PREDATOR INFLUENCES ON THE BEHAVIORAL ECOLOGY OF

DUSKY

ADissertation

by

MRIDULASRINIVASAN

SubmittedtotheOfficeofGraduateStudiesof TexasA&MUniversity inpartialfulfillmentoftherequirementsforthedegreeof

DOCTOROFPHILOSOPHY

May2009

MajorSubject:WildlifeandFisheriesSciences

PREDATOR INFLUENCES ON THE BEHAVIORAL ECOLOGY OF

DUSKY DOLPHINS

ADissertation

by

MRIDULASRINIVASAN

SubmittedtotheOfficeofGraduateStudiesof TexasA&MUniversity inpartialfulfillmentoftherequirementsforthedegreeof

DOCTOROFPHILOSOPHY

Approvedby: ChairofCommittee,BerndWürsig CommitteeMembers,WilliamGrant JanePackard X.BenWu HeadofDepartment,TomLacher

May2009

MajorSubject:WildlifeandFisheriesSciences

iii

ABSTRACT

PredatorInfluencesontheBehavioralEcologyofDuskyDolphins.

(May2009)

MridulaSrinivasan,B.Sc.(Honors),UniversityofDelhi,India;M.Sc.,Universityof

Delhi,India;M.S.,FloridaInstituteofTechnology

ChairofAdvisoryCommittee:Dr.BerndWürsig

Idevelopedaspatiallyexplicitindividualbasedmodel(IBM)tocapturethedynamic behavioralinteractionbetweenafiercepredator(killerwhale, Orcinus orca )andaclever prey(dusky, Lagenorhynchus obscurus ),andtoanswertheultimatequestionof costs vs. benefitsforduskydolphinswhenmakingantipredatordecisions.Specifically,I wasinterestedincalculatingtime/distancebudgetsforduskydolphinsinthe presence/absenceofkillerwhalesandthepresence/absenceofmovementandbehavioral rules,whichpresumablyevolvedinresponsetospatialandtemporalvariationsin predationrisk.Resultsrevealthatduskydolphinsrestless,travelmoreandhave reducedforagingtimewhenkillerwhalesarepresent.Theseeffectsaremore pronouncedwithincreasedpresenceofkillerwhales.Themodelsuggeststhatastrong reasonfavoringtheadoptionofshortandlongtermantipredatormechanismsis increasedsurvivalresultingfromdecreasedencounterswithkillerwhales.Further,a motherwithcalfrestslessandtravelsmorewhenkillerwhalesarepresentrelativetoa dolphinwithoutcalf.However,amotherwithcalfonaverage,fleeshorterdistancesand havefewerencounterswithkillerwhalesthanadolphinwithoutcalf.Thus,despite iv

ecologicalcosts,itmakesevolutionarysenseforduskydolphinstoadoptantipredator rules.Bioenergeticconsequencesforduskydolphinswithandwithoutcalfwere estimatedas total energetic costs and foraging calories lostduetolow/highpresenceof killerwhales.Icalculatedtotalenergycostsas:Foraging costs (FC) + Locomotor costs

(LC) (Travel) or LC (Travel) + LC (Flee) basedontheabsence,aswellaslow/high presenceofkillerwhales.Foragingcostscontributedsignificantlytototalenergeticcosts estimated.Travelcostsareminimalowingtoproximitytodeepwaters.Thetotalenergy costswerenotsignificantlyhigherfromloworhighpresenceofkillerwhalesformother withcalf,butincreasesbyabout90kcal/dayforaduskywithoutcalf.However,I estimateforagingcalorieslostduetoincreasedkillerwhalepresenceisalmost5times moreformotherwithcalf.Therefore,itmightbeimportanttoconsiderindirect predationriskeffectsbysocialtypeinfuturestudiesonanimalbioenergetics.

v

DEDICATION

Tothemostimportantpeopleinmylifewhomadethishappen…

Paati,Thatha,Amma,Appa,Chithi,Arvind,

andmostspeciallyKeikoandJolly

…and

ToLeonardoDaVinciandSirIsaacNewton

forinspiringmetobeastudentofscience

vi

ACKNOWLEDGMENTS

Adissertationresultsfromthecollaborationandsupportofmanypeople.Atthetopof mylistismygrandmother.Paatiwasthereformeduringtryingtimesandwasthevoice ofcomfortandencouragementthroughoutmyacademicandpersonalpursuits.Sheisno longerwithmetodayandImissherverymuchatthiscrucialjunctureinmylife.Ihope

Icancontinuemylifeandlearningwiththeresilienceandtemperamentshehasshown inhers.

Thisprojectwouldnothavebeenpossiblewithoutthequartetpowerofmy doctoralcommittee.ThankyouDr.JanePackardforchallengingmythoughtprocess andresearchfocuswithprobingquestionsandastuteanalyses.Iamgratefulforthe researchopportunitythispastyearandallthenewskillsIacquiredwhenworkingonthe

USDAandNSFprojects.Mostofall,thankyouforyourunendingsupportandfor motivatingmetobepracticalinachievingmyacademicandcareergoals.

Dr.BenWuintroducedmetotheworldoflandscapeecologyandspatial analysis.Hisaffablenature,insightfulreasoningandproblemsolvingskillsonissues beyondhistechnicalexpertisebenefittedmeimmenselythroughoutthedurationofmy doctoralstudies.

Dr.BillGrantisageniussystemsecologistandIamsogladthatItookhisclass.

Heopenedmyeyestosystemsmodelingandthewonderfulpossibilitiesitoffersto addresscomplexecologicalquestions.Thisprojectwouldnothavebeencompleted withouthismodeling,programming,andecologicalexpertise.Iaminspireddailybyhis

vii

wit,wisdom,andpassionforecologicalmodelingandgratefulforhissupportand encouragementduringmytimeatTexasA&M.

Dr.BerndWürsigisnotonlymyacademicsupervisoranddoctoralcommittee chair,butalsoagreathumanbeing,friend,mentor,andafirmcrutchtoleanonin almostanytryingcircumstance.Iamhumbledbyhisintellectualprowessandvast experienceinstudyingcetaceansandfeelveryfortunatetohavebeenhisstudent.He providedmethefreedomandfinancialsupporttoexploreachallengingproblemand negotiatethetwistsasIdelveddeeperintostudyingpredatorpreyinteractions.He providedmedirectionandguidance,andmostofall,keptmyspiritsupwiththose

‘sometimesbad’jokes(smiles).Heandhiswonderfulwife,Mel,havebeenabenefactor bothoffandonthefield.IcherishallthegoodtimesattheWürsigsandalwaysfeltthat itwasahomeawayfromhome.

Thereareseveralindividualswhohavebeeninstrumentalinthesuccessofmy doctoralwork.Hopefully,Ihavenotleftanyoneout,butapologiesifIdo.IthankDr.

BillEvansforhissageadviceandforsharinghisexperiencesworkingwithmarine mammals.Idearlycherishhisfriendshipandsupport.

IespeciallythankDennisBuurmanat Dolphin Encounter ,Kaikoura,New

ZealandwhowentoutofhiswaytosupportmyresearchworkinKaikoura.Heprovided valuabledataonduskydolphinsandkillerwhales.Iamgreatlyindebtedtohim,Ian

Bradshaw,LynetteBuurmanandthecrewfortheirfriendshipandsupport.Dennis

BuurmanandGaryMelvillealsoprovidedsharkdataandsharkchumforashortterm sharkstudy.Also,AlexThompsonat Dolphin Encounter providedmuchhelpingetting

viii

killerwhaledatasortedandorganized.Needlesstosay,theunerringsupportand assistanceprovidedby Dolphin Encounter staffandcrewisgreatlyappreciated.

SpecialthankstoVictorandColetteFosterforlettingmecomeontheirfishing boatandhelpingmewiththesharkstudy.Iamgratefulfortheirgenerosity,shark expertise,andthesupportoftheircrew.ThanksalsotoJodieWestandVictorFosterfor providingdatafromaprevioussharkstudy.

IthankClintonDuffyforallNewZealandsharkrelatedqueriesandfor respondingtomypersistentemails.IthankDr.RochelleConstantineforhersupportand feedbackonduskydolphinskillerwhaleinteractionsaswellaskillerwhalephotos.

ThankstoDr.IngridVisserforaccommodatingmeatherplaceandprovidingdusky dolphinandkillerwhaleinformation.

Dr.DaveEbert,Dr.MikeHeithaus,GretchenSteiger,andDr.JohnVandenHoff helpedsortandidentifysharkandkillerwhalerelatedduskydolphinscars,andIam verygratefulfortheirexpertiseandtimelyassistance.

NationalInstituteofAtmosphericResearch(NIWA)NewZealandprovided bathymetrydataforKaikouraandAdmiraltyBayregions.SpecialthankstoDr.Michael

UddstromatNIWAforlongandshorttermSeaSurfaceTemperaturedataforKaikoura andAdmiraltyBay.ThanksalsotoMurrayGreenandJohnHockingforhelpingwith boatmaintenanceandservicing.

AbigthankyoutoToddSwannack.Withouthisencouragement,Iwouldnot havefinishedmydissertationontime.Hismodelingassistanceandallroundexpertise withcomputersandstatisticswasmuchneededandwelcomed.Dr.MikeHeithausand

ix

Dr.TomTinkerprovidedvaluableguidancethathelpedtoimprovethemodelduringthe initialdevelopmentstages.

Iamparticularlygratefultoallmyfellowgraduatestudentsandresearch colleaguesattheMarineMammalResearchPrograminGalveston.Iwouldliketo especiallymentionAdrianDahoodwhowasalwaystheretolendahelpinghand regardlessofthemanypressingissuesshefaced.ThanksAdrianformakingtheDolphin

Encounterdataelectronic,foryourhumor,andforcountlessotherfavorsyouprovided withoutasking.IalsothankSierraDeutschforherimmeasurablesupportandJennifer

Bennettwhoprovidedfieldassistanceduringthe2007fieldseason.ThanksalsotoHeidi

Pearsonforherphotographytipsandacademicsupport.

Thisprojectwouldnotbepossiblewithoutthefinancialassistanceprovidedby

EarthwatchResearchInstituteandEarthwatchvolunteers.HatsofftoallEarthwatch volunteers.Theyrougheditoutintheheatandcoldtohelpcollectvaluabledata.Their supportofmarinemammalworkandtheenvironmentisgratifyingandpraiseworthy.

IthankStacieArms,ShirleyKonecny,andVickiBuckbeeforhandlingall administrativeissuesandmakingmylifeeasier,freeofpaperworkrelatedheadaches.

Shirley’scheerfulandgentlenaturealwaysmademyday.Shealwayshadasolutionto myinnumerablequestionsandproblems,andIwillalwaysthinkfondlyofher.

Financialassistancefortheprojectwasprovidedthroughmultiplesources, includingEarthwatch,NationalGeographic,WildlifeandFisheriesSciencesatTexas

A&MCollegeStation,DepartmentofMarineBiology,TexasA&MGalveston,Mooney

Grants,MiniGrants,GPEFandGraduateAssociationFundsGalvestonandCollege

x

Station,OfficeofGraduateStudies,W.B.DavisScholarship,Würsigspersonalfund, andspecifically,SWSS,USDA,andNSFforfundingmyresearchassistantshipsduring mydoctoraltenureatTexasA&MUniversity.

Iwouldliketothankmyfamilywhomadeallthisworthwhile.Withoutthe supportofmyparents,Icouldneverimaginepursuingaseeminglyunachievabledream tostudymarinemammals.Theirfaithinmeinspiresmeeveryday,andIknow,itwas theirprayersandwellwishesthathasledmethisfarandwillaidmeinthefuture.

Thanksforbeingthebestparentsintheworld.Icouldnothavedonethiswithoutyou.

Mybrother,Arvind,wasmyvoiceofreasonduringmyacademicandcareerdebacles, alwaystheretocomfortandencourageme.ChithiandThatha,thanksforbelievingin me.YourprayersandblessingskeptmegoingasIworkedonmydoctorate.

Andtothemostimportantmaninmylife,Jolly ☺.Thanksforgivingmethe happiestmomentsofmylife.Icouldnothaveaccomplishedthisdissertationwithout yourlove,warmth,comfort,andsacrifice.Youweremypillarofstrengthandinspiration asInegotiatedeverytwistandturninmyquestforadoctorate.Thankyouforbeing thereformeeverystepoftheway.

ThisacknowledgementwouldbeincompleteifIdidnotthankthemagnificent animalsthatarecoretomyresearchwork.Theabilityoftheseseamammalsto effectivelyadapttoachallengingenvironmentcontinuallyfascinatesme.These mammalsremainaninspirationtocontinuemystudyoftheirecologyandbehavior.

xi

TABLE OF CONTENTS

Page

ABSTRACT...... iii

DEDICATION ...... v

ACKNOWLEDGMENTS …………………………………………….…...………………...... vi

TABLEOFCONTENTS ...... xi

LISTOFFIGURES...... xiii

LISTOFTABLES ...... xviii

CHAPTER

IINTRODUCTION ...... 1

Predation–anoverview...... 1 Predationconceptsrevisited...... 3 Reexaminationofpredatoreffects...... 9 Predationriskindolphins...... 11 Researchobjectives...... 14 Overviewofchapters ...... 15 Importanceofresearch...... 15

IIPREDATIONRISKINDUSKYDOLPHINS ...... 19

Introduction ...... 19 Objectives...... 21 Methods...... 21 Naturalhistoryofduskydolphins,Kaikoura,NewZealand...... 23 Seasurfacetemperatureandduskydolphinseasonaltrends ...... 25 Killerwhales–primarypredator ...... 27 Sharks...... 34 Duskydolphins–grouplivingandvocalrepertoire...... 38 Conclusions...... 43

xii

CHAPTERPage

IIIEXPLORINGFEAREFFECTSINDUSKYDOLPHINSWITHA

SPATIALLYEXPLICITINDIVIDUALBASEDMODEL...... 44

Introduction ...... 44 Modelstructure ...... 50 Modelprocessoverview...... 52 Modelevaluation...... 61 Cleverpredatorandcleverpreymodelsimulations...... 70 Results...... 75 Discussion ...... 77

IVECOLOGICALCONSEQUENCESOFFEAR:BIOENERGETICSOF

PREDATIONRISKEFFECTSINDUSKYDOLPHINS ...... 82

Introduction ...... 82 Methods...... 86 Results...... 96 Discussion ...... 115

VSUMMARY ...... 122

Concludingremarks ...... 128

LITERATURECITED ...... 131

VITA ...... 161

xiii

LIST OF FIGURES

FIGUREPage 1 MapofsurveytransectscoveringthestudyareanearKaikoura,New

Zealand(Jan–May2007)...... 22

2 DuskydolphinsightingsfromsurveysbetweenJanuary22andMay30

2007overaperiodof37surveydays(n=118sightings)nearKaikoura,

NewZealand...... 25

3 SeaSurfaceTemperature(SST)variationsbetweennearshore

(~5kmfromshore)andoffshore(~22kmfromshore)locationsoff

Kaikoura,NewZealand(20032007)...... 26

4 a)TotalkillerwhalesightingsnearKaikourarecordedduring

duskydolphintours19952007.Therewerenokillerwhalesightingsin

July,b)Duskydolphinaveragedistancetoshore(km)betweenmonths

(19952006)...... 30

5 Selectedkillerwhalesightingstohighlightdepthchoices

(depthinmeters)offKaikoura,NewZealand(19952007)...... 31

6 KillerwhaleandduskydolphinsightingsoffKaikourarepresented

withina50x40gridandusedtocalculatedensityofoccurrenceand

spatialcorrelationforthetwospecies...... 32

xiv

FIGUREPage 7 Aconceptualmodeloftheduskydolphin–killerwhalesystemoff

Kaikoura,NewZealand,whereA=nearshoreshallowwaters,

B=offshoredeepwaters.Inwinter,dolphinsarefoundinoffshore

deepwatersB,anddonotmakenearshoreoffshoretripstofeedand

killerwhalepresenceisrare...... 48

8 MapofthesystemofinterestoffKaikoura,NewZealand,indicatingthe

coastlineandoffshorebathymetry,aswellasthegridof1468,

1kmx1kmcellsusedtorepresentthehabitatofthemodel...... 49

9 SequencingofthemodelprocessincludedintheIBMwithatimestep

of1/16thofanhour...... 53

10 Arepresentationoftheanimated,colorcodedmovementandbehavior

ofduskydolphinandkillerwhalepreandpostencounterinthe

individualbasedmodel(waterdepthindicatedinmeters) ...... 62

11 Distancebudgets(ad)foraduskydolphinexposedtovariationin

parameterlevelsandcombinationswithparticularemphasisonkiller

whalereturnrates,duskydolphinmemoryinrefuge(memoryafterkiller

bwhaleattack),andduskydolphindetectiondistanceofkillerwhales

betweenNovMay(20treatments,210days,n=5reps)...... 64

xv

FIGUREPage 12 Timebudgets(ad)foraduskydolphinexposedtovariationin

parameterlevelsandcombinationswithemphasisonkillerwhale

returnrates,memoryinrefuge(memoryafterkillerwhaleattack),and

dolphindetectiondistanceofkillerwhales(210days,n=5reps)...... 65

13 Foragingtimeandencounterindexforaduskydolphinexposedto

variationinparameterlevelsandcombinationswithemphasisonkiller

whalereturnrates,memoryinrefuge(memoryafterkillerwhaleattack),

anddolphindetectiondistanceofkillerwhales(210days,n=5reps)...... 66

14 Sightingsdataofduskydolphinsbysocialtype(n=118)

(greencirclesandbluetriangles)fromsystematicsurveysbetween

JanMay2007(ChapterII)comparedwithsimulatedsightings

(redstarsandblackcrosses)obtainedbysamplingthemodelresultsat

timesandperiodscorrespondingtosystematicsurveyefforts(n=118,5

reps)...... 68

15 Distancebudgetsforduskydolphinsexposedto4differenttreatments

betweenNovemberandMay(1rep=210days,n=35reps)duringa

killerwhale(KW)returnrateof0.5and3days...... 73

16 Timebudgetsforduskydolphinsexposedtofourtreatmentsbetween

NovemberandMay(1rep=210days,n=35repsduringakillerwhale

(KW)returnrateof0.5and3days. ...... 74

xvi

FIGUREPage 17 Averagenumberofkillerwhaleduskydolphinencountersduringhigh

(0.5days)andlow(3day)killerwhale(KW)returnrates.Encounter

indexismeasuredasduringasinglerepor210daysofthemodel

simulation(n=35reps)...... 75

18 HabitatmapofsystemofinterestoffKaikoura,NewZealand...... 86

19 Distancebudgets(ad)forduskydolphinsduringlow(3dayKWreturn)

andhigh(0.5dayKWreturn)killerwhalepresence...... 97

20 Timebudgets(ad)forduskydolphinsduringlow(3dayKWreturn)

andhigh(0.5dayKWreturn)killerwhalepresence,n=35reps...... 98

21 Averagenumberofencountersaccumulatedbyaduskydolphinwitha

calf(C)andwithout(NC)duringlow(3dayKWreturn)andhigh

(0.5dayKWreturn)presenceofkillerwhales(KW)inthesystemof

interestoffKaikoura....... 101

22 Distancebudgets(ad)resultingfromdifferentparametercombinations

(Table10)inmodelsimulationforwithandwithoutcalftreatments

(n=40,5reps)overa210dayperiod(NovMay)...... 108

23 Timebudgetsbasedondifferentparametercombinations(Table10)in

modelsimulationforwithandwithoutcalftreatments(n=40,5reps)

overa210dayperiod(NovMay)...... 109

xvii

FIGUREPage

24 Proportionforagingtimeandencounterindexforduskydolphinsbased

ondifferentparametercombinations(Table10)inmodelsimulationfor

withandwithoutcalftreatments(n=40,5reps)overa210dayperiod

(NovMay)...... 110

xviii

LIST OF TABLES

TABLEPage

1 Attributesofduskydolphin,killerwhale,andhabitatmodulesofthe

duskydolphinIBMrepresentingthesystemofinterestoffKaikoura,

NewZealand ...... 51

2 Baselinevaluesofparametersusedinmodelsimulations.Valuesare

basedonliterature,availabledata,orfromsimilarspecies...... 54

3 Setofparametercombinationsusedinmodelsensitivityanalysistolook

ateffectonduskydolphintime/distancebudgetsandencounterindex

(n=20treatments) ...... 63

4 ExperimentdesignoftheIBMmodelsimulations.Treatmentacronyms

indicatewhetherantipredatorrules(R)forduskydolphinsare

ONorOFFandwhetherkillerwhales(KW)arepresentorabsent...... 71

5 Experimentaldesignformodelsimulationsandcalculationofdusky

dolphintime/distancebudgets...... 90

6 Baselineparametervaluesusedinmodelsimulationsforduskydolphins

withandwithoutcalf...... 91

7 Summaryofstomachcontentofduskydolphins(n=6)withfreshprey

usedtodeterminepreyenergycontentandduskydolphinforagingcosts

withandwithoutcalf....... 93

8 Independentsamplettestsfordistanceandtimebudgetvariables

obtainedfrommodelsimulations...... 99

xix

TABLEPage 9 Bioenergeticsummaryforduskydolphinsfacinghigh

(0.5dayKWreturn)andlow(3dayKWreturn)predationrisklevels,

andintheabsenceofkillerwhales(KW)...... 104

10 Setofparametercombinationsusedinmodelsensitivityanalysisto

lookateffectontime/distancebudgetsandencounterindexforwith

andwithoutcalftreatments(n=40)...... 107

11 GLMMANOVAresultsforeffectofparameterchangesona)distance

budgetsandb)timebudgetswithoutcalftreatments(n=20)...... 112

12 GLMMANOVAresultsforeffectofparameterchangesona)distance

budgetsandb)timebudgetswithcalftreatments(n=20)...... 114

1

CHAPTER I

INTRODUCTION

Toexplainallnatureistoodifficultataskforanyonemanorevenforanyone age.`Tismuchbettertodoalittlewithcertainty,andleavetherestforothersthat comeafteryou,thantoexplainallthings. SirIsaacNewton(16421727)

Predation – an overview

In2005,R.WSussmanandD.L.Hartcameupwithafascinatingtheorythathumans evolvedinthemannertheydid,largelybecausetheywerepreytogiantcarnivoresof severalmillionsyearsago(HartandSussman2005).Thisclaimchallengedconventional wisdomthatmanwasbornahunter.Theysuggestedthattoavoidgettingkilledby predators,bothprimatesandhumansdevelopedstrategiesthateventuallyledtogroup living,greatermobility,andalargerbrain.Thisnotionremainscontroversial,buthelped reignitediscussionanddebateonsocialityandpredation.

