CONSTRUCCIÓN SERVICIO APR SANTA CRUZ DE CUCA (CHILLAN) 3 EXTRA MOP CONSTRUCCIÓN SERVICIO APR PANGUE (LOS ÁLAMOS) 190 CONSTRUCCIÓN SERVICIO APR HUECHUPÍN 4 CONSTRUCCIÓN SERVICIO DE APR SAN RAMÓN-RANQUILQUE Buchupureo 191 CONSTRUCCIÓN SERVICIO APR RANCHILLOS 5 CONSERVACIÓN SISTEMA APR PEHUEN, COMUNA DE LEBU 192 CONSTRUCCIÓN SERVICIO APR SELVA NEGRA 6 CONSTRUCCIÓN SERVICIO DE APR ISLA MOCHA Iglesia de Piedra 193 CONSTRUCCIÓN SERVICIO APR LAS VERTIENTES - MALLOA SUR Detalle 3 7 CONSTRUCCIÓN SERVICIO APR LAS DELICIAS Detalle 4 MOP cbM-80-N 6.000.000 6.000.000 194 Detalle 1 8 CONSTRUCCIÓN SERVICIO APR LA MONTAÑA CONSTRUCCIÓN INSTALACIÓN APR SAN CARLITOS LOS QUILLAYES - ÑACHUR Pilicura Cajon del Molino !> 9 CONSTRUCCIÓN SERVICIO DE APR SAN LUIS - SANTA LAURA Detalle 4 Parral MOP 195 CONSTRUCCIÓN SERVICIO APR CHILLINHUE A CANCHA EL ÁLAMO Cobquecura 134 10 CONSTRUCCIÓN SERVICIO APR CULENAR 196 CONSTRUCCIÓN SERVICIO APR SANTA ISABEL - EL TORREÓN V[W MEJORAMIENTO AMPLIACIÓN SERVICIO AGUA POTABLE RURAL TALQUIPÉN 197 CONSTRUCCIÓN SERVICIO APR LA MATA - LAS GARZAS n 11 e COIHUECO \ZN-132 u 198 CONSTRUCCIÓN SERVICIO APR LA
    [Show full text]
  • The 2010 Chile Earthquake: Observations and Research Implications
    The 2010 Chile Earthquake: Observations and Research Implications Jeff Dragovich Jay Harris 9 December 2010 national earthquake hazards reduction program Presentation Outline • The earthquake and seismic hazard • Design practices Chile US/Canada • NIST mobilization • Observations: Reinforced concrete Steel Irregularities Separation/non-structural • Initiated Research national earthquake hazards reduction program What Will Not Be Covered • Detailed Seismology • Geotechnical • Transportation • Tsunami • Ports / harbors • Lifelines • Organizational Issues • Socio-economic national earthquake hazards reduction program “Ring of Fire” Nazca Plate national earthquake hazards reduction program World’s Largest Earthquakes No Rank Year Location Name Magnitude 1 1 1960 Valdivia, Chile 1960 Valdivia earthquake 9.5 2 2 1964 Prince William Sound, USA 1964 Alaska earthquake 9.2 3 3 2004 Sumatra, Indonesia 2004 Indian Ocean earthquake 9.1 4 4 1952 Kamchatka, Russia Kamchatka earthquakes 9.0 5 4 1868 Arica, Chile (then Peru) 1868 Arica earthquake 9.0 6 4 1700 Cascadia subduction zone 1700 Cascadia earthquake 9.0 7 7 2010 Maule, Chile 2010 Chile earthquake 8.8 10 10 1965 Rat Islands, Alaska, USA 1965 Rat Islands earthquake 8.7 11 10 1755 Lisbon, Portugal 1755 Lisbon earthquake 8.7 12 10 1730 Valparaiso, Chile 1730 Valparaiso earthquake 8.7 13 13 2005 Sumatra, Indonesia 2005 Sumatra earthquake 8.6 16 16 2007 Sumatra, Indonesia September 2007 Sumatra earthquakes 8.5 20 16 1922 Atacama Region, Chile 1922 Vallenar earthquake 8.5 21 16 1751 Concepción, Chile 1751 Concepción earthquake 8.5 22 16 1687 Lima, Peru 1687 Peru earthquake 8.5 23 16 1575 Valdivia, Chile 1575 Valdivia earthquake 8.5 national earthquake hazards reduction program Event Summary • The February 27th, 2010 magnitude 8.8 offshore Maule Chile earthquake is one of the 5 largest earthquakes ever recorded.
