A Systematic Analysis of Test-Based Model-Scale Icebreaking Patterns

Total Page:16

File Type:pdf, Size:1020Kb

A Systematic Analysis of Test-Based Model-Scale Icebreaking Patterns Aaron Tam A systematic analysis of test-based model-scale icebreaking patterns Master’s Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Technology Espoo 31.08.2019 Supervisor: Professor Pentti Kujala Director: Professor Pentti Kujala Aalto-yliopisto, PL 11000, 00076 AALTO www.aalto.fi Diplomityön tiivistelmä Author Aaron Tam Title of thesis A systematic analysis of test-based model-scale icebreaking patterns Master program Cold Climate Engineering Code ENG25 Thesis supervisor(s) Professor Pentti Kujala Thesis advisor(s) Knut Høyland Fang Li Date 31.08.2019 Number of pages 143 Language English Abstract The study of icebreaking patterns has been sparsely studied over the course of the past half century. Various methods have been developed primarily to approximate the size of the resultant cusps and general inferences from the observations of the cusps and relating properties. The objective of this work aims to compile the current state of the art in this field and perform model tests focusing on icebreaking pattern. The resultant cusps of the tests were recorded, measured, compiled, statisti- cally fit, and analyzed in works with comparing to currently available approximation methods as well as revisit any current theories regarding the nature of icebreaking pattern and its scalability. The cusps and patterns formed from model tests from the Azipod-version model of the MT Uikku at slow speeds were used for the comparison and analysis. The tests show primarily the confirma- tion of most current theories with an exception to one criterion regarding elasticity, promoted po- tential prospects for scaling, and found greater accuracy from theoretical and full-scale based ap- proximation methods as opposed to model scale prediction methods. Keywords model testing in ice, icebreaking pattern, ice cusps Acknowledgements I sent my warm thanks to Aalto University, the Norwegian University of Science and Technology, and the Nordic Master’s Cold Climate Engineering Program for allowing me to study and pursue educational and scholarly development in this field. I would like to thank my supervisor, Pentti Kujala for the opportunity for me to pursue this study and all the corresponding experimental work involved, and Knut Høyland for his guidance and input throughout the course of the study. I am very thankful for the guidance by my thesis advisor, Fang Li, for assisting me throughout the span of this endeavor in the theoretical, experimental, and analytical work involved. My gratitude extends also to the Aalto University Ice Tank Manager, Otto Puolakka, and the Aalto Ice Tank Lab Technicians, Teemu Päivärinta and Lasse Turja for all their help in making the model tests possible and converting the data from the instrumentation. Ad- ditionally, I send my thanks to all my colleagues at the Aalto University Ice Tank for their assistance and input throughout the course of my work. Lastly, I would like to express my thanks to all my friends and family for all their love and support throughout the course of my studies. Espoo, August 2019 Aaron Aaron Tam Table of Contents Abstract Acknowledgements 1 Introduction ......................................................................................................................... 1 1.1 Introduction of icebreaking patterns ....................................................................... 1 1.2 Research Questions ................................................................................................. 1 2 State of the Art and Theory ................................................................................................. 3 2.1 Icebreaking pattern definition ................................................................................. 3 2.1.1 Scalability of Cusps ......................................................................................... 4 2.1.2 Icebreaking Pattern .......................................................................................... 8 2.1.3 Thickness Dependency .................................................................................. 13 2.1.4 Speed Dependency ......................................................................................... 14 2.1.5 Load Length Dependency .............................................................................. 16 2.2 Methods of Approximation ................................................................................... 18 2.2.1 Statistical – McKindra and Lutton’s Bay Class Fit (1981) ............................ 18 2.2.2 Statistical – Izumiyama’s Cone Circles (1992) ............................................. 20 2.2.3 Semi-Empirical – Kostras’s Semi-Ellipse (1983) .......................................... 21 2.2.3.1 Applied Numerical Model – Liu et al (2006) ......................................... 22 2.2.4 Semi-Empirical – Tatinclaux’s Shapes (1985) .............................................. 23 2.2.5 Semi-Empirical – Wang’s Circles (2001) ...................................................... 24 2.2.5.1 Applied Numerical Model – Su (2011) .................................................. 25 2.2.6 Theoretical – Nevel’s Elastically Founded Semi-Inf Plate (1958) ................ 25 2.2.6.1 Modified Nevel – Lubbad and Løset’s Radial Wedges (2011) .............. 27 2.2.6.2 Modified Nevel – Li’s Discretized Wedges (2019) ............................... 28 2.2.7 Theoretical – Erceg’s Discretized Beams (2015) .......................................... 31 2.2.8 Numerical – Valanto’s 3D Hydrodynamic Solution (2001) .......................... 