Ispredationtheonlycausativefactorleadingtosocialityorarethereother factorsthathavecontributedindependentlytosocialliving?*Whilethisdebatecontinues, thereareelementaryaspectsofpredatoreffectsthatarestillnotfullyunderstood,despite decadesofresearch.So,thereismuchtolearnabouthowpredatorsinfluenceprey behavioralecologyandecologicalcommunitiesthroughconsumptiveandnon

ThisdissertationfollowsthestyleofEcology. 2

consumptiveways.Also,whendealingwithbehaviorallyresponsiveprey,considering bothpreyandpredatorbehaviorisnecessarytomakeproperassessmentsofpredator preyinteractions.

Thischapterprovidesanoverviewofimportantpredationconceptsthatarethe foundationofmostpredatorpreystudiestoday.Thechapteralsoprovidesaleadinto therestofthechaptersinthedissertationbyfocusingontheimportanceofnonlethal predationeffects,predationriskindolphins(ChapterII),andtheuseofmodelingasan alternativetoexplainandevaluatepredatorrolesindolphinbehavioralecology(Chapter

III).

TheroleofpredatorsandpredationfirsttookcenterstagewithLotkaVolterra’s predatorpreydynamicsmodel,independentlydevelopedbybothscientists(Lotka1925,

Volterra1926).Thisclassicmodelprimarilyfocusedonpredatorpreypopulationcycles inavirtuallyunlimitedenvironment,wherepredatorscouldeatasmuchpreyasthey wantedandpreypopulationskeptgrowing,thusproducingoscillatingcycleswithno asymptoticstability.Sincethen,theirmodelshavebeenimprovedtomakethemrealistic

(Abrams2000,Krebsetal.2001(snowshoehareandlynx10yearcycle)).Butitwasn’t untilPulliam(1973),Alexander(1974),Jarman(1974),Wilson(1975),andBertram

(1978)thattheroleofpredationwasdiscussedinthecontextofsocialsocietiesorgroup living.Theseauthorssynthesizedinformationfromtheirresearchonlionsandantelopes, primates,socialinsects,andothersourcestodescribehowpredationriskcouldhave contributedtogrouplivingbyaffectingpreybehavior,socialrelationships,andhabitat selection.

3

Someofthesignificantconceptsthatcameforthfromtheseearlyandlaterworks includecostsandbenefitsofgroupingpatterns(Bertram1978,PulliamandCaraco

1984),vigilance(Roberts1996),predatorpreydetectionandencounter(Elgar1989,

Dehn1990),‘selfishherd’mentality(Hamilton1971),dilutionandconfusioneffects

(e.g.Kruuk1972,LandeauandTerborgh1986),andfinallythenatureofsocial relationshipsinvolvingkinselection,nepotism,andaltruism(Hamilton1972,Trivers

1972).

Earlytheoriesonpredationalsoledtolaterattemptsbyotherscientiststo elaborateonnonlethalpredationriskvs.lethalpredationinavarietyoftaxa(Sih1987,

Lima1990).Whatispreytoone,ispredatortoanother,soaninvestigationofecological interactionsfrompredatorandpreyperspectivesisnecessarytoacknowledgehow behavioralplasticityhasallowedanimalsocietiestofunction.

Predation,howeverimportant,cannotsolelydeterminespatialdistributionand sexspecificbehaviorinsomesystemsandspecies,forexampleinprimates(vanSchaik andvanHooff1983).Butbyteasingapartconceptsofgroupsize,socialstructureand composition(asdefinedinKappelerandvanSchaik2002)andbehavioralvariability,we cangetabetterideaofhowpredatorshaveshapedpreysocietiesandviceversa.

Predation concepts revisited

ItwasproposedfirstbyPulliam(1973),basedonhisobservationonbirds,thatanimals thatforageingroupsaremorelikelytodetectapredatorpriortoanattack,andthatsuch groupscouldaffordtospendlesstimeinvigilancewithoutlosingtheabilitytodetect predatorsontime.Thus,theanimalisabletoallocatemoretimetootheractivitiesand

4

stillspendlesstimeinvigilance.Studiesonprimateshavealsoshownthatlargerparties arebetterabletodetectpredatorsthansmallerparties(VanSchaikandVanHooff1983).

Fitzgibbon(1990),observedthatcheetahpreferentiallykillmoremalegazelles, eventhoughthesexratioofthegazellepopulationistiltedheavilyinfavoroffemales.

Theprimaryreasonforthisisthatmalegazellestendtobemoresolitarythanfemales, andmostmalegazellessituatethemselvesattheperipheryofgroupsandmaintainlarger nearestneighbordistancescomparedtofemalesinthecenterofthegroup.

Hamilton(1971)introducedthe‘selfishherd’concept,wherecertainindividuals guardtheperipheryofthegroup,leavingthemmorevulnerabletoattack,whileother individualspositionthemselvesatthecenter.Theseperipheralindividualsaregenerally morevigilantthanothersinthegroup,becausetheyareeasytargetsforattacking predators.Butasgroupsizebecomeslarge,theproportionofindividualsattheedgeis reduced;thisconfounding‘edgeeffect’lowersthegroupscanningrateforpredators.

Theideathatanimalsbenefitbyforagingingroupsandthereforespendingless timeinpredatorsurveillancehasnotbeenclearlysubstantiated,despitemanyavianand mammalianstudies(Elgar1989,ChildressandLung2003).Thenegativecorrelation betweenincreasinggroupsizeanddecreasedindividualvigilanceratesisconfoundedby notconsideringthedensityofthefoodresource,whichcanleadtocompetitionof resources(Elgar1989).

Ithasbeensuggestedthatperhapsthereisanoptimalgroupsize(Bertram1978,

Alados1985),beyondwhichvigilanceeffectsisnegatedandcompetitionforfoodand matestakesover.BednekoffandLima(1998)alsocalledforreassessmentofthe

5

fundamentalassumptionofvigilancebehavioranditsfunctionalconsequences,basedon differencesinscanningratesinbirds.

Joininggroupscanreducethechancesofencounteringapredator,increased detectionofpredators,andincaseofanattackpreycanescapeduetodilution confusioneffectbecausepredatorsareunabletoconcentrateonasingleprey(Jarman

1974,Bertram1978,NorrisandDohl1980,NorrisandSchilt1988,Elgar1989,Connor

2000).Dilutioneffectsresultfromthelowerprobabilityofanattackonthesame individualinthegroup,andconfusioneffectresultsfromthelowercapturerateper attack(Connor2000).

Toreducetheirprobabilityofattack,animalsmayalsoassociatewithsimilar sizedindividuals(Krause1994).Sometimes,predatorsmaytakeadvantageofthis confusioneffectandthuspreferattackinglargegroups–becauseintheensuingchaosof anattack,animalsmaynotbeabletoescapequicklyenoughandthusbeisolatedbytheir predatorse.g.whenimpalas Aepyceros melampus areattacked(Jarman1974).The skitteringeffectinschoolingfishesisanotherexample,whenpredatorssuchasseals, dolphins,orkillerwhales( Orcinus orca )attack(NorrisandSchilt1988,Perrymanand

Foster1980).

Wolf(1985)alsoobservedthatoddlycoloredparrotfishmightabandonmixed speciesgroupingsduringanattackwhenthreatened.Jacksonetal.(2005),inastudyon humansubjects,observedthatdetectionofcrypticpreyincreasedasymptoticallyand leveledoffwithincreasinggroupsize,similartolabobservationsonbirds.

6

Animalsmayalsoresorttootherpredatoravoidancemeasuressuchasfleeing

(YdenbergandDill1986)frompredators,e.g.whenspinnerdolphins( Stenella longirostris )orbottlenosedolphins( Tursiops aduncus) arethreatenedbylargesharks

(NorrisandDohl1980,ConnorandHeithaus1996),orwhenduskydolphinsare threatenedbykillerwhales(WürsigandWürsig1980,Würsigetal.1997,Markowitz

2004).Dwarfspermwhales Kogia sima,releaseaplumeofreddishexcretawhen threatened(ScottandCordaro1987),whilecephalopodsmayejectinkfrominkglands whenthreatened(HanlonandMessenger1996),suchdefensemechanismsmayaddto existingantipredatortactics.Somepreymayalsorelyonchemicalcuesfrompredators toassessthelevelsofpredationrisk,e.g.amphibianlarvaerespondtochemicalcues frompredatoryfishes(KatsandDill1998).

Whatofthepredator?Predatorsalsohaveatendencytoincreasegroupsizesto feedonlargeprey(Jarman1974).Lions( Panthera leo )whenattackinglargerpreysuch aszebraorbuffalo,associatewithseveralindividualsbutwhenfeedingon,fore.g.a warthogPhacochoerus africanus ,mightdecidetogoinalone(ScheelandPacker1991).

Similarly,Kruuk(1972)foundthatspottedhyenashadgreatersuccessinhunting wildebeest(Connochaetes sp .)calveswhenhuntinginpairs.Often,socialcarnivores willattackanimalsthataremuchlargerthantheyare,e.g.lions,hyenas( Crocuta crocuta ,Kruuk1972),cheetahs( Acinonyx jubatus ,Fitzgibbon1990),andkillerwhales

(Jeffersonetal.1991).Bertram(1978)suggestedthattworeasonsforthis:greater abilitytobringdownalargeranimalthroughgroupeffortandwillingnesstotakehigher risksdespitepersonalinjury,suchthatinjuredanimalscanstillshareakillbroughtdown

7

bytheircompanionanimals.ButPackerandCaro(1997)andPacker(1986) hypothesizedthatgroupinginlionsprimarilyresultedduetodispersalofresourcesand issuesofresourcesdefense(e.g.Lamprecht1981),ratherthantoaidincooperative hunting.

Therecanalsobedifferencesinwhoattacks.Malelionsmayoftendissociate themselvesfromattacksonsmalleranimals,andsometimesinlionsbothfemalesand malesmight‘cheat’andnotparticipateinanattack(ScheelandPacker1991).Thishas alsobeenobservedinmalekillerwhales(Pitmanetal.2001).

Predatorscantypicallytrackandfollowtheirpreymovementsandmigrations

(Schaller1972).Pacificwhitesideddolphins( Lagenorhynchus obliquidens, Black1994) andkillerwhales(NicholandShackleton1996)arealsoknowntotrackandfollowprey.

Butdotheychooseareaswherepreyisabundantorwherethereisgreatersuccessin catchingprey?Hopcraftetal.(2005)observedthateventhoughlionsfollowedtheir prey,theyusuallyfrequentedareaswheretheirsuccessincapturingpreywasgreatest.

Wolf( Canis lupus )killsitesandareaswheretheytraveledwerenotfoundtobe different,sotheybasicallyfrequentedareaswhereelkweremostvulnerable(Bergmanet al.2006).

Unlikethenumerousstudiesonpreybehaviorrelatedtomatechoiceandfinding foodundertheriskofpredation,therearelimitedstudiesinrecentyearsthatinvestigate theothersideoftheinteraction.Lima(2002)observedthedearthindatawhenitcameto lookingatpredatorybehaviorandcharacteristicsthatinfluencepreybehaviortochange.

Herecommendedthatpredatorabundanceandeffectsshouldnotbeassumedconstant

8

andunresponsivetopreybehavior;instead,theinteractiveeffectbetweenthetwoshould beacknowledgedandincorporatedinpredationriskstudies(discussedinLimaetal.

2003).

Sociality and predation risk

Observedpreybehaviorandspatialdistributionoftenhasbeenlinkedtosocialaspectsof preyliving.Forexample,Wrangham(1980)assertedthatintraspecificcompetitionfor resourceswasanimportantfactorindeterminingsocialbehavior,andthereforeshould beconsideredalongwithpredationpressure,resourceabundanceanddistribution.

Intraspecificcompetitioncanfavorgroupingornogroupingeitherduetohabitat constraintsorsocialconstraints.

Thebasicfeaturedifferentiatingmalesfromfemalesarethatmaleswillinvest moreinincreasingfitnessthanavoidingpredatorsandfindingfood(Trivers1972),and thustheirdistributionwillbegovernedbywherefemalesaredistributed.Femalesonthe otherhand,equatereproductivesuccesstofindingfoodandavoidingpredatorsandnot bythenumberofmatingopportunities.Butinreality,therelationshipisnotthatsimple.

Femalescanalsoincreasefitnessthroughmatechoice.Forexample,femaleschoose strongmaleswhocanenhanceconditionorsurvivaloffemaleandoffspring(Bateson

1983).Butotherconstraintsalsooperate.

Infemales,phenotypicconstraintssuchasdifferencesinreproductivecondition, affectdietaryneedsandsusceptibilitytopredation.Forexample,nonlactatingandnon pregnantfemalesmaypreferhighqualityvegetationandlactatingfemalesmightneed accesstogoodfoodandsafetyfrompredators,butsuchdifferingchoicesmayhave

9

energeticconsequences.Femalebehaviorcaninturnaffectmaledistributionand associations.Inmales,smallermalesmightresorttospendingmoreeffortinfood acquisitionratherthancompetingwithlarger,strongeradults,e.g.inspermwhales

(Physeter macrocephalus ,WhiteheadandWeilgart1999).Wherefemalecompetitionis lowandfoodisabundant,femalesmayaggregatenearmaleseitherbecauseofintense predationpressureorheightenedmaleharassmentorinfanticide,e.g.inchimpanzees

(vanSchaikandHorstermann1994)andbottlenosedolphinsinSharkBay(Connoretal.

2000).Alternatively,iffoodpatchesarerichbutscarce,femalesmaycometogetherto reducecompetition,e.g.inlions(Packer1986).

Thenatureofpreyhabitatcanalsoaffectsocialrelationshipsandspatial distribution.Whenpredatorsareconcentrated,groupingisfavored(Bertram1978,

Pulliam1973).Also,whenfoodisconcentratedinlargepatches,groupingisfavoredas itreducescompetition(Jarman1974).Fridetal.(2006)observedthatpredationratesin harborseals( Phoca vitulina )weregreaterduetoresourcedeclinesandlowerenergy states,makingthemsusceptibletoattacksbykillerwhalesandsharksinAlaskanwaters, andproposeditasoneofthereasonsforpopulationdeclinesinNorthPacificharbor seals.Climatechangeandseasurfacetemperature(SST)mayfurtheraffectlargescale seasonalandregionalspatialdistributionofanimals(SimmondsandIssac2007,

Macleodetal.2008)

Re-examination of predator effects

Animalsocietiesareinherentlycomplex—itisdifficulttodefinitivelydissociate predationrisksfromothersocial,ecologicalorenvironmentalpressures.Nevertheless,it

10

isclearthatpredationriskplaysanimportantroleininfluencinggroupliving.Since

LimaandDill(1990)providedacomprehensiveaccountofthebehavioraleffects observedinavarietyofpreyresultingfrompredationrisk,therehasbeenaconcerted approachandunderstandingtowardsconsideringnonlethalpredationonanequalor greaterscalethanlethalpredation(Peckarskyetal.2008,Orrocketal.2008).

Priesseretal.(2005)completedanextensivemetaanalysistodemonstratethat thedemographiceffectsfrompredationriskequaledorexceededeffectsfrompredator consumption.Theyalsoshowedthatinaquaticrealms,trophiccascades(indirecteffects ofpredatorsonplantsviaherbivores)weremorepronouncedthaninterrestrialsystems

(seeShurinetal.2002,WernerandPeacor2003fordetails).Sincethen,numerous studieshaveprovidedstrongevidencethatnonlethalpredationriskeffectscanhavevast consequencesforpreyandfortheecologicalcommunity(LuttbegandKerby2005,

Abrams2007,Heithausetal.2008).

Theconceptoftrophiccascadeanditsconservationimplicationshasledto discussionsontwoimportantconceptsbasedonAbrams(1995,2007)–Density

MediatedIndirectEffects(DMIE)andTraitMediatedIndirectEffects(TMIE,referto

Abrams2007foraterminologyreview).DensityMediatedIndirectEffectsandTMIE representpathwaysthataffectspeciesinteractionsinecologicalcommunities.These indirecteffectsthatincludetrait changes(foragingbehaviororpredationrisk)or populationdensityandgrowthratespropagatefromonespeciestoanotherinafoodweb duetochangesinanintermediateortransmitterspecies.

11

RippleandBeschta(2004)describedhowtheabsenceandreintroductionof wolvesrepresentedbytrophiccascades,predationriskvariationsandpreyoptimal foragingreshapedtheecosystemstructureintheYellowstoneNationalPark,United

States.Inessence,largecarnivores,herbivores,andplantsarelinkedinaffectingthe biodiversityoftheecosystemthroughtrophiccascades,andwolvesplayamajorpartin thesustainabilityofsuchecosystems.Otherevidencefrombottlenosedolphins( Tursiops truncatus )inSharkBay,Australia,andtheseaotterseaurchinkelptrophicsystemin theAleutianIslands,Alaska(Dilletal.2003)alsodescribedhowpredationrisk,TMIEs, andtrophiccascadesareinextricablylinkedwithconservationandmaintenanceof marineecosystems.

Predation risk in dolphins

Dolphinsareapexpredators,buttheycanbepreytoo.Likeallprey,theyareaffectedby thepresenceofmorepowerfulpredators,suchaskillerwhalesandlargesharks.While thesepredatorsmaynotchoosedolphinsasprimaryprey,theycanscaredolphinsinto changinglifestyledecisions,i.e.whereandwhentofeed,whereandwhentorest,etc.

Forthemostpart,thefocusinmarinemammalanddolphinresearchhasbeenonlethal predation(seereviewsbyJeffersonetal.1991,Bowen1997,Norris1994,Connor2000,

Trites2002).However,itbecomesdifficulttoexplainseasonalpreferenceforshallowor deepwaters,rockyorsandyhabitat,whentherearenoobservationsofdolphinsbeing attacked.Food,reproductiveneeds,andenvironmentalfactorsallplayasmallorlarge roleininfluencingdolphinpatterns.Butisolatingtheprimaryinfluencingfactor/sfrom therestremainsanelusiveobjectiveinmostecologicalstudies.

12

Evidencesuggeststhatspatialdistributionandbehaviorofterrestrialandmarine organismscanbedrivenbyfear(SihandWooster1994,CreelandWinnie2005,

Wirsingetal.2007).Similarly,dolphinsmayalsomodifytheirdailymovementand distributionpatternsinthefaceoffear,e.g.bottlenosedolphins( Tursiops aduncus )

HeithausandDill(2002,2006).Butpredationriskisadynamiceventandinvolves evolvingandadaptingpreyandpredators.Therefore,itispossiblethatincertain environments,predationriskfromsharksmaybeminimalandkillerwhalethreatsmay behigher,ortherecouldbeonlyseasonalthreatsfromthesepredators.Insuchcases,it isthereforeimportanttouseasystemsapproachwhereseveralpotentialinfluencing variablesareconsideredbeforelegitimateconclusionscanbereached(ChapterII).