    [Show full text]
  • Indian Journal of Geo Marine Sciences Vol
    Indian Journal of Geo Marine Sciences Vol. 46 (11), November 2017, pp. 2273-2285 The 27 February 2010 Maule, Chile tsunami: initial height and propagation from uniform and non-uniform fault slip models Ergin Ulutaş* *Department of Geophysical Engineering, Kocaeli University, Kocaeli, Turkey [E-mail: [email protected]] Received 28 January 2015 ; revised 22 August 2016 The 27 February 2010 Maule (Chile) tsunami was numerically modeled using the SWAN (Simulating WAves Near-Shore) code which solves the non-linear long wave equations of fluid flow by a finite difference algorithm. The computational area is divided into two computational domains with a grid of 2 arc min and 0.5 arc min. Bathymetry data for the domains are interpolated from the General Bathymetry Chart of the Ocean (GEBCO) 30 arc-seconds grid data. Results from uniform and non-uniform slip models are compared with available tide gauges and Deep-ocean Assessment and Reporting of Tsunami (DART) buoy records. [Keywords: Tsunami simulation, shallow water theory, finite fault model, slip distribution] Introduction mm/year2,12,13. The contact between these two A massive earthquake (Mw 8.8) struck Chile plates is also the source of accompanying on 27 February, 2010. The earthquake was the tsunamis with very large earthquakes, depths sixth largest instrumentally recorded earthquake ranging between 15 and 50 km, known as in history and the largest in the region after the interplate, thrust events13,14,15. Coastal and earthquake of 22 May 1960 with a magnitude of offshore earthquakes of magnitude greater than 9.5. Epicenter was located at 72.733o W, 35.909o 7.5 normally generate severe tsunamis along the S o.
    [Show full text]
  • The Magnitude 8.8 Offshore Maule Region Chile Earthquake of February 27, 2010
    THE MAGNITUDE 8.8 OFFSHORE MAULE REGION CHILE EARTHQUAKE OF FEBRUARY 27, 2010 PRELIMINARY SUMMARY OF DAMAGE AND ENGINEERING RECOMMENDATIONS A Report to the World Bank by PETER I. YANEV - FRANCISCO MEDINA - ALEXANDER P. YANEV April 18, 2010 Rev. 01: 07/07/10 Cover: Torre O’Higgins office building in Concepción. Back Cover: Constitución. The Magnitude 8.8 Offshore Maule Region, Chile Earthquake CONTENTS Acknowledgments, iv Executive Summary, v Prologue (by V.V. Bertero), vii 1. Background and Summary of the Investigation .......................................................... 1 2. General Engineering Observations.............................................................................. 3 3. Detailed Engineering Observations............................................................................. 4 3.1. Effects of the earthquake duration on building performance, 4 3.2. Effects of soil conditions on building performance, 5 3.3. Ground motion records, 6 3.4. Low-rise buildings (up to 4 stories), 6 Old and non-engineered buildings Engineered confined-masonry buildings Post-1950 buildings Steel-framed buildings Tsunami effects to buildings 3.5. Mid-rise and high-rise buildings (over 4 stories), 13 Damage to shear wall buildings Damage to exterior building cladding Damage to unusual architectural exterior details 3.6. Interior architectural and equipment damage, 20 3.7. Other structures, 23 Hospitals Historic public buildings 3.8. Infrastructure, 25 Santiago International Airport Santiago Metropolitan Train Transportation infrastructure
    [Show full text]
  • Ciudades, Pueblos, Aldeas Y Caseríos 2019