32 2.2.9 Numerical – Sawamura FEM Solution (2008) .............................................. 33 2.2.10 Numerical – Summary of Methiod ................................................................ 34 2.3 Model Testing in Ice ............................................................................................. 35 3 Method .............................................................................................................................. 38 3.1 Aalto Ice Tank ....................................................................................................... 38 3.2 MT Uikku Testing ................................................................................................. 40 3.2.1 Past MT Uikku Tests ...................................................................................... 41 3.2.2 Experiment Preparations ................................................................................ 42 3.2.3 Model Tank Testing ....................................................................................... 44 3.3 Digital Processing ................................................................................................. 46 3.3.1 Video Processing ........................................................................................... 46 3.3.2 Image Processing ........................................................................................... 47 3.4 Prediction Methods ............................................................................................... 49 3.4.1 Statistical Prediction ...................................................................................... 50 3.4.2 Analytical Prediction ..................................................................................... 51 3.4.3 Theoretical Prediction .................................................................................... 52 3.4.4 Dimension Conversion .................................................................................. 55 4 Results and Discussions .................................................................................................... 57 4.1 Results and Observations ...................................................................................... 57 4.2 Single vs Multiple Contact .................................................................................... 58 4.3 Prediction Method Comparison ............................................................................ 61 4.4 Scalability .............................................................................................................. 69 4.5 Icebreaking Pattern ................................................................................................ 70 4.6 Distribution Fitting ................................................................................................ 72 5 Conclusion ........................................................................................................................ 75 6 Bibliography ..................................................................................................................... 78 7 List of Appendices ............................................................................................................ 81 Appendix A - Cusp Data Table .......................................................................................... A-1 Appendix A.1 V=0.162m/s Single Contact Cusp Data ............................................... A-2 Appendix A.2 V=0.162m/s Multiple Contact Cusp Data ......................................... A-10 Appendix A.3 V=0.270m/s Single Contact Cusp Data ............................................. A-14 Appendix A.4 V=0.270m/s Multiple Contact Cusp Data ......................................... A-22 Appendix B - Icebreaking Pattern Photographs ................................................................ B-1 Appendix C - Distributions and Histograms .....................................................................
Recommended publications
  • Transits of the Northwest Passage to End of the 2019 Navigation Season Atlantic Ocean ↔ Arctic Ocean ↔ Pacific Ocean
    TRANSITS OF THE NORTHWEST PASSAGE TO END OF THE 2019 NAVIGATION SEASON ATLANTIC OCEAN ↔ ARCTIC OCEAN ↔ PACIFIC OCEAN R. K. Headland and colleagues 12 December 2019 Scott Polar Research Institute, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1ER. <[email protected]> The earliest traverse of the Northwest Passage was completed in 1853 but used sledges over the sea ice of the central part of Parry Channel. Subsequently the following 314 complete maritime transits of the Northwest Passage have been made to the end of the 2019 navigation season, before winter began and the passage froze. These transits proceed to or from the Atlantic Ocean (Labrador Sea) in or out of the eastern approaches to the Canadian Arctic archipelago (Lancaster Sound or Foxe Basin) then the western approaches (McClure Strait or Amundsen Gulf), across the Beaufort Sea and Chukchi Sea of the Arctic Ocean, through the Bering Strait, from or to the Bering Sea of the Pacific Ocean. The Arctic Circle is crossed near the beginning and the end of all transits except those to or from the central or northern coast of west Greenland. The routes and directions are indicated. Details of submarine transits are not included because only two have been reported (1960 USS Sea Dragon, Capt. George Peabody Steele, westbound on route 1 and 1962 USS Skate, Capt. Joseph Lawrence Skoog, eastbound on route 1). Seven routes have been used for transits of the Northwest Passage with some minor variations (for example through Pond Inlet and Navy Board Inlet) and two composite courses in summers when ice was minimal (transits 149 and 167).