Preyareaffectedbypredatorbehavior,andaccordinglypreyexhibitdifferent shorttermtacticsorlongtermstrategiestocombatchanginglevelsofpredationrisk

(ChapterII).However,itisunclearwhatconsequencesthepreyincursbymakingthese antipredatordecisions(CreelandChristianson2008)—thisistrueformosttaxa, includingdolphins.First,weneedtoknowifpreypaysapricebyadoptingantipredator mechanisms(seeChapterIII,IV).Second,weneedtodeterminethenatureofthese costsandquantifythem(seeChapterIII,IV).Third,weneedtoviewthesecostsina broaderevolutionarycontextandelucidatethecosts vs. benefitsofusingantipredator rulestodeterminepreylifestylechoices(seeChapterIII,IV).

Marinemammals,particularlywhalesanddolphinsinhabitsystemsthatpreclude mosttypesofexperimentalstudies.Forsuchsystems,ignoringpredationrisk components,bothlethalandnonlethaleffectsinbehavioralecologystudiescreatesa

13

myopicviewofpredatorpreyinteractions.Thisrestrictstheabilityofscientistsand managerstograspthefullinfluenceofpredatorsonpreyhabitatselectionandpopulation viability,especiallyforcriticalmarinemammalspecies.

Modelsaresubstitutesfornaturalsystems.Theyprovideasimplifiedviewofthe ecosystembyincorporatingimportantfunctionalattributes,butarenotmeanttoserveas

‘realsystems’(HallandDay1977).Modelingisespeciallyapplicablewhenempirical dataislimitedandfieldlogisticsandspeciesconcernspreventelaboratehypothesis drivenstudies.Modelscanbeconstruedasaresearchstrategythataidsin conceptualizingasystemofinterestandunderstandinghowbasiccomponentsfunction andinteract(Jeffers1978).Thegoalistobeabletomanipulatesystemscomponentsand addressecologicalquestionsthatincreaseourunderstandingofhowtheplayerswithin thesystemfunction.

Whendealingwithcleverpreyandcleverpredatorse.g.marineorlandmammals thathaveasuiteofstrategiesshowcasingtheirbehavioralandcognitiveplasticity, dynamicorstochasticmodelsprovideanappropriatewaytocapturerandomvariations andcomplexrelationshipswithinanetworkofinteractingcomponents.Dynamic simulationmodelsprovidethenextlevelinmodelingtools,wheremodelingprocesses andcomponentsarelinkedwithcomputersoftwaretools.Givensystemandindividual complexitiesindolphinsocietiesandtheneedtoecologicallyassesstheroleofpredators ininfluencingdolphinbehavioralecology,spatiallyexplicitindividualbasedmodels,are ideallysuitedtoaddresscomplexpredatorpreybehavioralinteractions(Grimmand

14

Railsback2005)wherethefocusisonindividualbehaviorandisrepresentativeofthe population.

Inthefollowingchapters(ChaptersII–V),Inarrowthescopeofdiscussionon predationandsocialsocietiestoincludemainlynonlethalorindirecteffectsof predationrisk,andhowriskinfluencesdolphinbehavioralecology.Myfocusisatthe specieslevelanddoesnotextendtoecologicalcommunities.Indirectpredationrisk effectshavebeenvariouslytermedasfeareffects,nonconsumptiveeffects(NCE),non lethal,nonconsumptivepredation,orriskeffects.Forpurposesofthedissertation,Iwill useindirectpredationriskeffectsorfeareffectsastheprimarytermstodescribe predatoreffectsonpreybehavioralecology.

Research objectives

Inthepresentstudy,myspeciesofinterestistheduskydolphin( Lagenorhynchus obscurus )offKaikoura,NewZealand.Atthebasiclevel,Iaminterestedinhowfear driveschangesindailyandlongtermchoicesforduskydolphins,i.e.habitatselection andforagingbehavior.Ultimately,Iaminterestedintheenergetic,aswellasecological andevolutionarycostsassociatedwithdolphindecisionmakingwithinthecontextof fear.Specifically,myresearchobjectivesareto:

1) Identifyanddetailcausalfactorsforobservedduskydolphinseasonaland

dailypatternsnearKaikoura,NewZealand,withemphasisonindirect

predatoreffectsandduskydolphinantipredatordecisions;

2) Develop,describe,andevaluateanindividualbasedspatiallyexplicit

model(IBM)ofacleverprey(duskydolphin)andacleverpredator

15

(killerwhale)nearKaikoura,NewZealandtocapturethedynamic

relationshipbetweenpredatorandprey;

3) Determinequantitativelythepotentialconsequencesofantipredator

decisionsusingtheIBM.

Overview of chapters

InChapterII,Ireviewcurrentknowledgeofpredationriskinduskydolphinsandwhy indirectpredationriskeffectsareanimportantfacetofdolphinbehavioralecology.In

ChapterIII,IdescribeandevaluateaspatiallyexplicitIndividualBasedModel(IBM) developedtoaddressindirectpredationriskeffectsinduskydolphinsfromboth ecologicalandevolutionaryperspectives,representedbydynamicduskydolphinand killerwhalebehavioralinteractionsinadefinedsystemoffKaikoura,NewZealand.In

ChapterIV,IusetheIBMtoquantifytheconsequencesoffearandtounderstandhow antipredatordecisionscanhavelifestyleandbioenergeticconsequencesbasedonthe representativeduskydolphinsystemnearKaikoura,NewZealand.

Importance of research

Predatorpreyinteractionsdealwithcomplexrelationshipsthataredifficulttogeneralize andmuchhardertodocumentinthefield,sincemosteventsgounobserved.Thisis particularlytrueofcetaceansthatspendtheirentirelivesatsea.Yet,itisdifficultto disregardobservationalandanecdotaldatathatsuggestthatpredatorssuchaskiller whalesandlargesharksplayanimportantroleindeterminingdolphinsocialdynamics, choiceoffeedingandrestareas.Thechallengeistoquantifytheextentandnatureof predatorinfluence.Insituationswherefieldstudiesarenotviable,labexperimentsand

16

modelingtoolscanserveasproxyfornaturalanimalbehaviorandsystems.Thepresent studyhelpstoovercomesomeofthelimitationsofpreviouspredatorpreystudiesin severalways:

1. Thespatiallyexplicit,individualbasedmodelproposedhereprovidespotential

totestavarietyofhypothesiswithinalargertheoreticalframeworkregardlessof

thespeciesofinterest.Forexample,wecantesttheoreticalconceptsofprey

vigilance,predatorpreydetectiondistance,flightinitiationdistance(FID),

feedingsafetytradeoffs,andtheconsequencesofgroupsizevariability,spatial

distributionandsocialdispersiononpredatorpreybehavior.

2. Themodelisapplicabletobothdirectandindirectpredationriskeffects.Thus,

wecanlookatlethaleffectsofpredatorsonpopulationdynamicsand

demographics,aswellastheeffectsofchangingpreybehaviorinresponseto

predationrisklevels.

3. Thestudyalsoprovidesstrongevidencetoconsiderindirectpredationrisk

effectsinbioenergeticmodels,previouslyignoredinbehavioralecologystudies.

4. Unlikepreviousstudies,themodellaysemphasisonbothpredatorandprey

behavior,providingamorerealisticrepresentationofbehaviorallyresponsive

mobilepreyandpredators.

5. Developedwithasystemsmodelingapproach,itispossibletoobservethe

interactionsofseveralfactorssuchasphotoperiodeffects,rainfall,orother

environmentalfactorsalongwithbioticfactorsonmodeloutcomes.

17

6. Themodelallowsvisualizationofsimulatedprey/predatormovementsand

behavior.Thissimplifiesverificationofmodelrulesandbehavior,andprovides

ananimatedoutputofpreyandpredatorbehavioroverasimulatedtimeperiodof

oneormoredays.

7. Datauncertaintyandlackofempiricaldataarecommonproblemsassociated

withmostmarinemammalstudies.Insuchcircumstances,themodelcanbeused

asatestabletooltoevaluatevariouspossibilitiesandaddressparameter

uncertainty,andthereforehasimportantheuristicvalue.

8. Studiesonseveralspecieshaveprovidedcredibleevidencethatpredatorscan

havefarreachingeffectsthatspreadacrossspatialandtemporalscales,and

acrossoneormoretrophiclevels.Thishasconsequencesformanagementand

policydecisionsrelatedtospeciesorresourcesmanagement.Further,preyhave

evolvedstrategiesthathelpthemavoidpredationorreduceencountersby

makingspecifichabitatchoices.Habitatalterationsorimpropermanagement

practicescouldadverselyaffecttheselongstandingchoicesandtherefore

consideringindirectpredationriskeffectsmaybenecessarytomanagecriticalas

wellasrobustpopulationslikeduskydolphins.

9. Duskydolphinsarecategorizedas Data Deficient bytheInternationalUnionfor

ConservationofNaturalResources(IUCN,2008),whichmeansthatthereis

insufficientinformationtoassignthemaconservationstatus.Further,arecent

metaanalysisstudy(Schipperetal.2008)evaluatingthestatusoflandand

marinemammalsworldwide,foundthat38%ofmarinemammalswere Data

18

Deficient relativeto14%oflandmammalsthatwere Data Deficient .Moreover,

nearly36%ofmarinemammalspeciesarethreatened(range23–61%).Thus,

researchonlessstudiedspeciessuchasduskydolphinswillenablebetter

assessmentofconservationstatusandpolicyinitiatives.

19

CHAPTER II

PREDATION RISK IN DUSKY DOLPHINS

Introduction

Fordecades,predatorpreyinteractionshavebeenextensivelydiscussed,debated,and describedastheprincipalforcedrivinggrouplivinginmosttaxa(Edmunds1974,

Alexander1974,Wilson1975,Bertram1978,Sih1980,1987,VanSchaikandVan

Hoof1983).Overtime,theoreticalandempiricalcontributionshaveprovidedcredible evidencethatpredatorscanaffectpreybehaviorthathaveseriousconsequencesonprey reproduction,habitatselection,mateandfoodchoices(LimaandDill1990,Lima1998).

Recently,theeffectsofpredatorsscaringprey(Brownetal.1999)havegarnered considerableinterestandstudy.Predatorpresenceorbehaviorcancreateanenvironment offearvariouslyaffectingpreybehavior(Sih1987,LimaandDill1990,Lima1998,

Laundreetal.2001,Wirsingetal.2008).Severalstudiesalsoindicatethatthese predatoreffectscanpercolatedowntrophiclevels,resultinginatrophiccascade(Estes andDuggins1995,Paceetal.1999,RippleandBeschta2004,2006,Schmitz2006,Otto etal.2008).

Changesinpreybehaviorarisingduetoindirectpredatoreffectscanhave impactsonlowertrophiclevelseitherthrough‘traitmediated’or‘densitymediated’

20

pathways(Abrams1995,Dilletal.2003,terminologyreviewedinAbrams2007).

Further,thereisstrongevidencethattheseindirectpredatoreffectscantriggerresource declinesoralterecosystemswithequalorgreaterconsequencethanchangesin populationdynamicsfromdirectlethalpredation,especiallyinaquaticsystems(Kotler andHolt1989,WernerandPeacor2003,Preisseretal.2005,Myersetal.2007).Thus, thereisanincreasingfocusonnonlethalorindirectpredationriskeffectsonprey behavior.

Thisrevisedthinkingallowsustoexplainevolutionarilyandecologically changingpreybehaviorandthe(LuttbegandKerby2005,CreelandChristianson2008,

Schmitzetal.2008).Further,itprovidesscopetodevelopapproachestobetter understanduppertrophiclevelpredatorsinthemarineecosystem.

Predatorscanaffecttheirprey’schoiceofhabitat,movementpatterns,social structure,andforagingbehavior.Mostdolphinstudiesattributesomeoftheselifestyle decisionstopredationrisk.Forexample,dolphinsmovetoshallowwaterstoavoid deepwatersharksorincreasegroupsizetoavoidpredation(WürsigandWürsig1979,

SaaymanandTaylor1979,NorrisandDohl1980,Shaneetal.1986,NorrisandSchilt

1988,Wellsetal.1987,Connor2000).

Studiesofpredatorpreyinteractionsinvolvingdolphins,includinglongterm investigationstodate,havefocusedonconsumptiveorlethalpredation( see Jeffersonet al1991forkillerwhaleinteractionswithmarinemammals,MannandBarnett1999,

Norris1994;sharkeffectsreviewedinHeithaus2001).Theindirecteffectsoftigershark predationonmultiplepreyspeciesincludingthebottlenosedolphin( Tursiops aduncus ),

21

intheSharkBayecosystemarewelldocumented,butthisresearchhasnotbeen replicatedelsewhere(HeithausandDill2002,2006;Wirsingetal. 2007).Whensuch fieldstudiesarenotviable,alternativeapproaches,andatheoreticalshifttowards consideringindirectpredationriskeffects,willreviseourunderstandingofpredator influencesondolphinlifestyleandtheecosystemstheyinhabit(Wirsingetal.2008,

Heithausetal.2008).

Objectives

Inthischapter,myfocusisonnonlethal/indirectpredationriskeffectsthatinfluence duskydolphin( Lagenorhynchus obscurus )behavior.Ireviewavailabledataontheir chiefpredatorsandthelikelyantipredatordecisionsthattheseversatiledolphinsmake.

WhiletheresearchfocusesonduskydolphininteractionswithpredatorsinKaikoura,

NewZealand,Iincorporaterelevantdetailsfromotherlocations.

Methods

Insynthesizingthisreview,Iuseopportunisticdatafromadolphintouroperator

(Dolphin Encounter, Kaikoura,NewZealand,datacourtesyI.Bradshaw,L.Buurman, andD.Buurman)andsystematicdatacollectedfrompreviousstudies(Würsigetal.

1989,Cipriano1992,Yin1999,Markowitz2004,Weir2007,2008)andfrommyown fieldseasonin2007(Jan–May).

Duringaustralsummerandfall2007,Icollectedbehaviorandlocation informationthroughsystematicsurveysacrosstheKaikouraCanyon.Imodifiedpre existingsurveyroutes(Weir2007)(Fig.1)enteredintoa Garmin ® GPS 76S device, visualizedin Garmin MapSource Ver. 6.12.4 andanalyzedinArcGIS 9.0 .Theresearch

22

vesselwasa5.5minflatableboatwithan80Hp4strokeengine.Theprimarygoalwas toobtaininformationondolphinhabitatchoicesbysocialgrouping,movementand swimmingpatternsthatcouldbeusedtoconstructthedolphin’ssimulatedenvironment.

Asecondgoalwastophotographdolphinsforscarring,potentiallyattributabletosharks orkillerwhaleattacks.

FIG. 1 Map of survey transects covering the study area near Kaikoura, New

Zealand (Jan –May 2007).

Thesurveyroutewasabout79.2kmlong,coveringanareaof80sqkm,andwas coveredatanaveragespeedof12km/hr.Startlocationswerevariedbybeginningeither fromthestart,middle,orattheendofthetransect.Usually,Icontinuedfromthelast

23

completedtransectroute.Onalternatedays,adifferentsurveyroutewasused(Deutsch

2008)torecordlocationandbehaviorof‘nurserygroups’composedmainlyofmothers withcalves.

Onceadolphingroupwasencountered,atleastwithin200metersoftheroute, termedan initial encounter ,GPSlocationandbehaviordata(e.g.groupstructure,group behavior–rest,travel,forage/feed,andsocial)wasrecorded.Ifthedolphinswere amenabletobeingfollowedcloselybytheboat,a1hourfocalfollowwasinitiated.This providedagoodopportunitytophotographallthedolphinsandlookformarked individuals.Duringfollows,datawascollectedat2minintervalsandscansampling techniques(Altmann1974)wasusedtorecordgroupbehavior.

Natural history of dusky dolphins, Kaikoura, New Zealand

NearKaikoura(42°30’S173°35’E),duskydolphinsexhibitasemipelagiclifestyle.

Theyfeedalmostexclusivelyatnightonmesopelagicorganismsassociatedwithadeep submarinecanyon(Cipriano1992,Würsigetal.1989,Würsigetal.1997,BenoitBirdet al.2004).Everyafternoon,dolphinstraveltooffshorelocationstofeedandreturnto nearshorelocationsinthemorningtorestandsocialize—alifestylecomparableto

Hawaiianspinnerdolphins( Stenella longirostris ,NorrisandDohl1980).

Thesenocturnalforagingexcursionstendtoremainstableovertheyear,except inwinter.However,daytimedistancefromshorevariesbyseasonandtimeofday

(Cipriano1992,Markowitz2004,Dahoodetal.2008).Inwinter,duskydolphinsoccur farthestfromshoreinthedaytimeandindeepwaters(typically,>200meters,Dahood etal.2008).Suchtrendswerealsoobservedduringthesummer/fall2007fieldseason

24

(Fig.2),wheredolphinsweretypicallyfoundclosetoshore(<5kms).Somesightings>

5kmswererecordedduringlateafternoonhourswhentheanimalsweremoving offshoretofeed.

Patchdensity,composition,andlocationswherethevisuallysensitiveorganisms surfacelikelychangebetweendaysandseasons.Foragingtimealsodiffersbetween seasons.Inwinter,duskydolphinshavealongerforagingwindow(12–13hours)relative tosummer(79hours),aconsequenceofearlysunsetandlatesunrise(BenoitBirdetal.

2004,BenoitBirdetal.inpress).Withashortersummerfeedingtime,thedolphins wouldbeexpectedtostayoffshorethroughouttheday.Thiswouldpresumablyreduce foodsearchingandincreaseforagingefficiency.But,duskydolphinsexhibitastrong dielnearshoreoffshoremovement,whichsuggeststhatotherfactorsmayapply.

Predationriskfromdeepwatersharksandkillerwhaleshasbeenlinkedto observedduskydolphinmovementpatterns(Würsigetal.1989,Würsigetal.1997,

Cipriano1992,Markowitz2004,Weir2007).However,ourknowledgeoftheir predatorsislimited.

KaikouraPeninsula

25

KaikouraPeninsula

HaumuriBluffs

FIG. 2 Dusky dolphin sightings from surveys between January 22 and May 30

2007 over a period of 37 survey days (n = 118 sightings) near Kaikoura, New

Zealand. Bathymetry data courtesy: National Institute of Atmospheric Research

(NIWA), New Zealand.

Sea surface temperature and dusky dolphin seasonal trends

AnalternativesuggestionforduskydolphinseasonalmovementpatternsoffKaikourais seasurfacetemperature(SST).Gaskin(1968)notedthatSSTinfluencesdusky distributioninNewZealand.However,withinspecificareas,localizedSSTfluctuations mayhavedifferentinfluenceondolphindistribution.

26

FIG. 3 Sea Surface Temperature (SST) variations between near shore (~ 5 km from shore) and offshore (~ 22 km from shore) locations off Kaikoura, New Zealand

(2003-2007). (SST archival data courtesy: Michael Uddstrom, NIWA; Uddstrom and Oiens 1999).

SeasurfacetemperaturefromKaikourawaterscalculatedfromalongterm archivalSSTdataset(5years)forinshorelocation(~5kmfromshore)versusoffshore

(~22kmfromshore),providessomeinsightintotheseasonaldifferencesindusky dolphindistributioninthearea(UddstromandOien1999;NIWASSTArchiveData,

CourtesyMichaelUddstrom).

MeanmonthlySSTforanareaiscalculatedfromperpassvaluesfortheentire monthi.e.(30daysxminof3satellitesx2(1dayand1nightpassoverlocation)).For

27

theoffshoreandnearshorelocation,Iaveragedspatiallytocalculatethemeanmonthly

SSTalonga3x3tilecenteredonthelocationofinterest.

MonthlySSTvariationsbetweeninshoreandoffshorezones(20032007)are showninFig.3.SeasonalandmonthlymeanSSTbetweeninshoreandoffshoreareas weresignificantlydifferent(F seasonal =49.494,df(7,112)n=120,p<0.0001;F monthly =

41.962,n=120,df(22,97),p<0.0001).Pairwisecomparisonsrevealthatwinterand summerwatertemperaturessignificantlydiffer(p<0.0001)forbothnearandoffshore areas.However,winterinshoreSSTisnotsignificantlydifferentfromwinteroffshore; thisistrueforspringinshore/offshore,fallinshore/offshoreandsummer inshore/offshoreSSTsaswell.