    CIUDADES, PUEBLOS, ALDEAS Y CASERÍOS 2019 INSTITUTO NACIONAL DE ESTADÍSTICAS Marzo / 2019 PRESENTACIÓN El Instituto Nacional de Estadísticas (INE) da a conocer en esta publicación la edición actualizada de “Ciudades, pueblos, aldeas y caseríos”, tomando como base la información del Censo de Población y de Vivienda, realizado el 19 de abril de 2017. Consciente de la importancia de la planificación regional, provincial y comunal, el INE aporta en este documento datos pertinentes sobre las ciudades, pueblos, aldeas, caseríos, seleccionando las variables esenciales que caracterizan su población y vivienda. Así, este texto entrega cifras actualizadas, datos de población desagregados por sexo, recuentos sobre viviendas particulares, superficie de ciudades y pueblos del país y recientes modificaciones. Esta publicación marca, además, un hito en las definiciones geográficas del INE, ya que en ella se presenta la nueva conceptualización de ciudad, en la que se consideran las características político- administrativas de la categorización. Los antecedentes aquí desplegados quedan a disposición de instituciones públicas y privadas, consultoras, estudiantes, profesionales y usuarios en general. 2 CONSIDERACIONES CONCEPTUALES División geográfica censal: El territorio comunal se divide en distritos, los que pueden ser urbanos, rurales o mixtos. A su vez, en el área urbana se reconocen zonas censales y en el área rural, localidades. Las zonas censales se componen de manzanas y las localidades, de entidades, las que también tienen sus propias categorías. Los límites censales los define el INE y se encuentran sostenidos y enmarcados en los límites de la división político-administrativa (DPA). Sin embargo, su trazado no reviste un carácter legal. División geográfica censal Fuente: elaboración propia.
    [Show full text]
  • Reconstruction in Chile Post 2010 Earthquake.Pdf
    ReBuilDD Field Trip September 2011 RECONSTRUCTION IN CHILE POST 2010 EARTHQUAKE Stephen Platt Rebuilding, Cerro Centinela, Talcahuano, Concepción, Chile UNIVERSITY OF ImageCat CAMBRIDGE CAR Field Trip to Chile, September 2011 i Published by Cambridge Architectural Research Ltd. CURBE was established in 1997 to create a structure for interdisciplinary collaboration for disaster and risk research and application. Projects link the skills and expertise from distinct disciplines to understand and resolve disaster and risk issues, particularly related to reducing detrimental impacts of disasters. CURBE is based at the Martin Centre within the Department of Architecture at the University of Cambridge. About the research This report is one of a number of outputs from a research project funded by the UK Engineering and Physical Sciences Research Council (EPSRC), entitled Indicators for Measuring, Monitoring and Evaluating Post-Disaster Recovery. The overall aim of the research is to develop indicators of recovery by exploiting the wealth of data now available, including that from satellite imagery, internet-based statistics and advanced field survey techniques. The specific aim of this trip report is to describe the planning process after major disaster with a view to understanding the information needs of planners. Project team The project team has included Michael Ramage, Dr Emily So, Dr Torwong Chenvidyakarn and Daniel Brown, CURBE, University of Cambridge Ltd; Professor Robin Spence, Dr Stephen Platt and Dr Keiko Saito, Cambridge Architectural Research; Dr Beverley Adams and Dr John Bevington, ImageCat. Inc; Dr Ratana Chuenpagdee, University of Newfoundland who led the fieldwork team in Thailand; and Professor Amir Khan, University of Peshawar who led the fieldwork team in Pakistan.