    [Show full text]
  • Canadian Coast Guard Arctic Operations Julie Gascon - Assistant Commissioner Canadian Coast Guard, Central & Arctic Region
    Unclassified Canadian Coast Guard Arctic Operations Julie Gascon - Assistant Commissioner Canadian Coast Guard, Central & Arctic Region Naval Association of Canada Ottawa, ON May 1, 2017 1 Canadian Coast Guard (CCG): Who We Are and What We Do Operating as Canada’s only Deliver programs and services to the national civilian fleet, we population to ensure safe and accessible provide a wide variety of waterways and to facilitate maritime programs and services to commerce; the population and to the maritime industry on important levels: Provide vessels and helicopters to enable fisheries enforcement activities, and the on-water science research for Fisheries and Oceans Canada and other science departments; and Support maritime security activities. 2 Canadian Coast Guard: Regional Boundaries • Western Region: Pacific Ocean, Great Slave Lake, Mackenzie River and Lake Winnipeg • Central & Arctic Region: Hudson Bay, Great Lakes, St. Lawrence River, Gulf of St. Lawrence (Northern Area), and Arctic Ocean • Atlantic Region : Atlantic Ocean, Gulf of St. Lawrence (Southern Area), and Bay of Fundy 3 Central and Arctic Region: Fact Sheet The Central and Arctic Region covers: - St. Lawrence River, Gulf of St. Lawrence (Northern Area), Great Lakes, Hudson Bay and the Arctic coast up to Alaska - Population of approx 21.5 million inhabitants - Nearly 3,000,000 km2 of water area • A regional office and 10 operational bases • 39 vessels • 15 SAR lifeboat stations • 12 inshore rescue stations • air cushion vehicles 2 Nunavut • 8 helicopters • 4,627 floating aids • 2,191 fixed aids • 5 MCTS centres Quebec Ontario Quebec Base Montreal, Quebec Sarnia Office 4 Presentation Overview The purpose of this presentation is to: 1.
    [Show full text]
  • Arctic Marine Transport Workshop 28-30 September 2004
    Arctic Marine Transport Workshop 28-30 September 2004 Institute of the North • U.S. Arctic Research Commission • International Arctic Science Committee Arctic Ocean Marine Routes This map is a general portrayal of the major Arctic marine routes shown from the perspective of Bering Strait looking northward. The official Northern Sea Route encompasses all routes across the Russian Arctic coastal seas from Kara Gate (at the southern tip of Novaya Zemlya) to Bering Strait. The Northwest Passage is the name given to the marine routes between the Atlantic and Pacific oceans along the northern coast of North America that span the straits and sounds of the Canadian Arctic Archipelago. Three historic polar voyages in the Central Arctic Ocean are indicated: the first surface shop voyage to the North Pole by the Soviet nuclear icebreaker Arktika in August 1977; the tourist voyage of the Soviet nuclear icebreaker Sovetsky Soyuz across the Arctic Ocean in August 1991; and, the historic scientific (Arctic) transect by the polar icebreakers Polar Sea (U.S.) and Louis S. St-Laurent (Canada) during July and August 1994. Shown is the ice edge for 16 September 2004 (near the minimum extent of Arctic sea ice for 2004) as determined by satellite passive microwave sensors. Noted are ice-free coastal seas along the entire Russian Arctic and a large, ice-free area that extends 300 nautical miles north of the Alaskan coast. The ice edge is also shown to have retreated to a position north of Svalbard. The front cover shows the summer minimum extent of Arctic sea ice on 16 September 2002.