Amovementintowarmerwatersmayhavethermoregulatoryvalueinpreventing heatloss(Meagheretal.2008).SowhileSSTiscoolerinwinterthansummer,thetrend ispervasivethroughoffshoreandnearshorewaterswithinaseason.Thusbasedon currentevidence,SSTvariationsdonotinfluenceduskychoicesfornearshorewatersin summeroroffshoreinwinter,butmayhaveinfluenceontheirprey.

Killer whales – primary predator

TheNewZealandkillerwhalepopulationisestimatedtobebetween65167animals

(Visser2000).Also,itisbelievedthatthereare3subpopulationsofkillerwhaleswith geographicaffiliationstotheSouthandNorthIsland,orboth.Stomachcontentdatato guageNewZealandkillerwhales’dietdiversityarescarce,withmostinformation comingfromdirectobservationofpredationevents(Visser2000).Availabledata indicatethatkillerwhalesoffNewZealandhaveavarieddietrangingfromrays

28

(frequentlyobserved)andsharks(Fertletal.1996,Visser1999,Visseretal.2000)to cetaceans,includingwhalesanddolphins(Visser2000).Itispossiblethatsomepods specializeindolphinhuntingandfrequenttheregion(Visser2000).

TheyarenoreportedobservationsofkillerwhaleattacksonNewZealandfur seals( Arctocephalus forsteri ),despiteknownconsumptionoffursealselsewhere

(Matkinetal.2007).Ononeoccasion,whenasmallpodofkillerwhales wasobserved neartheKaikouraPeninsula,fursealsexhibitedathreatenedresponsebystayingoutof waterandhaulingoutonarockasthekillerwhalespassedby.However,onadifferent day,amalekillerwhaleswampastafursealwithnoapparentreactionfromeither animal(M.Srinivasan, personal observation ).

Afteryearsofdecline,fursealpopulationsareontherise(Bradshawetal.2000), andwithanincreasingpreyresourceitispossiblethatkillerwhalesmaychoosethemas preyoften.Forexample,MamaevandBurkanov(2006)reportedincreasingkillerwhale attacksonnorthernfurseals( Callorhinus ursinus )offtheCommanderIslandssince

2000,eventhoughtherewasnoevidenceofattacksbeforethat.

NearKaikoura,killerwhalesarerarelyobservedtopreyonduskydolphins

(Constantineetal.1998,Visser2000).Further,photographicanalysesofscarred dolphins(n=147:70withscars,77withrakemarks)chosenfromadatabaseofover

1000dolphins,showednoclearevidenceofsharkorkillerwhalepotentialattacks.In fact,nurserygroups,composedofmotherswithcalves,showedlittleornoscarring(<<

1%).However,duskydolphinsaresmalldolphins(~2m),morelikelytobecompletely consumedbyakillerwhaleorlargesharkratherthanbearscars.Alowscarratedoes

29

notimplythatpredationdoesnothappen,sincebehavioralresponsessuggestthatdusky dolphinsareclearlyfearfulofkillerwhalepresence.

Killerwhalesmayalsotargetcalfhumpbackwhalesduringtheirmigrationin

NewZealand.AhighscarringrateforhumpbackwhalesinNewZealandhasbeen reportedrelativetootherregions,thoughonly3of8individualsshowedrakemarks

(Mehtaetal.2007).

Visser(2000)reportedapeakinaustralsummerforkillerwhalesightingsnear

Kaikoura(19921997).Also,Markowitz(2004)observedkillerwhalesightingstovary byseason(19972003)—spring(21%),summer(55%),autumn(21%),andwinter

(3%).Longtermkillerwhalesighting(19952006)fromaduskydolphintouroperator,

Dolphin Encounter, confirmthisseasonaltrend(Dahoodetal.2008),withpeaksin

November(spring),australsummerandfall,andfewsightingsinwinter(Fig.4a).

Thesesightingssuggestthatdolphinsstayclosetoshoreinresponsetopeakkillerwhale attendanceoffKaikoura(Fig.4b).

30

sightings

a)

Dusky dolphins distance to shore

b)

FIG. 4 a) Total killer whale sightings near Kaikoura recorded during dusky dolphin tours 1995-2007. There were no killer whale sightings in July, b) Dusky dolphin average distance to shore (km) between months (1995-2006) (Data Source:

Dolphin Encounter, Kaikoura, New Zealand, courtesy: I. Bradshaw, L. Buurman, and D. Buurman ).

31

Nonpredatoryreasonssuchaschangesinsocialneedsorpreycouldinfluencethese seasonalpatterns.Although,stomachcontentanalysisofduskydolphinssuggestthat theyconsumemyctophidfishesandsquidthroughouttheyear(Cipriano1992).Westill needtolearnmoreaboutfoodpatternsbeforedefinitiveconclusionscanbedrawn.

FIG. 5 Selected killer whale sightings to highlight depth choices (depth in meters) off Kaikoura, New Zealand (1995-2007). (Data Source: Dolphin Encounter ,

Kaikoura, New Zealand, courtesy: I. Bradshaw, L. Buurman, and D. Buurman).

Bathymetry data, courtesy: National Institute of Water and Atmospheric Research

(NIWA), New Zealand.

32

Markowitz(2004)reported82%ofobservedduskydolphininteractionswith killerwhalesin>50mwaterdepth,oftenwheretheKaikouracanyonapproaches closesttoshore.Killerwhalesoftentravelparalleltotheshore,generallydisplayinga directionalmovement.Theymaybesightedinshallow(<20meters)anddeepwaters

(Fig.5)andlikelyfollowdepthcontours.Occasionally,theyarestealthyandnoteasily followed.

FIG. 6 Killer whale and dusky dolphin sightings off Kaikoura represented within a

50 x 40 grid and used to calculate density of occurrence and spatial correlation for the two species. (Data Source: Dolphin Encounter , Kaikoura, New Zealand, courtesy: I. Bradshaw, L. Buurman, and D. Buurman). Bathymetry data courtesy:

National Institute of Water and Atmospheric Research (NIWA), New Zealand.

33

Somekillerwhalepodsarecomposedof35individuals,whilesomearelarger

(530).However,wedon’tknowifgroupsizeanddepthpreferencedictatekillerwhale preychoiceandhuntingstrategy.

Iusedduskydolphintourboatdata( Dolphin Encounter 19952007)toperforma

CRHmodifiedttesttodirectlycorrelatekillerwhaleandduskycountsordensityof occurrenceinagrid(50x40cellswithcentroidXYgeographiccoordinates)off

Kaikoura(Fig.6).Thetestassumesthatvariablesmaybespatiallyautocorrelated.Killer whaleandduskyoccurrenceshoweda73%correlation(effectivesamplesizen=122).I alsoperformedacrossManteltest(WuandMitsch1998,Kjellandetal.2007)totestfor spatialcorrelationofduskydolphinandkillerwhaletourboatdatavariablesmeasuredat differenttimesoverthesamearea.Allspatialanalysiswasconductedusing PASSAGE softwarever.2.0(Rosenberg2001).Therewassignificantspatialcrosscorrelation betweenkillerwhaleandduskydolphindistancematrices(2000x2000)(t=33.20,p=

0.001,α=0.05).Thus,killerwhaleandduskyoccurrencepatternsappeartobe interdependent,assumingallkillerwhalesenteringKaikouraseekdolphinsasprey.

Therearesuggestionsthatpreymayrespondtohabitatdifferencesasameasure ofpredationrisk,ratherthanactualpredatorpresenceorabundance(Boinskietal.2003,

Verdolin2006).Sopreymaychoosehabitatsthatallowthemtoescapeeasily,rather thansimplyavoidpredation(YdenbergandDill1986).Bothfactorsmayinfluence dolphinhabitatuseduringpeakkillerwhaleseason.

Nurserygroupscomposedoffemaleswithyoungcalvesresponddramaticallyto predationriskfromkillerwhales,andthereforeareagoodindicatorofvaryingpredation

34

risklevels.Calvinginduskydolphinstypicallyoccursinlatespringtoearlysummer, andvulnerablemothersandcalvestendtostayinshallowwater(≤20meters,

Markowitz2004,Weir2007,2008).Nurserygroupshavenotbeenreportedinwinter.

Weir(2007)notedthatnurserygroupswerehardertofindondayswhenkillerwhales werereportedinthearea,atrendseeninthe2007fieldseasonaswell.Shealso describedanincidentofalonecalf,stressedandinshallowwater,possiblyduetoan earliersightingofkillerwhalesinthearea.

Duskydolphinsexhibitafewreliableresponsestokillerwhales,whichserveas shorttermantipredatorstrategies.Theyfleeatatopspeedof1622km/hr(Markowitz

2004)orinextremesituationshideinwaterslessthan1mdeep,aresponsenotedin

Argentina(WürsigandWürsig1980)aswell.OffKaikoura,Cipriano(1992)observed such‘hiding’dolphinstostayinthis‘stressful’refugefornearly4hoursuntilthe observationperiodended.

Sharks

Toassociatesharkeffectswithobserveddolphinbehavior,knowledgeofshark characteristicsandbehaviorisnecessary(Lima2002).Forinstance,somesharkscan easilymovebetweenshallowanddeepwaters,e.g.whitesharks( Carcharadon carcharias ,Wengetal.2007) , tigersharks (Galeocerdo cuvier ,Heithausetal.2002), andsevengillsharks( Notorhynchus cepedianus ,Ebert1991).Thedegreeofriskposed bythesesharkscandifferbyspecies,size,season,temperature,timeperiod,abundance, andhabitat—thisinturncanaffectobserveddolphinbehavior(LongandJones1996,

35

Heithaus2001,Ebert2002,Heithaus2004,Klimleyetal.2002,Luciforaetal.2005,

Wirsingetal.2006).

Thereisstrongevidencethatgreatwhiteandsevengillsharksexhibitan ontogenicshifttowardsmarinemammalpreyoncetheymatureintoadults(Ebert2002,

2003,LongandJones1996),makingthemamongthemostlethalsharksformarine mammals.

Therearefivespeciesofsharksthatpotentiallyposearisktoduskydolphinsoff

Kaikoura.Theseinclude:thegreatwhite,shortfinmako( Isurus oxyrinchus )(suspected cetaceanpredator,Heithaus2001),sevengills,sleepersharks( Somniosus pacificus ),and lesslikely,theblueshark( Prionace gluca ).Therearelimiteddataondistributionand movementpatternsofthesesharkspeciesinNewZealand,butsomespeciesspecific generalbehaviorisdiscussedbelow.

Sleeper sharks

Twospeciesof Somniosus orsleepersharkshavebeenreportedinNewZealandwaters

(Francisetal.1988).Althoughsmallsleepersharks( S. rostrata )havebeenidentified nearOaro,Kaikoura,theseposenorisktodolphins.Theotherspecies,thePacific sleepershark,isaknownmarinemammalpredatorandscavenger(Crovettoetal. 1992,

Taggartetal.2005,Sigleretal.2006).Pacificsleepersharkstypicallyrisetothesurface atnightandstaydownatdepthsduringtheday,exhibitingcontinuousvertical movement(Taggartetal.2005,Hulbertetal.2006).Theytendtostayindeepwatersin lowlatitudeswheretheyarebelievedtonevercometothesurface,whereasinhigh latitudes,theyoftencomeclosetothesurface(Compagno1984).Theirpresencein

36

KaikourawatersisunconfirmedandthereislittleinformationfromelsewhereinNew

Zealand.

Sevengill sharks

Thesearenocturnal,venturingintodeeperwatersduringthedayandtypicallypreferring turbidwaters(Ebert1991).Theyalsoengageincooperativehunting,whichfacilitates attackingfastmovingandlargermarinemammals,includingdolphins.Thereisalso evidenceofhabitatshiftinLaPlatariverdolphins,Pontoporia blainvillei ,inresponseto peakabundanceofsevengillsharks(Luciforaetal.2005).InArgentina,cetacean remainsofpossiblyduskydolphinsinsevengillstomachshavebeenrecorded(Crespi

Abriletal.2003).TheirhabitatuseanddistributionpatternsinKaikouraareunknown.

Great white, blue and mako sharks

Whitesharksuseshallowanddeepwaters(Wengetal.2007),whileblueandmako sharksarepelagicspecies.Allthreespeciesexhibitverticallyoscillatingmovementsor

‘yoyo’swimmingthataidinthermoregulation,travelandpredatorybehavior(Carey andScharold1990,HoltsandBedford1993,Klimleyetal.2002).Bluesharksalsofeed ontheverticalmigratinglayeroff(Tricas1979).Withtheirpreferencefor cephalopods,bluesharksmayfeedatnightnearKaikouraaswell,wherethepotential forinteractionwithduskydolphinsincrease.However,theyprobablyposenoriskto adultdolphins,unlesstheyareover2metersandencountervulnerableorwoundedones.

MobbingofjuvenilebluesharkshasbeenreportedinKaikoura(Markowitz

2004,M.Srinivasan personal observation )—suchbehaviorcouldserveasapredator deterrent,helpsensepredatormotivationorbealearningtoolagainstmoredangerous

37

predatorssuchaskillerwhales.Forexample,GrawandManser(2007)observedthat meerkats( Suricata suricatta )mobboththreateningandnonthreateninganimals,but adjusttheirmobbingbehaviorbasedonthedegreeofthreatposedbytheencountered animal.Also,mobbingbehaviorvariedwithage,withyoungmeerkatsmobbing squirrelsmorethanadultmeerkats,butexhibitingcautionagainstthemoredangerous snake.

Bluesandmakoshavebeenrecordedmakingthedeepestdivesduringtheday

(Careyetal.1981,CareyandScharold1990),possiblyolderandlargerindividuals

(Graham2004).However,blue,mako,andwhitesharksalsospendasubstantialamount oftimeatthesurfaceorclosetothesurface(Klimleyetal.2002,Graham2004).

PreliminaryresultsofawhitesharksatellitetaggingprojectbeingconductedinNew

ZealandwatersshownoevidenceofwhitesharktracksnearKaikoura,althoughthis speciesoccursthroughouttheregion(ClintonDuffy†, personal communication ).

Sharks in Kaikoura

InKaikoura,localfishermenandtouroperatorsreportthatsharkabundanceislowand apparentlydecreasing.Bluesarethemostcommonlyobservedshark,followedbymako sharks.Sharksightingspeakinaustralsummerandfall.Sharkdivingoperationsin

Kaikouraclosedinthelate1990sduetolackofregularsharksightings.However,no systematicstudieshavebeeninitiatedtomonitorsharkpopulationsinthearea.

InMarch2007,Iconductedabriefsharkpresence/absencestudyinKaikoura fromafishingboat.Theownerhadpreviousexperiencewithsharkdivingoperations

†ClintonDuffy,MarineConservationUnit,DepartmentofConservation,NewZealand

38

andwasfamiliarwithfavoredsharkspotsinthearea,particularlyazonejustnortheast oftheKaikouraPeninsula.Frozenbait(composedofgroundupfish)releasedanoily residue,providingachumlinetoattractsharks.Burleybagswithcodandperchfish scrapswerefloatedonthesidesoftheboatasadditionalbait.During3differentdaysfor about13hours,using5kilogramsoffrozenchum/hour—somesmallsharks,23 porbeaglesharks Lamna nasus (1.5meters),andone2.5metermakosharktookthebait.

Asimilarstudyconductedin2003(Feb5–March13),forabout70hours,offthesame fishingboatresultedinasinglesightingofa3metermakoshark(VictorFosterand

JodieWest,unpublisheddata).Further,from1999–2007,aseabirdtouroperatorin

Kaikoura, Albatross Encounter ,recorded51blueand7makowith31sightingsinfall,

17insummer,3inspring,andnoneinwinter.

Itispossiblethatsharksarewaryoffishingboatsandavoidthebait,orshark abundanceinKaikourawatersislow.Currentevidencepointstoashrinkingorlow sharkpopulationoffKaikoura.Sokillerwhalesmaybeamorepotentthreatthansharks inKaikourawaters.Otherfactorsmaycontributetothereducedsharkpresencee.g. sharkfinningandincreasinglonglinetunafishingbycatch(Ayersetal.2004,Ministryof

Fisheries2007a,b).

Dusky dolphins – group living and vocal repertoire

Group living

Predationriskcanleadtogrouplivingbyaffectingpreybehavior,socialrelationships, andhabitatselection,welldescribedinseveralclassicpapers(Hamilton1971,Pulliam

1973,Alexander1974,Jarman1974,Bertram1978,VanSchaikandVanHoof1983,

39

Trivers1985,Elgar1989,Dehn1990).Overevolutionarytime,preydeveloped strategiestofindfood,water,andpotentialmates,knowingthatdangerlurkedcloseby.

Recentstudieshaveshownthatsomefundamentalassumptionsonpredationrisk andhowitcorrelateswithgroupsizeandtheconsequentdifferencesinvigilance, detection,dilutionandencountereffectscanvarybetweenspecies,habitat,andpredation pressures(InmanandKrebs1987,KrauseandGodin1995,BednekoffandLima1998,

CreelandWinnie2005,LileyandCreel2007).

Thus,antipredatorstrategiesneedtobeevaluatedincontext.Forexample,

WolffandHorn(2003)intheirstudyonwolfeffectsonelk( Cervus elaphus )behaviorin

Yellowstone(predatorspresent)andRockyMountainNationalParksandMammothHot

Springs(predatorfree),reportednocorrelationbetweenpercentageofcowsvigilantand groupsizeineitherlocations.InYellowstone,cowswithcalvesspentmoretimevigilant thanforagingrelativetocowswithoutcalves.Intheothertwoparks,therewasno differenceinlevelsofvigilanceforcowswithandwithoutcalves.

TheirfindingswereconsistentwithresultsobtainedbyLaundreetal.(2001)who alsofoundnocorrelationbetweenpredatorvigilancelevelsandgroupsizeforelkin

Yellowstone.Thus,levelsofpredationpressurecandeterminethedegreeofanti predatorbehavior,andmayormaynotinfluencegroupsize.

Dolphinshavefewrefugesfrompredatorsinthemarineenvironment(Connoret al.2000).Indolphins,safetyinnumbersduetothe‘selfishherd’effect(Hamilton1971), andatightsocialstructureandorganizationwithheightenedsensoryawareness

(reviewed inNorrisandSchilt1988)areessentialtopredatorydetectionandavoidance.

40

Group size

OffKaikoura,duskydolphinsexhibitlargergroupsizesinwinter(often>1,000)when theyarefoundfurtheroffshore,thaninsummer(generally<1,000)whentheyarefound inshore(Markowitz2004).Groupsizealsovarieswithsocialtype/class.Mixedage/sex groupsformthelargestgroupscomprisedof>50individuals,(mostoftenhundreds).

Mothercalfnurserygroupsaretypicallycomprisedoffewerdolphins(mediangroup size=14,Weir2007).Nurserygroupsarerarelyobservedinwinter(Markowitz2004).

Othersocialgroupsalsohavesmallergroupsizes.Forexample,matinggroupshavea mediangroupsizeof6andnonsexuallyactiveadultgroupshaveamediangroupsizeof

810(Markowitz2004,Srinivasan(thisstudy)).

Formostdolphinspecies,correlatinggroupsizewithpredationriskisnot straightforward,especiallyinopenhabitats(Gygax2002,Gowansetal.2008).In general,individualsinlargegroupsmayderiveantipredatorbenefits(Krauseand

Ruxton2002).

However,largerduskydolphingroupsizesinwintermaynotnecessarily correspondtohigherpredationrisk,askillerwhaleandsharkpresenceisminimal.

Largerwintergroupsizesmayinsteadreflectalargeinfluxofnewindividuals

(Markowitz2004,Würsigetal.2007)ormayhaveforagingorsocialbenefits.Creeland

WinnieJr.(2005)intheirelkstudiesfoundthatgroupingisnotalwaysanantipredator tactic,aselkherdsizeincreasedwhenwolveswereabsent.Instead,elkaggregationin areasawayfromcoverintheabsenceofwolveswasattributedprimarilytoforaging needs.

41

Also,InmanandKrebs(1987)exploredtheideathateventhoughtheprobability of detection increases with group size, group size does not increase linearly. After a certain stage detection becomes independent of group size. Krause and Godin (1995) found that cichlids preferentially attacked large shoals of guppies, even though percentageofsuccesswasrelativelylow.Otherstudiesonbirdsandmammalsalsoshow preferentialattackonlargergroups(BrownandBrown1996).

Nursery groups

Theformationofmothercalfnurserygroups,commonamongdolphins,canoffercalves protectionfrompredatorsbychoosinglowriskareasandalsoprovideincreased opportunitiesforsociallearning(Wells1991).Isolationofnurserygroupsfromlarge adultgroupsmayserveadualpurpose—1)reduceharassmentfromlargergroups

(Weir2007),and2)reducevulnerabilitybychoosingsaferareas,andtherebyincrease abilitytoescapeundetectedpriortoanimminentthreat.