    [Show full text]
  • Dichato: Las Promesas Y Los Costos De La Reconstrucción Chilena
    Universidad de Chile Instituto de la Comunicación e Imagen Escuela de Periodismo Dichato: Las promesas y los costos de la reconstrucción chilena. Memoria para optar al título de periodista Tesistas: Kimberly Hepp Ahumada Carolina Roco Ramírez Profesora guía: Ximena Poo Ahumada Santiago de Chile, 2013 1 AGRADECIMIENTOS KIMBERLY HEPP Primero agradecer a mi familia, que me dio las herramientas para lograr una nueva meta en mi vida. Mario, Jenny y Karl, mil gracias por estar siempre a mi lado y creer en este proyecto. A mi compañera de tesis, Carolina, quien también confió en mí y se transformó en un apoyo fundamental para terminar esta crónica. Su tranquilidad, organización y amistad hicieron que este trabajo se transformara en algo muy querido. A mi equipo del Buenos Días a Todos, quienes con paciencia y solidaridad me permitieron desarrollar el tema. A los profesores del ICEI, quienes durante cinco años me dieron las herramientas para llevar a cabo este último gran trabajo, especialmente a Ximena Póo. CAROLINA ROCO A mi familia, sobretodo a mis padres y hermano que me dieron alas para volar hasta acá y me incitaron a creer siempre en mi. A mis abuelos, porque el esfuerzo de su pasado ha permitido mi presente. A la que fue mi gran mi compañera y amiga durante todo este viaje, Kim. Su fortaleza y cariño fueron pilares fundamentales para el desarrollo de este trabajo. A las amigas de siempre, a nuestra profesora guía, Ximena Póo, y a todos los que caminaron conmigo durante todo este proceso. 2 Índice Agradecimientos…………………………………………….................……….……….2
    [Show full text]
  • The Chile Earthquake Database – Ground Motion and Building Performance Data from the 2010 Chile Earthquake – User Manual
    NIST GCR 15-1008 NIST Disaster and Failure Studies Data Repository: The Chile Earthquake Database – Ground Motion and Building Performance Data from the 2010 Chile Earthquake – User Manual Ann Christine Catlin Santiago Pujol This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.GCR.15-1008 NIST GCR 15-1008 NIST Disaster and Failure Studies Data Repository: The Chile Earthquake Database – Ground Motion and Building Performance Data from the 2010 Chile Earthquake – User Manual Prepared for Long Phan Engineering Laboratory National Institute of Standards and Technology Gaithersburg, MD By Ann Christine Catlin Santiago Pujol Purdue University This publication is available free of charge from: http://dx.doi.org/10.6028/NIST.GCR.15-1008 December 2015 U.S. Department of Commerce Penny Pritzker, Secretary National Institute of Standards and Technology Willie E. May, Under Secretary of Commerce for Standards and Technology and Director NIST Disaster and Failure Studies Data Repository The Chile Earthquake Database Ground Motion and Building Performance Data from the 2010 Chile Earthquake User Manual i TABLE OF CONTENTS 1.0 Introduction to the Chile Earthquake Database .............................................................................1 2. Getting Started ..............................................................................................................................2 3. Data Collection and Organization ....................................................................................................3
    [Show full text]
  • The February 27, 2010 Chile Earthquake
    The February 27, 2010 Chile Earthquake Roberto Leon School of Civil and Environmental Engineering Georgia Tech Atlanta, GA 30332-0355 Importance of this Event • 3rd largest earthquake in modern times – best proof of where our infrastructure is at. • Building codes in Chile are very similar to the USA (ACI, AISC, etc.) – what works and what does not? • Well-developed economy – direct and indirect losses can be translated to USA. • Design earthquake or above? • Human losses (about 450 deaths) and direct economic losses (up to $30B) – can this be translated to Seattle? A Brief Description of Chile Area = 292,183 square miles Population = 17.0 million GDP (PPP) = $14,529 (43rd) Capital: Santiago (about 5.5 million) Main cities: Valparaiso (0.8 million) Concepcion ( 0.66 million) • Strong economic2000 growth x 150 miles over the past 15 years – best in Latin America • Most important exports are minerals and agricultural products • Strong democracy following long military dictatorship • Excellent health and education infrastructure Long, narrow territory = lack of alternate paths for all communications and services ww.mapsofworld.com Pacific Rim of Fire Vancouver Seattle Portland 4 SUBDUCTION PLATE INTERACTION Marine Andes mountain West trench Coastline East range Pacific Ocean Nazca Plate South American Plate Intraplate (medium depth) Intraplate (low depth - volcanic) Interplate (Benioff Zone ) 1994 Bolivia Earthquake (Ms = 8.2; depth = 600 km Redrawn after R. Saragoni ( U. of Chile) 5 SUBDUCTION ZONE 2.5 cm./year South American Name Ms 15.6 cm./year plate 1985 Santiago 8.0 Nazca plate 1995 Antofagasta 8.0 1906 Valparaíso 8.2 1943 Coquimbo 8.2 1922 Vallenar 8.5 5.9 cm./year 2010 Maule 8.8 1960 Valdivia 9.5 One major earthquake about every 15 years! Redrawn after R.
    [Show full text]