    [Show full text]
  • Transits of the Northwest Passage to End of the 2020 Navigation Season Atlantic Ocean ↔ Arctic Ocean ↔ Pacific Ocean
    TRANSITS OF THE NORTHWEST PASSAGE TO END OF THE 2020 NAVIGATION SEASON ATLANTIC OCEAN ↔ ARCTIC OCEAN ↔ PACIFIC OCEAN R. K. Headland and colleagues 7 April 2021 Scott Polar Research Institute, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1ER. <[email protected]> The earliest traverse of the Northwest Passage was completed in 1853 starting in the Pacific Ocean to reach the Atlantic Oceam, but used sledges over the sea ice of the central part of Parry Channel. Subsequently the following 319 complete maritime transits of the Northwest Passage have been made to the end of the 2020 navigation season, before winter began and the passage froze. These transits proceed to or from the Atlantic Ocean (Labrador Sea) in or out of the eastern approaches to the Canadian Arctic archipelago (Lancaster Sound or Foxe Basin) then the western approaches (McClure Strait or Amundsen Gulf), across the Beaufort Sea and Chukchi Sea of the Arctic Ocean, through the Bering Strait, from or to the Bering Sea of the Pacific Ocean. The Arctic Circle is crossed near the beginning and the end of all transits except those to or from the central or northern coast of west Greenland. The routes and directions are indicated. Details of submarine transits are not included because only two have been reported (1960 USS Sea Dragon, Capt. George Peabody Steele, westbound on route 1 and 1962 USS Skate, Capt. Joseph Lawrence Skoog, eastbound on route 1). Seven routes have been used for transits of the Northwest Passage with some minor variations (for example through Pond Inlet and Navy Board Inlet) and two composite courses in summers when ice was minimal (marked ‘cp’).
    [Show full text]
  • CCGS Terry Fox 88M Heavy Icebreaker
    CCGS Terry Fox 88m Heavy Icebreaker Bottom Damage OUTLINE SCOPE OF WORK - Revision 1 Doc. No. 13-106-001 2013-07-31 Prepared For: Canadian Coast Guard Department of Fisheries and Oceans P.O. Box 5667 St. John's, NL A1C 5X1 Prepared By: Poseidon Marine Consultants Ltd. 391 Stavanger Drive St. John's, NL A1A 0A1 CCGS TERRY FOX BOTTOM DAMAGE Rev 1 OUTLINE SCOPE OF WORK REVISION INFORMATION Rev Date Description Prepared Checked Approved 1 2013-07-31 Issued to Owner's rep. and DDD - TCMS. 0 2013-07-29 Issued to Owner's rep. and DDD RSR TCMS for review and comment. _____________________________________________________________________________ Doc. No. 13-106-001 ii CCGS TERRY FOX BOTTOM DAMAGE Rev 1 OUTLINE SCOPE OF WORK TABLE OF CONTENTS 1.0 PURPOSE 2.0 REFERENCE DOCUMENTS 3.0 VESSEL DETAILS 4.0 DEFINITIONS AND ABBREVIATIONS 5.0 PROJECT OVERVIEW 6.0 CONTRACTOR SCOPE OF WORK 7.0 GENERAL NOTES 8.0 QUOTATION 9.0 APPENDIX A - PHOTOGRAPHS 10.0 APPENDIX B - REFERENCE SKETCHES 11.0 APPENDIX C - VESSEL DRAWINGS _____________________________________________________________________________ Doc. No. 13-106-001 iii CCGS TERRY FOX BOTTOM DAMAGE Rev 1 OUTLINE SCOPE OF WORK 1.0 PURPOSE This document is intended to describe the general scope of work associated with steel renewals on the subject vessel, as described in Section 6.0 below. 2.0 REFERENCE DOCUMENTS • See Appendix A for photographs • See Appendix B for reference sketches • See Appendix C for vessel drawings: - General Arrangement - Tank Capacity - Shell Expansion NOTE: supplied as separate documents due to file size 3.0 VESSEL DETAILS Length: 88.0m Breadth: 17.5m Depth: 10.0m Gross Tonnage: 4233.71t Official #: 803579 Frame Spacing (in way of 500mm damage) 4.0 DEFINITIONS AND ABBREVIATIONS PMC Poseidon Marine Consultants Ltd.