Afemaledolphinwithacalfisbothenergyandspeedhandicapped(Noren

2008),andaneasiertargetthanafastandindependentadultdusky(Markowitz2004).

Thismayaltertheirdecisiontofleefromalethalsharkorfurtivelymovealongthe shallowstoavoidkillerwhales.SimilartoMarkowitz(2004),Iobservednurserygroups andlargemixedgroupstomaintaintightinterindividualproximity(<2m)especially whenrestingandslowtravel.

Group swimming formation and inter-individual distance

Duskydolphinsdifferingroupspreadandswimmingformation(shape)dependingon season,timeofday,activityandsocialgrouping.Ingeneral,dolphinsspreadoutfurther

42

inwinterthaninsummerorspring.Spacingincreasesfromdaytimetoafternoonasthe dolphinsmoveoffshoretoforage.Also,duskydolphinsgenerallyprefercircularor echelonpositionswhenrestingbutswitchtolinearorstaggeredswimmingformations whentraveling(Markowitz2004).

NorrisandSchilt(1988)suggestedthatHawaiianspinnerdolphinsarecautious againstbothkillerwhalesandsharks,andthereforeschoolbothdayandnight.Dusky dolphinsnearKaikouramayriskatradeofftomaximizefoodsearching.Alternatively, theycouldrelyonacousticcontacttomaintaingroupcohesionandpredatordetection, similartoduskydolphinsinGolfoSanJosé,Argentina(Würsigetal.1989).

Asfortheirpredators,killerwhalesmayactivelyhuntatnight(VolkerDeecke, personalcommunication,NewmanandSpringer2007)andmayadoptspecialacoustic signalsortacticstoattackdolphins.Thus,predationatnightmaygounnoticed.Though insummer,greaterthan12daylighthoursareavailableforkillerwhalesonthehunt, anddaytimepreyingmightbemoreadvantageousthanhuntingatnight.

Vocalizations

Duskydolphinsrarelywhistle,moreoftenproducingclicksandburstpulses(Yin1999).

Whenmilling(resting)andtraveling,whistleswererarelyrecorded(Yin1999),and thereforemaynotbeasignificantcomponentoftheirdaytimecommunication.Couldthe lackofwhistlesbeakillerwhaleavoidancemechanism,perhapssimilartowhat

MorisakaandConnor(2007)hypothesizedfornonwhistlingodontocetes?Further studiesonduskyvocalizationsduringdayandnight,andinthepresence/absenceof

43

killerwhales,mayclarifytheimportanceofwhistlesandothercallsindusky communicationasantipredatory.

Conclusions

Duskydolphins,likeotherprey,haveadoptedshortandlongtermstrategiesthatappear effectiveagainstpotentialkillerwhaleattacks.Forexample,theychooseshallowwater habitatsduringpeakkillerwhaleseason,fleeormakedrasticmaneuvers,changegroup formation,andformnurserygroups,whichhavetheirownsetoftactics.Muchremains tobelearnedaboutthebenefitsversuscostsofmakingsuchchoices,asduskydolphins seektominimizepredationriskwhilemeetingfoodneeds.Investigatingthisaspect formsthecruxofmyresearchandisdiscussedatlengthinthesubsequenttwochapters.

Suchresearchexplorationsallowustoquestionandunderstandthetheoretical underpinningsofpreyandpredatorstrategiesthathavestoodthetestoftime.

44

CHAPTER III

EXPLORING FEAR EFFECTS IN DUSKY DOLPHINS WITH A

SPATIALLY EXPLICIT INDIVIDUAL-BASED MODEL

Simplicityistheultimatesophistication. LeonardoDaVinci(14521519) Introduction

Fearcandrivespatialpatternsanddistributionofterrestrialandmarineorganisms(Lima andDill1990,SihandWooster1994,Lima1998,Wirsingetal.2008).Howthis translatesintopreylifestyledecisionsandcostshasledtomanyinterestingstudies

(reviewed in Dill1987,Sih1987,Lima1998,Verdolin2006).Butinmostpredatorprey studies,thechiefparticipantsarenottreatedascleveranddynamicinteractingsubjects thatinfluenceeachother’sbehaviorandspatialdistribution(MitchellandLima2002,

Lima,1998,2002,LuttbegandSih,2005,BrownandKotler,2004).Theoreticalmodels proposedtorepresentthesedynamicrelationshipshavenotbeensimulated(Lima1998,

Brownetal.1999,2001,BrownandKotler,2004).Further,mostpredatorpreymodels tendtofocusonaggregatedpopulationdynamics,typicallyinvolvingderivationsofthe

LotkaandVolterraclassicequations(Lotka1925,Volterra1926),notonindividual behavior.Therefore,formostspecies,wedonotknowhowchangingpreyandpredator behavioraltacticsaffecttheirforagingmovesandwhatcostsareincurredbyprey engagedinpredatoravoidance.

45

Amongavailablemodelingtools,individualbasedmodels(IBM)areideally suitedtoaddressmovementandindividualbehaviorinaheterogeneousenvironment

(AdamsandDeAngelis1987,GrimmandRailsback2005).Also,individualbased modelsprovideanexcellentmediumtosimulatepredatorandpreybehaviorwherethe focusisontheindividual.PreviousIBMmodelsonpredatorpreyinteractionshave concentratedonpreygrowthrates(e.g.MadenjianandCarpenter1991),survival(e.g.

Riceetal.1993),marinemammalpopulationdynamics(Chiversetal.1999,Testaetal.

2007),andenergybudgetsandbioaccumulation(Klanjscek2006,Halletal.2006).

TheIBMframeworkcanbeusedtorepresentlargerprocessesandpatternsbased onfielddata(Grimmetal.2005,Petersenietal.2008)thatgoverncomplexpredator preyinteractions,suchasindirectpredationriskeffectswithemphasisonpreyand predatorbehavior.

Whenbothpredatorandpreyreignatthetopofthefoodchainandsharesimilar sensorymodalities,e.g.asinmarinemammals,understandingindirectpredationrisk effectscanbecomplicatedduetobehavioralandcognitiveplasticityexhibitedby predatorandprey.However,exploringtheserelationshipscanprovidenewinsightsinto theevolutionandpersistenceofantipredatormechanismsincleverpreyfacingclever andfiercerpredators.

Tomyknowledge,therearecurrentlynoIBMsthatsimulatebehaviorand movementtodescribeandevaluatepredationriskeffectsindolphins.Thus,despite informationsuggestiveofpredatoreffectsindolphinsandothermarinemammals

46

(Jeffersonetal.1990,Connor2000,Heithaus2001),therearefewstudiesthathave exploredtheinfluenceofpredatorsonthebehavioralecologyofdolphins.

Toanswertheultimatequestionoffeardrivencostsversusbenefitsforaclever preydealingwithacleverpredator,IdevelopedanIBMtorepresentthedynamicnature ofduskydolphin(Lagenorhynchus obscurus )andkillerwhale( Orcinus orca ) interactionsnearKaikoura,NewZealand.Morespecifically,Iwasinterestedin calculatingtime/distancebudgetsforduskydolphinsinthepresence/absenceofkiller whalesandthepresence/absenceofmovementandbehavioralrules,whichpresumably evolvedinresponsetospatialandtemporalvariationsinpredationrisk.Thesimulation resultswereusedtoestimatethecosts vs. benefitsofduskydolphinantipredatorchoices frombothecological(time/distancebudgets)andevolutionary(survival)perspectives.

Background

NearKaikoura,NewZealand(42°30’S173°35’E),duskydolphinsareoccasionally preyeduponbykillerwhales.Bothpredatorandpreyarelargebrainedsocialmammals

(Marino1998)thathaveanimpressiverepertoireofsocial,foraging,andsurvivalskills inademandingandlargelyrefugefreeenvironment.

Despitetherarityofpredationeventsobserved,duskydolphinsareclearlyfearful ofkillerwhalepresenceinthearea.Theyshowanimmediateanddrasticresponseof hidinginshallowwaters(10m),sometimes<1mwaters,orfleeingwhenkillerwhales areinthearea( reviewed in ChapterII).Additionally,theyexhibitthechronicresponse ofchoosingtostayinnearshoreshallowwaters(typically<200mdeepforadults,<20

47

m deep for mothers with calves) during peak killer whale season (late spring

(November)andsummer/fall))(Dahoodetal.2008,ChapterII).

KillerwhalesarenotaregularorpredictablepresenceoffKaikoura.However, longtermkillerwhalesightingtrends(19952007)correlatestronglywithduskydolphin choicesfornearshoreshallowlocations(Dahoodetal.2008,ChapterII).

Duskydolphinsfeedatnightinoffshoredeepwatersonverticalmigratingprey composedofmesopelagicorganisms(Würsigetal.1989,Cipriano1992,BenoitBirdet al.2004).Sotheymakenearshoreoffshoreforagingtripsduringtheyear,exceptin winter.Inwinter,theyarefoundfarthestfromtheshorerelativetootherseasonsand haveeasieraccesstotheirprimaryfoodsource(Dahoodetal.2008).

Foodabundance,location,andcompositionmaychangebetweenseasons,but duskydolphinsappeartofeedyearroundonthedeepscatteringlayer(DSL)(Cipriano

1992).Theforagingtimeavailablealsovariesbyseason,aresultofthechanging sunrise/sunsettimes.Inaustralwinter,foodisavailablelonger(12–13hours)versus summer/fall(79hours)(BenoitBirdetal.inpress).NovembertoearlyJanuaryisalso thecalvingseasonforduskydolphins(Cipriano1992).So,foramajorpartoftheyear duskydolphinshavetocontendwithunpredictablepredators,variableforagingtime,and alsosuccessfullyrearnewborncalves.Conceptually,duskydolphinmovementand behavioroffKaikoura,NewZealandcanbevisualizedinFig.7.

48

LATE AUSTRAL SPRING, SUMMER AND FALL

Killer Whales Dusky Dolphin PRESENCE HIGH CALVES PRESENT Dusky Dolphins Dusky Dolphins NEARSHORE (Day - REST) OFFSHORE (Night – FEED)

Dolphins near shore – A offshore movements B

offshore – offshore movements

WINTER

Survival Benefits

Killer Whales Anti-Predator Dusky PRESENCE RARE Dolphin Decisions (with and without calf)

Escape and Foraging Foraging Travel Costs Hiding Costs Efficiency Costs

FIG. 7 A conceptual model of the dusky dolphin – killer whale system off

Kaikoura, New Zealand, where A = nearshore shallow waters, B = offshore deep waters. In winter, dolphins are found in offshore deep waters B, and do not make near shore-offshore trips to feed and killer whale presence is rare.

Sowhataretheconsequencesofduskydolphinantipredatordecisions?

Swimmingcostsareminimalformarinemammalsrelativetoterrestrialorganisms,but higherthanfishes(Williams2002).Atseahowever,marinemammalscanbe

49

compromisedbyforagingtimeavailable,timeavailableforotheractivities,travel

(distance),andlactationcosts.

InthischapterIdescribeandevaluateaspatiallyexplicitIBMdealingwith indirectpredationriskeffectsusingarepresentativedolphinsystemoffKaikoura,New

Zealand.Ialsodiscussmodelpotentialandfutureapplications.

Kaikoura Peninsula

Haumuri Bluffs

FIG. 8 Map of the system of interest off Kaikoura, New Zealand, indicating the coastline and offshore bathymetry, as well as the grid of 1468, 1 km x 1 km cells used to represent the habitat of the model. Bathymetry data courtesy NIWA, New

Zealand.

50

Model structure

ThesystemofinterestnearKaikoura,NewZealandischaracterizedbythepresenceofa vastsubmarinecanyon(LewisandBarnes1999)associatedwithasubtropical convergenceofcoldAntarcticandwarmtropicalwatersproducingahigherprimary KaikouraPeninsula productivitythanotherlocationsnorthorsouth(Boydetal.1999).TheKaikoura

Canyonisroughly60km 2inlengthandabout1,200mdeepwithaUshapedprofile.

Thecanyonheadbeginswithin500metersfromshore,bringingdeepwaterscloseto shore.

Inthemodel,theKaikourahabitatisrepresentedby1468,1kmx1kmcells HaumuriBluff (Fig.8).Thisareawaschosenbasedonobservedduskysightingsfromtourboatdata

(Dolphin Encounter ,NewZealand1995–2007,courtesy:I.Bradshaw,L.Buurman, and,D.Buurman)anddedicatedsurveys(Cipriano1992,Markowitz2004,ChapterII).

Duskydolphinshavenotbeenobservedfartherthan20kmfromshore.Eachhabitatcell islinkedtobathymetricfeaturesorcontourlines.Wherelinesareabsent,theclosest bathylinedepthvaluewasused(BathymetricDataCourtesy:NationalInstituteofWater andAtmosphericResearch(NIWA),NewZealand)(Fig.8).

Themodelhas3maincomponents:1.Duskydolphins(prey),2.KillerWhales

(predator)and3.Habitat(bathymetryandDeepScatteringLayer).Classattributesofthe mainmodelcomponentsaredescribedinTable1.

51

Table 1 Attributes of dusky dolphin, killer whale, and habitat modules of the dusky dolphin IBM representing the system of interest off Kaikoura, New Zealand

Dusky Dolphins Killer Whales Habitat 2dolphintypesfemalew/calf andadult(male/femalewithouta Foodisavailablebetween calf) 2killerwhalegroups sunsetandsunrise

Groupsizefemalewithcalf(20 75) adults(150500) Groupsize130 Foodcompositionnotconsidered

Maxnumberofanimals Bothgroupsadduptomax30 inpopulation2,000atany animalsinthesystemat Foodappearsinrandomcells> particularmoment,systemclosed anyparticularmoment 400metersatnight

Dolphinshavean ageandsex,randomlyassigned. Groupscanbecomposedofmales Individualcalvesareassigneda orfemales,juveniles Patchdensityineachfoodcell specificmom. >400mvariesthroughthenight.

Behavioralstate:cruise,search, Behavioralstates:rest,travel, stalk,wait, search,feed,fleeandhide posthuntmode Lunarcycleeffectsnotconsidered

Exhibitvariablespeedsthatvary Foodabundanceunknown, withactivityandbetweensocial Exhibitvariablespeedsthatvary assumemorethanenoughfoodis classes. withactivity availabletoeat

Individualdolphinshavehunger levels,arbitrarilysetat0and progressivelyincreasedwithtime andactivity. Iscalculatedas:dailyenergy Eachcellislinkedtobathymetric requirements(DEQ)–foraging contourlines.(Bathymetrydata costs(FC)+maintenancecosts NotIncluded courtesy,NIWA,NewZealand) (MC),aswellasgroupsize.

Eachduskydolphinhasan Eachkillerwhalehasanindividual individualclock,keepingtrackof clock,keepingtrackofchangein changeintimewithmovement. timewithmovement.

52

Model process overview

Themodelisagridbased,spatiallyexplicit,stochasticindividualbasedmodel, programmedinVB.NET © (MicrosoftVisualStudio2003).Eachgridcellisgeo referencedandrepresentsa1km 2areaoftheKaikouraCanyon.Modelsimulates predatorpreydynamicsover210daysin80,6401/16th ofanhourtimesteps.Model resultswererecordedas.CSVfiles,andwereanalyzedspatiallyinArcGIS9.0.The sequencingofthemainprocessrepresentedinmodelisshowninFig.9.Theprogram cyclesthroughthissequenceofeventseach1/16 th hour.Unlessstatedinthetext, supportedbyliteratureordata,behavioralandmovementrulesforduskydolphinsand killerwhalescanbeassumedasmodelhypothesis.

Initial conditions

Thefirststepinthemodelsimulationistheinitializationoftheprimaryvariables(Fig.

9):killerwhale,duskydolphins(initialcell),andhabitat(bathymetryandinitialDSL cell).Dolphinsandkillerwhalesmove16stepsinanhour.Theideawastousethe smallestpossibletimesteptocapturethemovementofdolphinsandkillerwhales betweencellsastheyswitchbetweenbehaviors.Baselinevaluesusedinmodel simulationsarelistedinTable2.

Update environment

Iupdateclocks,calendarsandphotoperioddeterminedbysunriseandsunsettimes.

Sunrise/sunsettimeswereobtainedfromtheUnitedStatesNavalObservatory http://www.usno.navy.mil/

53

Initial Condition

Update Environment PREY

DUSKY DOLPHINS Habitat (DSL) PREDATOR/PREY INTERACTION Resting Travel Search Feed DUSKY RESPONSE Dusky Dolphin Behavior Flee Hide PREDATOR KILLER WHALE RESPONSE Killer Whale Behavior Stalk KILLER WHALES Wait Post-hunt Cruise/Search

NO End of Simulation Step?

YES

NO End of Rep?

YES

End Simulation

FIG. 9 Sequencing of the model process included in the IBM with a time step of

1/16th of an hour.

Table 2 Baseline values of parameters used in model simulations. Values are based on literature, available data, or from similar species. Where information was lacking, conservative estimates were used. KW = Killer whale, DSL =

Deep Scattering Layer

Parameters Values Source (NovMay)KWseasonandcalfpresence(Cipriano1992,Markowitz2004, SimulationBegin(dayofyear) 306 Dahoodetal.2008,ChapterII) SimulationLength(indays) 210 ModelSimulation Numberofkillerwhalegroups 2 ModelSimulation Numberofdolphingroups 1 ModelSimulation Dolphinescaperuleson=1off=0 1 ModelSimulation Maximumtimesteps(km)perhour 16 ModelSimulation Killerwhaledetectiondistance(km) 5 Estimate Dolphindetectiondistance(km) 4 Estimate (Basedon19952007 Dolphin Encounter tourboatdata , Kaikoura,NZ, KWReturnTime(days) 3 Visser2000) KWPosthunttime(hour) 1 Estimate DolphinMemoryinrefuge(hour) 1 (EstimatebasedonCipriano1992) KWWaittime(hour) 1 Estimate MeanDSLdensity(kcal/cu.m) 0100 (EstimatebasedonBenoitBird2004) Givingupforagingthreshold(proportionofmaxDSL) 0.67 ModelSimulation Rest(km/hr) 4.5 (BasedonMarkowitz2004) Feed(km/hr) 5 Estimate SearchforFood(km/hr) 5 Estimate Travel(km/hr) 8 (BasedonMarkowitz2004) Flee(km/hr) 18 (BasedonMarkowitz2004) KWCruise(km/hr) 8 (BasedonWilliams2002,Fordetal.2005) KWStalk(km/hr) 16 (BasedonWilliams2002,Fordetal.2005,FordandReeves2008) 54 55

Habitat

Daylighthoursdifferbetweenseasons,shorterinwinterandlongerinsummer,thus, affectingtheamountoftimefoodisavailableforforagingdolphins.TheDSLisalso stronglyaffectedbylunarcycles(BenoitBirdetal.2004,BenoitBirdetal.,inpress).

However,IdonotconsiderlunareffectsinthepresentIBM.TotalDSLavailableis unknownforKaikoura.IassumeDSLavailablevariesindensityandoccursin randomizedpatchesorcells(waterdepth>400m)atnight,whichdiffersfromdayto day.

Thedeepscatteringlayergenerallyoccursindaytimedepthsof400–700m

(Reid1994),andatnightcanrangebetween400meterstothesurface.Thedaytime depthoftheDSLmakesitinaccessibletoforagingdolphins.InKaikoura,atnight,the

DSLrisestowithin30moffKaikoura,(BenoitBirdetal.,inpress),andbecomes availabletotheforagingduskydolphins(BenoitBirdetal.2004).IassumeDSL movementfromdaytimedepthstoshalloweraccessibledepthsfordolphins,butthisis notexplicitlyprogrammedinthemodel.

AcousticstudiesontheDSLofftheHawaiianIslandsshowthatthemeancaloric densityofthemesopelagicboundary(islandassociated)communityis83kcal/cu.meter withamaximumof9,000kcal/cu.meter(BenoitBird2004).Itisbelievedthatthe densityofmesopelagicorganismsoffKaikouraislowerthanoffHawaii(1,800 individuals/cu.moffHawaii,BenoitBird,2004,BenoitBirdetal.,inpress),butprey distributionismoreuniformrelativetoHawaii.Inthemodel,Iestimatedthemean patchdensityoftheDSLineachcelltovarybetween0and100kcal/cu.meter.Ialso 56

assumethatmorethanenoughfoodisavailablefortheforagingdolphinsconsidering thatdolphinsfeedexclusivelyatnightandyearroundontheDSL.Dolphinsareassumed tofeedthroughoutthedurationofDSLavailability.

Fooddensitycanchangeduetomesopelagicorganismsavoidingorfleeing dolphins,orfallingbelowdolphindivingdepths(>150m,BenoitBirdetal.2004),or duetoagroupofdolphinsdepletingafoodsource.WhileIconsidergroupsizedepletion offoodpatch,Idonotexplicitlyconsidertheothertwomechanismsbywhichfood becomesunavailable.Instead,Iconsiderathresholdingivingupduetofooddensity,so whenfooddensityfallsbelow2/3rdsthetotalfoodunits,dolphinsmovetoadifferent patchorcell.

Dusky dolphin behavior

Duskydolphinsstartinarandomcellatthestartofthesimulation,buttheirpositionin thesystemisconditionalonwhetheracalfisinvolvedanddepthrulespecifications.

Dolphinsmovebecauseofa)photoperiod(sunrise/sunset)change,b)presence/absence ofkillerwhales,c)foodpresence/absence.Inthemodel,duringpeakkillerwhale presence(summer,fall,latespring),dolphinsmovefromnearshoreshallow(<200m deep)duringthedayandintooffshorecells(>400mdeep)duringtheafternoonand nighttoforageontheDSL.

Dusky dolphins have six different behavioral states

Rest :representsduskydaytimemovementintoadjacentcells.Exceptinwinter, dolphinsmoveintoadjacentcellsparallelandalongtheshore,guidedbydepth restrictions(<200mforadultfemale/male,and<20mforfemalewithcalf(Weiretal.

57

2008,Dahoodetal.2008.ChapterII).Inwinter,therearenocalvesandalldolphinsare indeeperwater.Dolphinsmakemoreofanorthsouthmovement(Cipriano1992,

Markowitz2004).Iassumethatforfemalewithcalf,averagecruisingspeedis4km/hr, andforadultfemale/male,averagespeedis4.5km/hr,basedonCipriano(1992)and

Markowitz(2004).

Travel: dolphinsincreasespeedto68km/hr(Markowitz2004).Dolphinsswitchfrom restingtotravelmodeassunsetapproachesanddesiretofeedincreases.Theytravel througheverycelltotheclosestdeepestcell(>400m)thatmaycontainfood.

Search :oncethedolphinsareindeeperwater,theyinitiatefoodsearchandswitch behaviors.Theycanmovewithina5km 2areasearchingforfoodamongadjacentcells.

Feed :ifdolphinslocatefoodtheystopsearching.Searchandfeedingspeedareassumed tobesame(~5km/hr),exactvaluesarenotavailable.Idonotconsiderdolphindiving speedandduration,whichshortensthetimespentatthesurface.Dolphinsfeedonlow orhighdensitypatches,butaredependentondepthoffoodlayer(BenoitBirdetal.,in press).Iffoodisinaccessiblee.g.>150mtheymovetodifferentfoodpatch.Thisdepth limitingaspectoftheDSLisnotprogrammedinthemodelexplicitly.Inthemodel, dolphinsfeedthroughouttheperiodfoodisavailableunlessinterruptedbyapredator threatortheyareinsearchmode.

Flee :whendolphinsdetectkillerwhales,theyexhibitafleeresponse,whichisnot instantaneous,butwithinatimestep.Theyswitchtofleestatefromtheprevious behavioralstateandincreasespeed(1622km/hr(Markowitz2004)).Dolphinschoose theshortestdistancetothenearestshallowwaterzone(<10m)toescapeanattack.The

58

ideathatdolphinswillchoosetheshortestdistancetosafetyorafterfeedingoffshoreis merelyahypothesisandnotbasedondirectobservations.

Hide :Postfleeing,dolphinscanhideinnearshoreshallowwaters>10mdeepto escapefromapotentialkillerwhaleattack.Theyreemergefromtheirrefugebetween1

3hoursforadultduskydolphins,35hoursifafemalewithcalfispresent.Dolphins resumenormalactivityoncekillerwhalesareoutofsystemorbeyonddetectionrange(>

5km).Theyhaveamemorytoreturntonormalactivitythatcanbevaried,butIusean averagewaitingtimeof1hour.Itisnotknownhowlongadolphincanstayinarefuge, butCipriano(1992)observedthatduringoneeventafterkillerwhalesweresightedin thearea,dolphinsmovedintoshallowwaters(>1m)andstayedfornearly4hoursuntil hisobservationperiodended.

Killer whale behavior

Killerwhalesarepresentinthesystemasgroups,withamaximumoftwogroups presentinthesystematanyparticulartimewithagroupsizeof1to30.Thegroupscan beaffiliatedtothesamepodordifferentpods,butthecombinedgroupsizeofboth groupsis30:thiscorrespondswiththemaximumnumberofanimalsobservedinthe

Kaikouraarea( Dolphin Encounter 19952007tourboatdata).Dolphingroupsizescan easilybevaried.

Killerwhalesarenotinthesystematthestartofthesimulation,buteachgroup entersrandomlywithadefinedrealisticreturnprobabilityandarandomroute(shallow ordeepwatercontour)inthesystem.Killerwhalesenterthesystemrandomlyfromany ofthelastrowofnorthorsouthcellsinthegrid.Iftheyenterfromthenorthendthey

59

typicallymoveoutofthesystemthroughthesouthendandviceversa.Theirentryinto thesystemandthedepthcontourtheyfollowarerandomized.Killerwhales(maxoftwo groups)followthedepthcontourlines,movingeitherthroughdeepwater>200morin shallowwatercontourlines(>10m<200m).

Iassumethatthekillerwhalegroupsencounteringduskydolphinsare specificallyonthehuntfordolphins,whileotherkillerwhalesinthesystemarenot motivatedtohuntorareseekingotherprey.Killerwhalesonceoutofthesystemcan returnthenextday,0.5days,3dayslater,oraweeklater,characterizingthe unpredictabilityoftheirvisitstoKaikoura.Becauseoftherandomnatureofentry, directionofmovement,andchoiceofcontourline,theycanbeinthesystembuthaveno effectontheduskydolphinsduetothelimitsoftheirpreydetectionrange.

Killer whales exhibit the following behavioral states

Cruise/Search:Whencruisingandinsearchmode,killerwhalestravel6–8km/hr

(Williams2002)andfollowbathymetriccontourlineswithinafewhundredmeters differencebetweentheinitialcontourlinetheychoosewhenenteringintothesystem.

Duringsearchmode,theysearchthroughadjacentcellsaroundthemandifadusky dolphiniswithindetectionrange,theyorientthemselvestowardsthatclosestindividual andtakethestraightestpathtothedolphin.

Stalk:Whenstalking(hunting),killerwhalestravelfaster,between15–25km/hr.

Speeddataarebasedonkillerwhaleaveragespeedestimates(Williams2002,Fordetal.

2005,FordandReeves2008).HereIassumeanaveragestalkspeedof16km/hrbutdo notaccountfordivingspeedordurationwhentheyareonthehunt.

60

Wait: Whenkillerwhalesareunsuccessfulincapturingaduskydolphin,theywaitnear hidingdolphinstoseeifanotherattackopportunitypresentsitself,approximately1hour, butcanbevaried.Thereislittleinformationonpredatorbehaviorpostattackandthis behaviorishypothesizedinthemodel.

Post hunt: Killerwhalesengageinaposthuntmodewheretheytemporarilysuspend theirpredationattemptsforaminimumofonehouror16timestepsbeforetheycan reverttostalkmodeagain.Oncekillerwhalepresenceisdetectedanddolphinsengage inescapebehavior,Iassumethatthekillerwhalesloseanelementofsurprisetolaunch anotherattackandtherefore,bidetheirtimetillanotheropportunitypresentsitself.If dolphinsareoutofdetectionrangeandinhidingmode,killerwhalesresume cruise mode.

Killer whale-dusky dolphin behavioral games

Bothdolphinsandkillerwhalesdetecteachotheratvariabledistances—5kmsfor killerwhalesand25kmsfordolphins.Detectiondistanceiskeptconstantforthemodel simulations,butdetectiondistancesforbothspeciescanbevaried.Themechanismsof detectionforvocalizingoractivedolphinsarenotconsidered.Killerwhaleswhenin cruisingmodeswitchtostalkingmodewhentheydetectdolphinsinanyofthe8 directions(NE,N,NW,S,SW,SE,W,E)andheadstraighttowardstheclosestdolphin.

Incasekillerwhalesfollowthedolphinsintoshallowsandareunabletolauncha successfulattack,theypatrolorstalkforonehour,andthenenterintoaposthuntmode.

Ifaduskydolphindetectsakillerwhale,theyenterintofleemodemovinginto nearestshallowwatersbutifkillerwhalesareinthewaytonearestshallowzone,they

61

fleetomaximizedistancebetweenthemandthepredatorandthenheadtoclosest shallowcell(modelhypothesis).Anencounterindexmaintainsthenumberofkiller whaleduskydolphinencountersinacell.Theseencountersaccrueandthus,thedolphin isimmortal.

Bothpreyandpredatormaintainashorttermmemoryoftheattack.Idonot maintainlongtermmemoryofattacksthatmayinfluenceduskydolphinstoavoid certainhighrisklocations.Bothdolphinsandkillerwhalestraversethrougheachofthe cellsthatfallbetweentheircurrentpositionandtheirfinaldesireddestination.The movementthrougheachcellenablesgreaterencounterbetweenpredatorandprey,and alsoprovidestimeforpreytoavoidpredator,orforpredatortocatchupwithprey.All behavioralstatesforduskydolphinsandkillerwhalesarecolor -coded(Fig.10)andcan bevisualizedinArcGISusingtheanimationtool.

Model evaluation

IntheIBM,uncertaintyoverchosenparametervaluescouldhavethemostinfluenceon finalmodeloutcomes.Toassessdifferencesarisingfromusingdifferentparameter estimates,Iconductedseveralshortsimulations(20treatments,5reps,210days(Nov

May)tolookatprimarilytheeffectofkillerwhalereturnprobabilities,dolphindetection distanceofkillerwhales,anddolphinmemoryinrefugeontime/distancebudgetsand encounterindex(Table3).Foranalysis,Timeisdisplayedasaproportionoftimespent byadolphininanactivityandiscalculatedassimulatedtime(variable)/(lengthof simulationi.e.,210x24x16).

62

FIG. 10 A representation of the animated, color-coded movement and behavior of dusky dolphin and killer whale pre and post-encounter in the individual-based model (water depth indicated in meters).

63

Table 3 Set of parameter combinations used in model sensitivity analysis to look at effect on dusky dolphin time/distance budgets and encounter index (n = 20 treatments)

Dolphin detection KW detection KW return time KW memory after Dolphin memory KW wait Treatment distance (km) distance (km) (days) dolphin escape (hr) in refuge (hr) time (hr) 1 5 6 7 1 1 1 2 5 6 7 1 3 1 3 10 6 7 1 1 1 4 10 6 7 1 3 1 5 5 6 3 1 1 1 6 5 6 3 1 3 1 7 10 6 3 1 1 1 8 10 6 3 1 3 1 9 5 6 2 1 1 1 10 5 6 2 1 3 1 11 10 6 2 1 1 1 12 10 6 2 1 3 1 13 5 6 1 1 1 1 14 5 6 1 1 3 1 15 10 6 1 1 1 1 16 10 6 1 1 3 1 17 5 6 0.5 1 1 1 18 5 6 0.5 1 3 1 19 10 6 0.5 1 1 1 20 10 6 0.5 1 3 1

a) b)

c) d)

FIG. 11 Distance budgets (a-d) for a dusky dolphin exposed to variation in parameter levels and combinations with particular emphasis on killer whale return rates, dusky dolphin memory in refuge (memory after ), and dusky dolphin detection distance of killer whales between Nov-May (20 treatments, 210 days, n = 5 reps).See Table

3 for parameter combinations used for all 20 treatments. 64

a) b)

c) d)

FIG. 12 Time budgets (a-d) for a dusky dolphin exposed to variation in parameter levels and combinations with emphasis on killer whale return rates, memory in refuge (memory after killer whale attack), and dolphin detection distance of killer whales (210 days, n = 5 reps). 65

a) b)

FIG. 13 Foraging time and encounter index for a dusky dolphin exposed to variation in parameter levels and

combinations with emphasis on killer whale return rates, memory in refuge (memory after killer whale attack), and

dolphin detection distance of killer whales (210 days, n = 5 reps).

66 67

Whenduskydolphindetectiondistancewasincreased,hidingtimeforthe dolphinwascorrespondinglyincreased.ThisIbelievetobeecologicallyrelevantsinceif thedolphinsaredetectingthekillerwhalessooner,theyarelikelytofleesoonerandstay intherefugelongeruntilthethreatpasses.However,othercombinationsweretestedas well.

Overall,theredoesnotseemtobesignificantvariationintime/distancebudgets toaccountforthedifferentparametercombinations.However,thetime/distancebudgets appeartobesensitivetokillerwhalereturnrates.Thisisreflectedindistanceflee,rest, travel,encounterindex,proportionforagingtime,andothervariablesconsidered(Figs.

11,12,and13).Basedontheseinitialresults,Ibelievethemodelisrobustundermost combinationsofparametervalues. 68

FIG. 14 Sightings data of dusky dolphins by social type (n = 118) (green circles and blue triangles) from systematic surveys between Jan-May 2007 (Chapter II) compared with simulated sightings (red stars and black crosses) obtained by sampling the model results at times and periods corresponding to systematic survey efforts (n = 118, 5 reps). Rectangular box represents systematic survey area covering 80 km 2. Grid represents model study area comprising1468 km 2.

69

Usingbaselineparametervaluesforthemodel(Table2),Iconductedasimple modelevaluationofcomparingobserveddatawithsimulatedsightingsofdusky dolphins(withandwithoutcalf,Fig.14).Iuseddatafromsystematicsurveysconducted betweenJanandMay2007(ChapterII)(n=118).Thesesurveysinvolvedinstantaneous samplingofdolphinpositionswithin200metersofasurveytransectroute(ChapterII).I sampledsimulatedduskydolphinsightingsforthesamesurveyperiod(Jan–May)using similarsocialgroupingsobservedmotherswithcalves(nurserygroup)andotheradult groups,includingmixedage/sexgroupings).Forsamplingpurposes,Iused correspondingtimesasfaraspossiblesincemodelsimulationsrunat16timesteps/hour.

Toaccommodatethestochasticnatureofthemodel,Iused5repsof118sightingseach tocompilelikelyduskydolphinsightingsinthesystemforthestipulatedperiod.

Theboatbasedsurveydata(ChapterII)usedhereforevaluationcoversamuch smallerarea(80km 2)vs.themodelhabitatandalsofollowsadifferentsampling protocol.Thesimulatedsightingsthatareobservedoutsidethesurveyareaareconsistent withlongtermdatasetsfromopportunisticdolphintourboatdata(19952007)from

Dolphin Encounter ,Kaikoura,NewZealandandfromdedicateddatasets(Markowitz

2004).Moreevaluationscaninvolvesimulatingaboatoraresearcher’ssurveyrouteto recorddolphinpositionandcomparewithmodelgeneratedsightings.

70

Clever predator and clever prey model simulations

BasedontheexperimentaldesigninTable4,Iconducted4treatmentstoobtain duskydolphintime/distancebudgetsunderthefourprescribedscenarios.Onlyone dolphin(withoutcalf)wassimulatedforthedevisedtreatments.Whiledolphinsare socialanimals,forpurposesofdevelopingandevaluatingthemodel,Iuseasingle dolphinthatisrepresentativeoftheduskydolphinpopulationinKaikourabyvirtueof itsbehavioralandmovementrules.Also,theuseofsingledolphinsimplifiesmodel simulationandisadequatetoaddresscurrentstudyobjectives.

ModelsimulationperiodwasbetweenNovemberandMayforabout210days

(NZlatespring,australsummer/fall)tocoincidewithpeakkillerwhaleseason,calf presence,andfoodvariability.Irepeatedthesimulation35times(n=35reps).The numberofrepswasestimatedbasedonsamplesizecalculations(Zar1999)from preliminarymodelruns.Theindexofmeasurementincludedtimespentbydolphinsin variousbehavioralstates:TimeRest,TimeFlee,TimeHide,TimeTravel,Foraging

Time(timesearch+timefeed).Similarlyfordistance,Icalculated:DistanceTotal,

DistanceTravel,DistanceFlee,DistanceRest,andDistanceSearch.Forcurrent purposes,Imodeledonly1adultduskydolphin(male/female)andatotalof2killer whalegroups.

AllbaselineparametervaluesusedareshowninTable2.Formodelsimulations,

Iusedahigherdetectiondistanceforkillerwhales(5km) vs. 4kmforduskydolphins, assumingkillerwhalesareintentonhuntingdolphins.Iusedan18km/hrfleespeedfor dolphins,butmaintainedanaveragestalkspeedof16km/hrforthekillerwhalessince

71

studiesindicatethatwhilekillerwhalesmaypursuefastpreysuchasdolphinsattop speed(45km/hr),theiraveragespeedmaybelower(Fish1998).Moreover,sensitivity analysisdidnotindicateasignificantvariationfromchangingdetectiondistancesalone ontime/distancebudgets.

Table 4 Experiment design of the IBM model simulations. Treatment acronyms indicate whether anti-predator rules (R) for dusky dolphins are ON or OFF and whether killer whales (KW) are present or absent. A theoretical interpretation of the ecological costs and evolutionary (survival) benefits from adopting anti- predator strategies is represented by a ratio, where 0 indicates no costs, 1 a minimum cost, 2 a higher cost due to travel plus anti-predator decisions, which in turn reduces survival costs, 3 represents a higher survival cost due to increased vulnerability to predator attacks and prey adopting no defensive strategies. R-KW represents current understanding of system off Kaikoura

Status Killer Whales Present Killer Whales Absent Anti-predator RULES ON R-KW R-NOKW

Ecological Costs (Time/Distance budgets) 2(TravelplusFlee,HideCosts) 1(TravelCosts) /Evolutionary (survival) Benefits 1(reducedsurvivalcosts,fewerencounters) 0(NoEncounterwithKWs)

Anti-predator RULES OFF NOR-KW NO-RKW

Ecological Costs (Time/Distance budgets) 0(NoTravel,FleeorHideCosts) 0 (NoTravel,Flee,HideCosts)

/Evolutionary (survival) Benefits 3(increasedsurvivalcost,moreencounters) 0 (NoEncounterswithKWs)

72

Returnprobabilityforakillerwhaleiscalculatedbytheequation:Probability (x)

= 1 / (24hours *16 time steps * Killer whale (KW) return day = 3) =0.0008 .Iuseda3 dayKWreturnperiodandso,therecanbe1113killerwhaledays/whaleovera210day period—thisiscomparabletofieldrecordedkillerwhalesightingrecords( Dolphin

Encounter tourboatdata19952007).Modelevaluationofparametercombinations revealedsensitivitytowardsvaryingkillerwhalereturnprobabilities.Soforcomparison,

Iconductedthesametreatmentswithahigherkillerwhalereturnprobabilityof0.5days.

So,averagenumberofkillerwhaledays/whaleovera210dayperiodwas~5556days.

Asameasureofkillerwhaleduskydolphinencounters,Iusedanencounter insteadofamortalityindex.Fortestingtreatmenteffects,baselinevaluesforparameters areshowninTable2.Thesevaluesarewithinacceptablerangeestimatesforthespecies andarebasedonavailableliterature.Whereinformationwaslacking,Iused conservativeestimates.InTable4,RKWrepresents‘systemreality’withbothanti predatorrulesandkillerwhalespresent.RNOKWisasituationwheretherearenokiller whalesinthesystem,buttravelrulesoperate.InNORKW,theantipredatorrules

(travelaswellasfleeplushide)rulesareturnedoff,butkillerwhalesarepresentinthe system.Thishelpstomeasureiftherulesmakeanydifferenceinaffectingoverall time/distancebudgetsandencounterindex.NORKWinawaycorrespondstothe

‘winter’situationoffKaikoura,butrepresentsthenullmodelherewherethereareno rulesandnokillerwhalesinthesystem.Ididnotconductanyspecificsimulationsfor wintermonths.

b) a)

c) d)

FIG. 15 Distance budgets for dusky dolphins exposed to 4 different treatments between November and May (1 rep =

210 days, n = 35 reps) during a killer whale (KW) return rate of 0.5 and 3 days. 73

a) b)

c) d)

FIG. 16 Time budgets for dusky dolphins exposed to four treatments between November and May (1 rep = 210 days, n

= 35 reps during a killer whale (KW) return rate of 0.5 and 3 days. 74 75

.

FIG. 17 Average number of killer whale-dusky dolphin encounters during high (0.5 days) and low (3 day) killer whale (KW) return rates. Encounter index is measured as during a single rep or 210 days of the model simulation (n = 35 reps). Treatment definitions are provided in Table 4.