    [Show full text]
  • The Roland Von Glasow Air-Sea-Ice Chamber (Rvg-ASIC)
    https://doi.org/10.5194/amt-2020-392 Preprint. Discussion started: 14 October 2020 c Author(s) 2020. CC BY 4.0 License. The Roland von Glasow Air-Sea-Ice Chamber (RvG-ASIC): an experimental facility for studying ocean/sea-ice/atmosphere interactions Max Thomas1, James France1,2,3, Odile Crabeck1, Benjamin Hall4, Verena Hof5, Dirk Notz5,6, Tokoloho Rampai4, Leif Riemenschneider5, Oliver Tooth1, Mathilde Tranter1, and Jan Kaiser1 1Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, UK, NR4 7TJ 2British Antarctic Survey, Natural Environment Research Council, Cambridge CB3 0ET, UK 3Department of Earth Sciences, Royal Holloway, University of London, Egham TW20 0EX, UK 4Chemical Engineering Deptartment, University of Cape Town, South Africa 5Max Planck Institute for Meteorology, Hamburg, Germany 6Center for Earth System Research and Sustainability (CEN), University of Hamburg, Germany Correspondence: Jan Kaiser ([email protected]) Abstract. Sea ice is difficult, expensive, and potentially dangerous to observe in nature. The remoteness of the Arctic and Southern Oceans complicates sampling logistics, while the heterogeneous nature of sea ice and rapidly changing environmental conditions present challenges for conducting process studies. Here, we describe the Roland von Glasow Air-Sea-Ice Chamber (RvG-ASIC), a laboratory facility designed to reproduce polar processes and overcome some of these challenges. The RvG- 5 ASIC is an open-topped 3.5 m3 glass tank housed in a coldroom (temperature range: -55 to +30 oC). The RvG-ASIC is equipped with a wide suite of instruments for ocean, sea ice, and atmospheric measurements, as well as visible and UV lighting.
    [Show full text]
  • Structural Challenges Faced by Arctic Ships
    NTIS # PB2011- SSC-461 STRUCTURAL CHALLENGES FACED BY ARCTIC SHIPS This document has been approved For public release and sale; its Distribution is unlimited SHIP STRUCTURE COMMITTEE 2011 Ship Structure Committee RADM P.F. Zukunft RDML Thomas Eccles U. S. Coast Guard Assistant Commandant, Chief Engineer and Deputy Commander Assistant Commandant for Marine Safety, Security For Naval Systems Engineering (SEA05) and Stewardship Co-Chair, Ship Structure Committee Co-Chair, Ship Structure Committee Mr. H. Paul Cojeen Dr. Roger Basu Society of Naval Architects and Marine Engineers Senior Vice President American Bureau of Shipping Mr. Christopher McMahon Mr. Victor Santos Pedro Director, Office of Ship Construction Director Design, Equipment and Boating Safety, Maritime Administration Marine Safety, Transport Canada Mr. Kevin Baetsen Dr. Neil Pegg Director of Engineering Group Leader - Structural Mechanics Military Sealift Command Defence Research & Development Canada - Atlantic Mr. Jeffrey Lantz, Mr. Edward Godfrey Commercial Regulations and Standards for the Director, Structural Integrity and Performance Division Assistant Commandant for Marine Safety, Security and Stewardship Dr. John Pazik Mr. Jeffery Orner Director, Ship Systems and Engineering Research Deputy Assistant Commandant for Engineering and Division Logistics SHIP STRUCTURE SUB-COMMITTEE AMERICAN BUREAU OF SHIPPING (ABS) DEFENCE RESEARCH & DEVELOPMENT CANADA ATLANTIC Mr. Craig Bone Dr. David Stredulinsky Mr. Phil Rynn Mr. John Porter Mr. Tom Ingram MARITIME ADMINISTRATION (MARAD) MILITARY SEALIFT COMMAND (MSC) Mr. Chao Lin Mr. Michael W. Touma Mr. Richard Sonnenschein Mr. Jitesh Kerai NAVY/ONR / NAVSEA/ NSWCCD TRANSPORT CANADA Mr. David Qualley / Dr. Paul Hess Natasa Kozarski Mr. Erik Rasmussen / Dr. Roshdy Barsoum Luc Tremblay Mr. Nat Nappi, Jr. Mr.
    [Show full text]
  • Ice Trials in Antarctica • New Rules on the Northern Sea Route • Processing Barge to the Arctic • Equipment for the Navy in This Issue
    Arctic Passion News No. 1 | 2020 | issue 19 • Ice trials in Antarctica • New rules on the Northern Sea Route • Processing barge to the Arctic • Equipment for the Navy In this issue Page 4 Page 8 Page 11 Page 16 New rules on the Northern Xue Long 2 in Equipment for the Navy Barge for mining project Sea Route ice trials Table of contents From the Managing Director.................................. 3 Front cover New regime and regulations on the NSR...............4 Sami Saarinen spent six weeks travelling to Antarctica Xue Long 2 in successful ice trials.......................... 8 and back, onboard both of China’s icebreakers Xue Equipment for Navy corvettes.......................... ….11 Long and Xue Long 2. Read about his voyage and Safe and reliable shipping of crude oil................. 12 Xue Long 2’s ice trials on page 8. Feasibility study for Qilak LNG.........................….14 Aalto Ice Tank opens.............................................15 Contact details Pavlovskoe mining project.....................................16 AKER ARCTIC TECHNOLOGY INC Reducing ice friction since 1969 ...........................18 Merenkulkijankatu 6, FI-00980 HELSINKI Active Heeling systems.........................................20 Tel.: +358 10 323 6300 News in brief.........................................................21 www.akerarctic.fi Announcements....................................................23 Study tour to Gothenburg.....................................24 Join our subscription list Our services Please send your message to www.akerarctic.fi
    [Show full text]
  • The Coast Guard in Canada's Arctic
    SENATE SÉNAT CANADA THE COAST GUARD IN CANADA’S ARCTIC: INTERIM REPORT STANDING SENATE COMMITTEE ON FISHERIES AND OCEANS FOURTH REPORT Chair The Honourable William Rompkey, P.C. Deputy Chair The Honourable Ethel Cochrane June 2008 Ce rapport est aussi disponible en français Available on the Parliamentary Internet: www.parl.gc.ca (Committee Business — Senate — Reports) 39th Parliament — 2nd Session TABLE OF CONTENTS Page ACRONYMS ......................................................................................................................... i FOREWORD ......................................................................................................................... ii CURRENT OPERATIONS ................................................................................................... 1 BACKDROP: A RAPIDLY CHANGING CIRCUMPOLAR ARCTIC.............................. 4 A. New Realities ................................................................................................................ 4 1. Climate Change and Receding Ice .............................................................................. 5 2. Other Developments ................................................................................................... 7 B. Sovereignty-Related Issues ........................................................................................... 10 1. Land ............................................................................................................................ 11 2. The Continental Shelf ................................................................................................
    [Show full text]
  • The Effect of Hydrodynamics on the Interaction Between Floating Structures and Flexible Ice Floes
    Delft University of Technology The effect of hydrodynamics on the interaction between floating structures and flexible ice floes A study based on potential theory Keijdener, Chris DOI 10.4233/uuid:a66b84b9-6c66-4c9c-a2e1-87163244ae07 Publication date 2019 Document Version Final published version Citation (APA) Keijdener, C. (2019). The effect of hydrodynamics on the interaction between floating structures and flexible ice floes: A study based on potential theory. https://doi.org/10.4233/uuid:a66b84b9-6c66-4c9c-a2e1- 87163244ae07 Important note To cite this publication, please use the final published version (if applicable). Please check the document version above. Copyright Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons. Takedown policy Please contact us and provide details if you believe this document breaches copyrights. We will remove access to the work immediately and investigate your claim. This work is downloaded from Delft University of Technology. For technical reasons the number of authors shown on this cover page is limited to a maximum of 10. THE EFFECT OF HYDRODYNAMICS ON THE INTERACTION BETWEEN FLOATING STRUCTURES AND FLEXIBLE ICE FLOES A STUDY BASED ON POTENTIAL THEORY THE EFFECT OF HYDRODYNAMICS ON THE INTERACTION BETWEEN FLOATING STRUCTURES AND FLEXIBLE ICE FLOES A STUDY BASED ON POTENTIAL THEORY Proefschrift ter verkrijging van de graad van doctor aan de Technische Universiteit Delft, op gezag van de Rector Magnificus prof.