Results

Ataglance,duskydolphinsincurshorttermcostsofhavingtotravelmoreandrestless asaresultoftheirnearshoreoffshoremovementsduringpeakkillerwhaleseason(R

KW,Fig.15).Compensatingfortheseshorttermcostsoftravelandfleeing/hiding

(Figs.15and16)anddecreasedforagingtime(Fig.16)istheincreasedsurvivabilityof dolphinsadoptingthesebehavioralandmovementrulesrepresentedbytheencounter index(Fig.17).Theencounterindexrapidlyriseswhendolphinsswitchoffantipredator rules. 76

MANOVAtestsrevealstatisticallysignificantdifferencesbetweentreatment subjectsforDistance(Total,Travel,Rest,Search)andTimevariables(Rest,travel,

Search,Feed)(n=35,df=7,p<0.0001,α=0.05)atbothkillerwhalereturnrates(0.5 and3days).Specifically,posthocBonferronitestsrevealthatDistanceTotal,Distance

Rest,andDistanceTravelarenotsignificantlydifferentforRNOKWandNORKW andNORKWatbothkillerwhalereturntimes(p>0.05).DistanceRestandDistance

Travelaresignificantlydifferentbetweenthe3dayand0.5KWreturntimesunderR

KW(p<0.0001).Statisticaltrendsaresimilarfortimebudgets.

TravelcostsfordolphinsunderRKWisthesumofdistancetravelplusdistance flee—thisprovidesatruemeasureofkillerwhaleeffectsontravelcosts.ForNORKW andNORKW,dolphinstravelaminimaldistanceastheytrytosearchforasuitable foragingcell.

InFig.16,forRKWwhenrulesoperate,dolphinsarecompromisedon proportionForagingTimeinthepresenceofkillerwhales.Thiseffectispronounced whenthekillerwhalereturnrateishigher(0.5days).WithintreatmentRNOKWandin theabsenceofkillerwhales,dolphinscanfeedlongerandarenothamperedbyescape rulessuchasfleeingandhiding,whichcanreduceForagingTimeavailable.RNOKW mayrepresentanidealsituation,butdolphinsstillincurtravelcostsastheymove offshoretofeed.

TherewerenodifferencesinproportionForagingTimeforbothkillerwhale returnratesforNORKWandNORKW.Dolphinsarenotimpactedbyincreasedkiller whalepresenceinNORKWsinceantipredatorrulesareinoperableandtherefore

77

accesstofoodisunlimited.Also,whilethe‘immortaldolphin’canhavesuccessive encounterswithkillerwhales,itdoesnotcompletelydisruptallactivitiessuchas foragingandresting.TheeffectofNORKWisbestexemplifiedbytheencounterindex.

Discussion

Ingeneral,modelresultsrevealthatduskydolphinsincurshorttermecologicalcostsof havingtotravelmore,restless,andhavereducedforagingtimewhenkillerwhalesare present.Theeffectispronouncedwithincreasedpresenceofkillerwhales.However,by adoptingantipredatorrules,duskydolphinshavefewerencounterswithkillerwhales andthereforeincreasedsurvivability.RevisitingTable4,duskydolphinspayapriceby adoptingshortandlongtermantipredatormechanisms.Thecostissmallerwhenkiller whalesareabsent,butincreaseswithkillerwhalepresence.However,withoutanyanti predatormechanismsduskydolphinspayahigherpriceintermsofincreasedkiller whaleencountersandreducedsurvival.Thus,evolutionarybenefitsofstayingalivefar outweighshorttermecologicalcosts.

Theminimalnumberofencountersduringlowkillerwhalereturnprobabilities(3 days)issimilartoobservationsofminimalscarringinrealduskydolphinpopulationoff

Kaikoura(ChapterII).However,duskydolphinsaresmalldolphins(<2minlength),so itisexpectedthatmostattacksonthembyadultkillerwhales(68minlength)arelikely tobefatal.

Thereturnprobabilitydoesnotaccountforthenumberofactualkillerwhale duskycloseencounters.So,evenifkillerwhalereturnrateishigh(0.5days,ortwiceper day),theprobabilityofkillerwhaleduskyencounters(beinginsamecells)isstilllow

78

owingtotherandomnatureoftheirentryintothesystem,andtheroutethatthekiller whalestakes(shallow vs. deepcontour).

Inrealsystems,everypredatorenteringthesystemordetectedbypreymaynot bedeemedthreatening.Also,everypredatorinthesystemmaynothavean‘intentto hunt’dolphins.Thisvariationiscapturedtoanextentinthemodelbykillerwhalereturn probabilitiesanddetectiondistancesbetweenpreyandpredator,suchthatreactiontoa predatoroccursonlyatcertaindetectiondistancesandnoteverytimeapredatorenters thesystem.Futuremodelscanincorporatepredatorintentionsuchthatsomekiller whalegroupsenteringthesystemandwithindetectiondistanceposenothreattonearby dolphins.

Asgregariousanimals,duskydolphinsrelyontheirsocialnetworksandmay thereforedetectkillerwhalesmuchsoonerandreactmuchquickerthaniftheywere alone.Inthecurrentmodel,Iassumethatthesimulatedlonedolphinreceivesthis information.Inotherwords,asfarasdetectionprobablility,thelonedolphincouldalso beapartofagroupofdolphins.Themechanismofinformationtransferhoweverisnot statedexplicitlyintheIBM.

Themodelisstochasticandthereforetriestoincorporatetheuncertaintywithin therealsystem.Parameteruncertaintyhasbeenaddressedtoanextentduringmodel evaluation.Withincreasingknowledgeandmoreparameterpermutations,complex aspectsofdetectionandvigilanceasrelatedtospeciesgroupsizecanbetackled.Also, knowledgeoffooddistributionandcompositionislimited,andtheseparametersmay

79

furtheraffectthewayduskydolphinsusetimeandspaceindependentofpredator influence.

Themodelcanbefurtherrefinedtoexplorenewquestionsandconcepts.For example,anintegralcomponentofmammalssuchaskillerwhalesanddolphinsistheir socialsystem(Connoretal.1998).Thus,preydetectionofpredatorcanbeaffectedby anefficientdolphincommunicationnetworkdeterminedbysocialorganizationand spatialdispersion.Thiswillprovideatruemeasureofpreysophisticationandpredator huntingflexibilityasdeterminedbyaneffectivesocialcommunicationnetwork.

Themodelalsoallowsustotracemovementpatternsofduskydolphinsand killerwhalesoverdefinedtimeperiods.Analysisandcomparisonswithfieldbased movementdatacanimprovethemodelandhelpassesspreyandpredatormovement patterns.Modelingpredatorbehaviorisvitalaswell.Futuremodelscanbeimprovedto makethepredatorsmarterbyincorporatinggroupcomposition,predatormotivationand energetics.

ThecurrentmodelwasdevelopedusingKaikouraasthesystemofinterest.

However,Ibelievethisdoesnotlimitthescopeofthemodel.Thegoalwastodevelopa generalizedmodelthatwouldhaveapplicationstovarioussystemsregardlessofthe species.

Riskeffects,miscellaneouslydefinedasnonconsumptive,nonlethal,orindirect predationriskeffects,dealwiththeecologicalconsequencesoffear(Lima1998,Luttbeg andKirby2005,CreelandChristianson2008,Peckarskyetal.2008).Howprey respondstoafiercepredatorcanbegaugedthroughvariousways,includinghabitat

80

selection,activityvariations,predatorpreyspatialandtemporaloverlap,andforaging behavior(LimaandDill1990,Brownetal.1999,LimaandBednekoff1999,Laundreet al.2001,Creeletal.2005,Fortinetal.2005,HeithausandDill2002,2006,Winnieand

Creel2007).

Thereisstrongevidencethattheseantipredatordecisionscanproducerisk effectswithequalorgreaterinfluenceonpreypopulationdynamicsthanlethalpredation

(Abrams1990,Nelsonetal.2004,Preisseretal.2005,CreelandChristianson2008).

Further,theseeffectscanmovedownthefoodchainandstructureecological communities(Kotler1984,EstesandDuggins1995,PeacorandWerner2001,Ripple andBeschta2004,2006,Myersetal.2007,Heithausetal.2008,Cresswell2008).

Feardriven‘costs’havebeenexploredbrieflyinpreviousstudies(growthrates, andfecundity,lifehistorytraits,Peckarskyetal.1993,2002,PeckarskyandMcIntosh

1998,Collieretal.2008,preystress,Boonstraetal.1998,fitnessframework,Ajieetal.

2007,reproductivephysiologyCreeletal.2007),anddirecteffectsonpreypopulation dynamicshavebeenindicated.

Whendealingwithcomplexsystemsandofteninaccessibledolphinspecies,we donothavethemeansofgettingadequatefielddatatomeasureindirectpredationrisk effects.Therefore,manysimplequestionsareleftunanswered.Thereisenough circumstantialevidencesuggestingthatpredatorsplayimportantrolesinshaping dolphinbehavior,justlikeotherprey.Butweknowlittleabouthowriskeffectscan affectdolphinbehavioralecology.

81

Duskydolphinsarerecognizedasa Data Deficient speciesbytheIUCN(IUCN

2008),whichmeansthatthereisinsufficientinformationtodeterminetheirconservation status.Further,arecentlyconcludedglobalassessmentoflandandmarinemammals

(Schipperetal.2008)callsforexpandedresearchon Data Deficient marinemammal species,whicharefairingpoorlyrelativetolandmammals,toestablishproper conservationandmanagementpractices.OffNewZealand,currentduskydolphin populationsappeartoberobust(Würsigetal.2007).Toensurethatduskydolphin populationsremainrobust,itisimportanttocontinueresearchonthebehavioralecology ofthisspecies.Currently,Idonotbelievethatpredatoreffectsarelikelytohavea significanteffectonpopulationdynamicsofduskydolphins,butmayhaveanimportant influenceontheirhabitatselectionandforagingpractices.

Themodelisrepresentativeofasimplemarinesystem,i.e.,oceanographicand otherenvironmentalvariablesareexcludedsincetheydonotappeartohaveastrong influenceonduskydistributionpatternsoffKaikoura(seealsoChapterII).Thismaynot bethecaseinothersystems.However,byincorporatingnewrulesandenvironmental data,themodelcanbeadaptedforcomplexsystemssuchasoffMontereyBay,

Californiawhereoceanographicvariableshaveimportantinfluenceondolphinpreyand distributions(Keiperetal.2005).Inconclusion,whilethecurrentmodelprovidesmuch heuristicvalue,furthermodelevaluationsandenhancementscanbeachievedby applyingthemodeltootherdolphinssystemswithstrongbaselineknowledgeofits ecologicalplayersandcomponents.

82

CHAPTER IV

ECOLOGICAL CONSEQUENCES OF FEAR: BIOENERGETICS

OF PREDATION RISK EFFECTS IN DUSKY DOLPHINS

Introduction

Tofeedornottofeedisaproblemthatmanyanimalsregularlyfaceinadangerous habitat.Often,theystrivetomaintainabalancebetweenseekingfoodandsafety(Sih

1980,LimaandDill1990).Onlyrecently,dedicatedstudiesonpredationriskeffectson marinemammalshaveshownthattheyalsoengageinenergysafetytradeoffs(Heithaus andDill2002,2006,Fridetal.2007,Wirsingetal.2007).

Marinemammalsliveinalargelyrefugefreeworld,sowhenscared,theyresort totrustedmeasurestoidentifypredatorsandescapepotentialattacks(e.g.Deeckeetal.

2002,FordandReeves2008,Wirsingetal.2008).Theyareanexampleofbothaclever preyandapredator,relyingonsocialorganization,sensorymodalities,behavioral flexibility,anddiversepreytosurviveandreproduce.However,justasfindingand consumingpreybearscostsandbenefits,avoidingapredatorcanhaveecological consequencesorriskeffects(LuttbegandKirby2005,BrownandKotler2004,Preisser etal.2005,CreelandChristianson2008).

83

Theextentandnatureofthesecostsisstillrelativelyunknownformostanimals

(CreelandChristianson2008),includingmarinemammals.Forexample,wedonot knowwhatpenaltiesdolphinspaybychanginghabitatuse,movementpatterns,foraging strategies,andspatialdistributionoutoffear.

Thereisevidencethatpreymaycompromiseonfoodqualitytoavoidpredation

(e.g. rodents, Brown 1988; Western sandpipers Calidris mauri Ydenberg et al. 2002; bottlenose dolphins Tursiops aduncus , Heithaus and Dill 2002; broadheaded skink

Eumeces laticeps ,Cooper2000).However,thereareothercoststopay,suchastraveling further to feed on high quality food (e.g. Antarctic fur seals Arctocephalus gazella ,

Stanilandetal.2007)orbluewhales( Balenoptera musculus )thatvarydivedurationand foragingtimebecauseofhighfeedingcosts(AcevedoGutierrezetal.2002).

Marine mammals can incur lower energetic costs than terrestrial animals

(WilliamsandYeates2004),duetovariationsinenvironment,hunting strategies,and behavior.However,thesedifferencesplustheneedtobreatheairandmaintenancecosts canbeenergetically expensiveformarinemammalsatsea(Williams2002).Mothers withcalvescanhaveadditionallocomotor(Noren2008)andlactationcosts(Reddyetal.

1994;Kasteleinetal.2002).

Previous bioenergetics models have focused on population dynamics and prey foraging costs without an explicit consideration of predation risk changes, and the dynamic nature of predatorprey relationships (Lima 2002, Brown and Kotler 2004,

Ruzicka and Gallagher 2006). Studies on marine mammal bioenergetics usually have dealtwithforagingbehavior(e.g.BenoitBird2004,Williamsetal.2004,Costa2008)

84

orlifehistory( reviewed Lockyer2007)orphysiologicalconstraints(Rosenetal.2007) withinthecontextofmarinemammalsaspredators,notprey.

Dolphinsaspreycanmakeantipredatordecisionsthatvarywithpredationrisk levels(e.g.HeithausandDill2002,2006,ChapterII).Thechallengeistoquantifythe costsassociatedwiththedecisionsandtheextent,intheabsenceandpresenceof predators.

OffKaikoura,NewZealand(42°30’S173°35’E),duskydolphinsmake nearshoreoffshoreforagingtripstofeedexclusivelyonmesopelagicorganisms associatedwiththedeepscatteringlayer(DSL)atnight.TheDSLisayearround availableresourcewithsomechangesinfoodcompositionbasedonduskydolphin stomachcontentanalysis(Cipriano1992).Thedaytimechoiceofnearshorehabitatsfor duskydolphinsbetweenlatespring(Nov)andfall(MarMay)(<200m)appearstobe stronglyinfluencedbytheseasonalthreatofkillerwhales( Orcinus orca )inthearea

(ChapterII).Killerwhalesaretheprincipalduskydolphinpredator,andinearlyaustral springandwinter,whenriskfromkillerwhalesisrare,dolphinsshiftclosertotheirfood sourcebymovingfartherfromshoreintodeeperwaters(>200m)(Dahoodetal.2008,

ChapterII).KillerwhalesoffNewZealandappeartobegeneralistpredatorsfeedingon diversepreybutmayoccasionallyfeedonduskydolphins(Constantineetal.1998,

Visser2000).Also,somekillerwhalesubgroupsmayspecializeonhuntingdolphins

(Visser2000).

Foodavailabilityislongerinwinterrelativetosummer,aconsequenceofearly sunsetandlatesunrise.Motherswithcalvesformnurserygroupsandprefershallower

85

waters(<20mdeep)(Weiretal.2008),butareexpectedtofeedontheDSLatnight.

Daytimeforagingbyduskydolphinsisrarelyobserved(Cipriano1992,Markowitz

2004).

Dolphinresponsetokillerwhalethreatsisbothimmediateandlongterm

(ChapterII).Inbrief,duskydolphinsusenearshoreshallowerareasduringpeakkiller whaleseasonasalongtermstrategy(Dahoodetal.2008,ChapterII).Duringpulsesof highpredationrisk,theyresorttomeasuressuchasfleeingattopspeedawayfrom dangerorhidingintheshallows(<10m),inextremecasesin1mdeeppools(Würsig andWürsig1980,Cipriano1992).

Withspatialandtemporalfluctuationsinpredationriskinfluencingdusky dolphinlifestylechoices,itwouldbeinterestingtoassesstheenergeticconsequencesof

(shortandlongterm)antipredatordecisionsbysocialgroupings(withandwithoutcalf) asdrivenbyfear.

Usinganindividualbasedmodel(IBM)oftheduskydolphinsystemnear

Kaikoura,NewZealand(Fig.18,seealsoChapterIII),Ipredictenergeticcostsofdusky dolphinantipredatordecisionsduringtemporalandspatialvariationsinpredationrisk, andthelikelydifferencesforlactatingmotherswithcalfandanadultwithoutacalfand discussecologicalandevolutionaryimplications.

86

Kaikoura Peninsula

New Zealand

Haumuri Bluffs

FIG. 18 Habitat map of system of interest off Kaikoura, New Zealand.

Methods

TheIBMwascreatedtorepresentthedynamicbehavioralrelationshipbetweenaclever preyandcleverpredator,inthiscaseduskydolphinsandkillerwhales,respectively.

Detailedmodeldescriptionaswellaspreyandpredatorbehavioralrulesareavailablein

ChapterIII).IdescribethesalientfeaturesoftheIBMhere.

Duskydolphinsareplacedinitiallyinarandomcellaslongasitmeetstheir depthrequirementsandisapropostotheirsocialclass(withorwithoutcalf).Dusky dolphinshaveessentially6behavioralstates( travel, rest, search, feed, flee, and hide ); eachofthesestatesischaracterizedbychangesinspeedanddepthrestrictionsbasedon literaturevalues.Duringtheday,dolphinsareinrest modeandmoveintoadjacentcells inazigzagfashion(Würsigetal.1989),andcruiseatslowspeeds.Theyswitchinto

87

travelmodewhentheymaketheafternoontriptofeedontheDSL,andincreasetravel speeds.Onceinappropriatedepthstofeed(>400m)andina‘DSL’cell,theyengagein feeding,andswitchbetweensearchandfeedmodesthroughoutthedurationoftheDSL availability.

Killerwhalegroups(maximumof2groups)arenotpresentinthesystem initiallyandenterintothesystembasedonareturnprobability (x) = 1 / (24hours *16 time step * Killer Whale (KW) return day = 3) =0.0008.Thethreedaykillerwhale returntimecorrespondswellwiththeunpredictabilityandfrequencyofkillerwhale sightingsoffKaikourabasedonlongtermdatasets(ChapterII,ChapterIII).Killer whaleshave4behavioralstates( cruise/search, stalk, wait, post-hunt ).Oncekiller whalesenterthesystem,theycanfollowashallow(>10<200m)oradeep(>200m) contourlinewithadifferenceofafewhundredmeters.Theycanenterthesystemdayor nightbuttypicallyduringpeakkillerwhaleseason(NovMay).Thereturnprobabilities andthechoiceofdepthcontourgreatlycontrolthenumberofpossiblecloseencounters withduskydolphins.

Whenkillerwhalesarein cruise modetheysimultaneously search adjacentcells forpresenceofduskydolphins.Ifdolphinsarewithintheirdetectionrange,killerwhales taketheclosest,straightestpathtowardsthedolphins.Killerwhalescanbesuccessfulor unsuccessfulintheirpredationattempts.Duskydolphinsalsomaintaindetectionranges forkillerwhales.Upondetectionofakillerwhale,duskydolphinscanenterinto flee modeandthen hide inshallowwaterrefuges(<10m)untilkillerwhalesarebeyond detectionrange.Duskydolphinscanresumenormalbehaviorwithinanhourofentering

88

intotherefugeorlaterasmaybethecaseformotherswithcalves,andthusmaintaina shorttermmemoryoftheattack/encounter.

Tomonitorpredatorpreyencountersinahabitatcell,Iuseanencounterindex insteadofamortalityindex.Ifkillerwhalesareunsuccessfulintheirpredationattempt, theytypicallywaitonehour( wait mode )nearthehidingdolphinstosearchforpotential huntingopportunities.Ifunsuccessful,theyenterintoa post-hunt modewherethey refrainfromhuntingforuptoonehoursincetheelementofsurpriseislostandtheywait toseeifotheropportunitiesbecomeavailable.

Basedonotherstudies,themesopelagiclayerisavailableonlyatnight,assumed tobeavailableindifferentcells(>400m,Reid1994)andofvaryingdensitybetween days.AcousticstudiesoffKaikouraandHawaii(BenoitBird2004,BenoitBirdetal.in press)suggestthatDSLdistributionappearsuniformoffKaikoura;thoughnumerical preydensityislesserthanoffHawaii,exactnumbersareunavailableforKaikoura.The amountofDSLavailableperdayanddensityisunknown.Therefore,Iallocatedan indexof0to100kcal/cu.moffoodperhabitatcell(seeChapterIII).InthemodelIdo notconsiderlunareffects(BenoitBirdetal.inpress),butconsidersolarchangesusing sunrise/sunsettimesavailablefromtheUnitedStatesNavalObservatory.