    [Show full text]
  • Peer Review of the Finnish Shipbuilding Industry Peer Review of the Finnish Shipbuilding Industry
    PEER REVIEW OF THE FINNISH SHIPBUILDING INDUSTRY PEER REVIEW OF THE FINNISH SHIPBUILDING INDUSTRY FOREWORD This report was prepared under the Council Working Party on Shipbuilding (WP6) peer review process. The opinions expressed and the arguments employed herein do not necessarily reflect the official views of OECD member countries. The report will be made available on the WP6 website: http://www.oecd.org/sti/shipbuilding. This document and any map included herein are without prejudice to the status of or sovereignty over any territory, to the delimitation of international frontiers and boundaries and to the name of any territory, city or area. © OECD 2018; Cover photo: © Meyer Turku. You can copy, download or print OECD content for your own use, and you can include excerpts from OECD publications, databases and multimedia products in your own documents, presentations, blogs, websites and teaching materials, provided that suitable acknowledgment of OECD as source and copyright owner is given. All requests for commercial use and translation rights should be submitted to [email protected]. 2 PEER REVIEW OF THE FINNISH SHIPBUILDING INDUSTRY TABLE OF CONTENTS FOREWORD ................................................................................................................................................... 2 EXECUTIVE SUMMARY ............................................................................................................................. 4 PEER REVIEW OF THE FINNISH MARITIME INDUSTRY ....................................................................
    [Show full text]
  • Transits of the Northwest Passage to End of the 2016 Navigation Season Atlantic Ocean ↔ Arctic Ocean ↔ Pacific Ocean
    TRANSITS OF THE NORTHWEST PASSAGE TO END OF THE 2016 NAVIGATION SEASON ATLANTIC OCEAN ↔ ARCTIC OCEAN ↔ PACIFIC OCEAN R. K. Headland revised 14 November 2016 Scott Polar Research Institute, University of Cambridge, Lensfield Road, Cambridge, United Kingdom, CB2 1ER. The earliest traverse of the Northwest Passage was completed in 1853 but used sledges over the sea ice of the central part of Parry Channel. Subsequently the following 255 complete maritime transits of the Northwest Passage have been made to the end of the 2016 navigation season, before winter began and the passage froze. These transits proceed to or from the Atlantic Ocean (Labrador Sea) in or out of the eastern approaches to the Canadian Arctic archipelago (Lancaster Sound or Foxe Basin) then the western approaches (McClure Strait or Amundsen Gulf), across the Beaufort Sea and Chukchi Sea of the Arctic Ocean, from or to the Pacific Ocean (Bering Sea) through the Bering Strait. The Arctic Circle is crossed near the beginning and the end of all transits except those to or from the west coast of Greenland. The routes and directions are indicated. Details of submarine transits are not included because only two have been reported (1960 USS Sea Dragon, Capt. George Peabody Steele, westbound on route 1 and 1962 USS Skate, Capt. Joseph Lawrence Skoog, eastbound on route 1). Seven routes have been used for transits of the Northwest Passage with some minor variations (for example through Pond Inlet and Navy Board Inlet) and two composite courses in summers when ice was minimal (transits 154 and 171). These are shown on the map following, and proceed as follows: 1: Davis Strait, Lancaster Sound, Barrow Strait, Viscount Melville Sound, McClure Strait, Beaufort Sea, Chukchi Sea, Bering Strait.
    [Show full text]