Adolphinisrestrictedfromfeeding ad libitum inacellbyagivingupdensity

(2/3 rd ofTotalDSLavailable)beyondwhichitmovestoanothercellinsearchoffood.

Duskydolphinsincaptivityconsumeroughly10%oftheirbodyweight(fora70kg dolphin)(Kasteleinetal.2000).Foodconsumptionislikelymuchhigherinthewild,but foodintakeisgenerallysmallerwithincreasingsizeofanimal(Kleiber1975).Inthe

89

model,IassumethatdolphinsfeedthroughouttheperiodtheDSLisavailable,whichis coupledwithsunset/sunrisetimes,butinterspersedwithfoodsearchingorotheractivity, e.g.wheninterruptedbyapredator.

Dolphindistancetraveledandtimespentduringregularactivities(travel,feed, search,rest)andduringanattack(fleeandhide)werecalculateddailyandcumulatively.

Foragingtimespentandencounterindexwerealsocalculatedforadultswith/withouta calfandwithvaryingkillerwhalepresenceinthesystem.

Idevisedfourtreatmentstoestimatetime/distancebudgetsforduskydolphins withandwithoutacalfandinthepresence/absenceofkillerwhales(Table5).The modelwassimulatedfora210dayperiod(Nov–May)coincidingwithpeakkiller whalepresence,foodvariability,andpresenceofcalves.Iran35replicatesofeach simulationbasedonsamplesizeestimatesfromearlymodelruns(Zar1999).Dusky withcalfisassumedtobeanadultlactatingfemale.Eachfemaleisassociatedwitha singlecalfandaregivenidentitycodes.Baselineparametervaluesusedformodel simulationsareshowninTable6.Allmodelsimulationsarerunwithbehavioraland movementrulesoperating,representingcurrentunderstandingofsystemoffKaikoura.

90

Table 5 Experimental design for model simulations and calculation of dusky dolphin time/distance budgets. Acronyms indicate whether a calf is present (CA) or absent (NCA) and whether killer whales (KW) are present or absent from the system. R - implies that dusky dolphin movement and behavioral rules operate

Status Killer Whales Present Killer Whales Absent Anti-predator RULES ON C- R-KW C-R-NOKW

NC-R-KW NC-R-NOKW

Changesintime/distanceestimatesappearsensitivetokillerwhalereturn probability(ChapterIII),andthereforeIusedbotha0.5dayand3dayKWreturn probabilityinestimatingtime/distancebudgetsandduskydolphinbioenergetics.

Forenergeticcalculations,Iusedavailableinformationfromcaptiveandfieldstudies, andmodelsimulationresults(time/distancebudgets).Whereinformationwaslacking,I usedavailabledatafromothersystemsandsimilarspecies.

Dailyenergeticrequirements(DER)forduskydolphinstomeettheir maintenanceneedswasassumedat50kcal/kg/dayfora70kgadult,roughly3,500 kcal/day(basedonCipriano1992),IassumedthisDERforallcalculationsastheenergy requiredtomeetduskydolphinmaintenanceneeds.Idonotconsidergrowth, reproductive,orthermoregulatorycostsinthecalculations.

Table 6 Baseline parameter values used in model simulations for dusky dolphins with and without calf. KW = Killer

Whale, DSL = Deep Scattering Layer. Values are based on literature, available data, or are conservative estimates from similar species

Parameters Values Source (NovMay)KWseasonandcalfpresence(Cipriano1992,Markowitz2004, SimulationBegin(dayofyear) 306 306 Dahoodetal.2008,ChapterII,thisvolume) SimulationLength(indays) 210 210 ModelSimulation Numberofkillerwhalegroups 2 2 ModelSimulation Numberofdolphingroups 1 1 ModelSimulation Dolphinescaperuleson=1off=0 1 1 ModelSimulation NumberofReps 35 35 ModelSimulation Maximumtimesteps(km/hr) 16 16 ModelSimulation Calf=1,NoCalf=0 0 1 ModelSimulation Duskydolphindetectiondistance(km) 5 5 Estimate Killerwhaledetectiondistance(km) 4 4 Estimate KWReturnTime(days) 3 3 (19952007Dolphin Encountertourboatdata ,Kaikoura,NZ,Visser2000) Posthunt(hr) 1 1 Estimate Duskydolphinmemoryinrefuge(hr) 1 3 (EstimatebasedonCipriano1992) KWWaittime(hr) 1 1 Estimate MeanDSLdensity(kcal/cu.m) 100 100 (EstimatebasedonBenoitBird2004) Givingupforagingthreshold(proportionofmaxDSL) 0.67 0.67 ModelSimulation Dolphinenergyrequirement(DER)withoutcalf(kcal/day) 3500 3500 (Cipriano1992) Dolphinenergyrequirementwithcalf(kcal/day) 7000 7000 (BasedonReddyetal.1994,Kasteleinetal.2002) Meanestimatedfeedingrate(kcal/hr)tomeetDER 330 675 Estimate Rest(km/hr) 4.5 4 (BasedonCipriano1992,Markowitz2004) Feed(km/hr) 5 5 Estimate SearchforFood(km/hr) 5 5 Estimate Travel(km/hr) 8 6 (Markowitz2004) Flee(km/hr) 18 18 (BasedonMarkowitz2004,(calf)Weihs2004) KWCruise(km/hr) 8 8 (BasedonWilliams2002,Fordetal.2005) KWStalk(km/hr) 16 16 (BasedonWilliams2002,Fordetal.2005,FordandReeves2008) 91 92

TheDERusedherearecomparabletootherdolphinspeciesofsimilarsize(e.g. spinnerdolphins Stenella longirostris ,BenoitBird2004).Lactatingmotherssupporting acalfareexpectedtohavehigherenergeticneedsrelativetootheradultdolphins.For example,theycanexhibita200%increasefromnormalenergeticdemands(Reddyetal.

1994)orbetween52%–97%(Kasteleinetal.2002)basedoncaptivebottlenose dolphin( Tursiops truncatus )studies.Idecidedtousea100%increaseandtherefore estimatedDERforalactatingmotherwithcalftobe7,000kcal/day.

DuskydolphinsoffKaikouraareknowntoconsumeprimarilyhoki( Macruronus novaezelandiae ),squid,andmyctophids( Family Myctophidae )throughouttheyear

(Cipriano1992).Cipriano(1992)providedasummaryofstomachcontentsfordusky dolphinsobtainedfromstrandings,incidentalandopportunisticcapturesforallseasons

—summer,fall,spring,andwinter(n=26).Fromthesedata,heused13specimensto obtainestimatesofpreyenergeticcontentforthe3mostcommonpreyitemsidentified above,basedonliteraturevaluesofthepreylengthrangeconsumedbyduskydolphins.

Estimatedenergyvalueforsquid(sizerange75155mm)is38.6424kj/item;hoki(size range250500mm)is3382460kj/item;Myctophids(sizerange(4070mm)is10.6–

31.9kj/item(fromCipriano1992andreferencestherein).Toestimateforagingcostsfor duskydolphins,Iusedonly6of13dolphinspecimens,includingonlydolphinswithfull gutsanddisregardingoutliersintermsofweightorlength.Thedolphinspecimens consideredforanalysisweighedbetween69and77kg,withatotallength160186cm, andstomachcontentswerecomposedoffresh,intactpreyparts(Table7,Cipriano

1992).

Table 7 Summary of stomach content of dusky dolphins (n = 6) with fresh prey used to determine prey energy content and dusky dolphin foraging costs with and without calf. Squid species included: Nototodoras sp., Moroteuthopsis sp.,

Teuthowenia sp., and unidentified squids. Percentage contribution of prey meal to dusky dolphin daily energetic needs were based on power output/energetic efficiency estimates of Hui (1987). All stomach content data and energy values are based on Cipriano (1992)

Estimated % Dusky Dusky Estimated of dusky dolphin Length Weight Energy Value daily energy Specimen No. (cm) (kg) Gut state Prey (Fresh and intact prey) (kj) requirements #Squid #Myctophids #Hoki 85FC02 186 77 Full 3 7 14750 29.9 - 100.4 85FC03 180 75 Full 3 1 2900 5.9-19.7 86FC01 175 77.5 Full 1 5 10250 20.8-69.8 87FC01 175 77 Full 4 206 2 11580 23.5-78.8 88FC02 167 69 Full 10 2 4 12060 24.4-82.1 88FC03 160 71 Full 5 1 3650 7.4-24.9

# Refers to number of prey items represented by intact squid, squid head, intact fish or Hoki skulls 93 94

Similartoduskydolphins,Hawaiianspinnerdolphinsalsofeedatnighton mesopelagicorganisms,travelingabout8kmbackandforthbetweennearshorerest areasandoffshorewaters(BenoitBirdandAu2003).Likeduskydolphins,theydiveto atleast150mtofeedontherisingDSL(BenoitBirdandAu2003).Duskydolphins mayfeedsolitarilyontheascendingDSLinaustralsummer/fallandbothsolitarilyorin smallsubgroups(5individuals)inwinterbasedonpreydensity(BenoitBirdetal.2004,

BenoitBirdetal.inpress).ThereforebasedonBenoitBird(2004),Icalculated foraging cost = 0.15 kcal fixed search cost per prey + capture cost expressed as a percentage caloric content of each prey (assumed at 5%, 10% , 20% of each prey ),with theassumptionthatdolphinswillpreferentiallyseeklargerpreyregardlessofprey capturecosts,butiftheydoseeksmallerpreytheirforagingcostswillsignificantly increaseastheywillneedmorepreytomeettheirmaintenancerequirements.Like

BenoitBird(2004),Iassumeduskydolphin‘searchcosts’toincludesearching,diving, andfeedingonpreyandtobeindependentofpreysize.A0.15kcalfixedsearchcostsis alowestimateandcorrespondstoaboutan8%increaseovertheanimal’smaintenance energyneedsduringactiveforaging(discussedinBenoitBird2004).

Sincetheexactpreysize/lengthfromstomachcontentsisnotknown,tocalculate netvalueofprey,Iusedboththehighandlowestimatefortotalpreyenergyvalue

(basedonpreysize)percentagecontributiontoDERofduskydolphin(3,500kcal)(see

Table7).Theaverageofpercentagepreyenergycontributionwasusedtodetermine howmuchmoredolphinshavetoeattomeetaDERof3,500kcal/day.Thetotal 95

foragingcostwasthendoubledformotherwithcalf,assuminga100%increasein energycosts(Reidetal.1994,Kasteleinetal.2002).

Inadditiontoforagingcosts,Iestimatedlocomotor(swimming)costsfordusky dolphinsinthepresence/absenceofkillerwhales,byincorporatingduskydolphin behaviorandmovementrules.Specifically,Icalculatedduskydolphintravelcostsinthe absenceofkillerwhales,andtravelplusfleecostsduringhigh(0.5dayKWreturn)and low(3dayKWreturn)presenceofkillerwhales.

CostofTransport(COT)istypicallydefinedasthemetaboliccostsofmoving oneunitmassoneunitdistance(SchmidtNielsen1972).COT TOTAL=LC+MC

(Williams2002),LCisLocomotorCostsorenergyexpendedbyanimalswhen swimming,analogoustoCOT NET (SchmidtNielsen1972)forrunningmammals,and

MCreferstomaintenancecostsforanimalsinarestingstate.SinceIwasinterestedin calculatingLC,IusedRosenandTrites(2002)allometricequationLC=1.651M 1.01 , whereMismassinkgandtheabsoluteenergycostsismeasuredinjoules/m.The exponentintheequationsuggeststhatcostofswimmingisproportionaltobodymass.

Theequationissuitablefordetermininglocomotorcostsinbioenergeticmodelsfor animalswithlimitedempiricaldata(RosenandTrites2002).Forconsistency,allunits wereconvertedintokcal/dayinthecalculations.

Usingtime/distancebudgetsfromthesimulatedmodelfromtreatmentsCRKW,

CRNOKW(baseline),NCRKWandNCRNOKW(baseline)andbasedonspeed parametersspecifiedinTable6,Iestimatedtotalbioenergeticcostsforaduskydolphin

96

withandwithoutpredatorsas Foraging costs (FC) + LC for (Travel) or FC + LC

(Travel)+LC (Flee).

Results

Ingeneral,timeanddistancebudgetsforwithcalftreatmentsaresignificantlydifferent thanwithoutcalftreatmentsforDistance(Total,Travel,Rest,andFlee)andTime(Rest,

Travel,Flee,andHide)[ttests,p<0.0001,Table8],butinsignificantforDistanceand

TimeSearch[p>0.05,Table8].Duskydolphinsingeneraltravelmoreandrestless duringincreasedthreatfromkillerwhales(Figs.18and19).

ANOVAandposthocBonferronitestsbetweenthe8treatmentsatbothlevelsof killerwhalereturnratesconfirmgraphicaltrendsinFigs.19and20.Overall,total distancecoveredisdifferentforwithcalf(CRNOKW&CRKW)thanwithoutcalf treatments(NCRNOKW&NCRKW)forthe3dayKWreturnperiod.(Posthoc

Bonferronitests,p>0.05).Whereas,withahigherKWpresence,all4treatmentswere significantlydifferent(PosthocBonferronitests,p<0.0001).

a) b)

c) d) FIG. 19 Distance budgets (a-d) for dusky dolphins during low (3 day KW return) and high (0.5 day KW return) killer whale presence. Treatment acronyms indicate whether the dusky dolphin has calf (C) or no calf (NC), and whether killer whales (KW) are present or absent from the system of interest off Kaikoura. All model runs involve behavioral and movement rules (R). 97

a) b)

c) d)

FIG. 20 Time budgets (a-d) for dusky dolphins during low (3 day KW return) and high (0.5 day KW return) killer whale presence, n = 35 reps. Treatment acronyms indicate whether the dusky dolphin has calf (C) or no calf (NC), and whether killer whales (KW) are present or absent from the system of interest off Kaikoura. All model runs involve behavioral and movement rules (R). Time is displayed as a proportion of time spent on an activity and is calculated as simulated time (variable)/ (length of simulation i.e., 210 x 24 x 16 or 80,640) (Nov-May). 98 99

Table 8 Independent sample t-tests for distance and time budget variables obtained from model simulations

t df Sig. (2-tailed) DistanceTotal 66.589 194.29 0.000 DistanceRest 57.266 183.74 0.000 DistanceTravel 45.375 205.43 0.000 DistanceFlee 3.767 219.82 0.000 DistanceSearch 0.876 278.00 0.382 EncounterIndex 3.805 216.50 0.000 TimeRest 3.633 162.29 0.000 TimeTravel 42.915 235.05 0.000 TimeFeed 6.074 140.84 0.000 TimeSearch 6.421 168.61 0.000 TimeFlee 2.796 202.75 0.006 TimeHide 3.615 195.25 0.000

ForDistanceTravel,NCRKWwassignificantlydifferentthanNCRNOKW forbothhighandlowkillerwhalepresence(PosthocBonferronitests,p<0.0001), whereastherewerenosignificantdifferencesbetweenCRKWandCRNOKWatboth levelsofkillerwhalepresence(PosthocBonferronitests,p>0.05).However,distance

Restwassignificantlydifferentforduskywithandwithoutcalfatbothlevelsof predationrisk(PosthocBonferronitests,p<0.05).

FortreatmentsCRKWandNCRKW,basedontheparametersspecified

(Table6)andasexpected,distancetraveledforaduskydolphinwithcalfwasmorethan onewithout(Fig.19).Thesedistanceswerelarger(~100km)forbothdolphintypes whenkillerwhaleswerepresentathigherlevels.Ipenalizedthemotherwithcalfby reducinghermeantravelspeed(6km/hr,insteadof8km/hr).Recentevidencefrom 100

captivebottlenosedolphins(Noren2008)suggeststhatmothercanbespeedandenergy handicappedwhendraggingacalfinherslipstreamorechelonposition.Inthemodel,I taxedheronthemeanspeedratherthanenergyshespends.Thus,hertraveltimealso increases(Fig.20).

Fleeingdistanceforafemalewithcalfupondetectingakillerwhaleislessthan thatofadolphinwithoutacalf,reflectingtheproximityoffemalewithcalftoshallow waterenvironments.Ididnotchangeherfleespeedasmotherswithcalfarecapableof attainingthesespeedsandhigher(Weihs2004).Instead,Ipenalizeherwithhigher hidingcostsintherefuge,i.e.memoryof3hoursinsteadof1hour(Table6).The distancesestimatedarerealisticbasedonthemeanspeedandsimulationperiod considered.

101

FIG. 21 Average number of encounters accumulated by a dusky dolphin with a calf

(C) and without (NC) during low (3 day KW return) and high (0.5 day KW return) presence of killer whales (KW) in the system of interest off Kaikoura. All (R) movement and behavioral rules were operational during model simulations.

Shorttermecological(time/distance)costsincurredbyfemaleswithcalfrelative toadultswithoutcalfseemjustifiedwhenencounterratesareconsidered(Fig.21).

Femaleswithcalfhavefewerencountersrelativetoadultswithoutcalf.Theencounter ratemeasuredhereiscomparabletorealtimeobservationsofscarringinduskydolphins bysocialtype(ChapterII).Thoughscarringrateamongallduskydolphinsocialgroups wasminimal,nurserygroupshad<<1%scarsrelativetootheradultgroups(Chapter

102

II).Duskydolphinsaresmalldolphins(<2m)andthereforemaybeconsumedbythe largerkillerwhale,leavingnoevidenceofpotentialattacksbykillerwhales.

Bioenergetics of scared prey

Duskydolphinsspendapproximately6291,502kcal/day(withcalf)and310747 kcal/day(withoutcalf)consideringa5%preycapturecostofpreyinforagingandtravel costsintheabsenceofkillerwhales,basedonhighandlowpreyenergyvalueestimates

(Table9).Thisnumberrisestoapproximately1,6835,035kcal/day(withcalf)and837

2,500kcal/day(withoutcalf)ata20%capturecost(i.e.20%ofpreyenergyvalueislost incapture)(Table9).Thevaluesarenotsignificantlyhigherfromloworhighpresence ofkillerwhalesforduskywithcalf,butincreasetoabout90kcal/dayforanadult withoutcalf.Foramotherwithcalf,regardlessofkillerwhalepresencelevels,the expenseisnotmuchhigherduetofleeing.Inessence,hermaximumexpenseis sustainedduringtraveling,whichistwicethatofanadultwithoutcalf.

Theenergyexpenseincurredintheabsenceofkillerwhalesstillrepresentsacost fortheanimals,asitreflectstheirantipredatorchoiceoftravelingbetweennearshore andoffshorewaters.

Basedonforagingtimescalculatedintheabsenceofkillerwhales(NCR

NOKWandCRNOKW)approximating10.6hoursovera210dayperiod(NovMay), averageforagingrateisestimatedat330kcal/hourforadultduskydolphinswithout calf,andabout675kcal/hourforfemaleswithcalf,assumingaDERof3,500kcal/day and7,000kcal/dayrespectively.Thesefeedingratesandforagingtimescalculatedinthe

103

absenceofkillerwhaleswereusedtodeterminelostforagingtimeduetolow/high presenceofkillerwhales.

Iestimatethatforagingcalorieslostduetoincreasedkillerwhalepresenceare almost5timesmoreformotherwiththanwithoutcalf.However,underconditionsof lowpredationrisk(3dayKWreturn),foraduskydolphinwithcalf,foragingcalories lostisabout129kcal/daywhileadolphinwithoutacalflosesonly50kcal/day(Table

9).Feedingratesanddurationwillvaryconsiderablybasedondolphinfeedingrates drivenbyhunger,numberofdolphinsfeeding,DSLdensity,andthefactthatdolphins mayconsumefarmorethantheirenergyneeds(Kasteleinetal.2002).

Priortousingbaselinevaluesformodelsimulations,Iconductedasensitivity analysisofparametervaluesandcombinationstoaddressparametricuncertainty

(ChapterIII).Here,Isummarizesensitivityanalysisresultscomparingwith/withoutcalf treatments(n=40)withanemphasisonkillerwhalereturntimes,memoryofdusky dolphininrefuge,andduskydolphindetectiondistanceofkillerwhales.Parameter combinationsandlevelsusedintheanalysisareshowninTable10.

Table 9 Bioenergetic summary for dusky dolphins facing high (0.5 day KW return) and low (3 day KW return) predation risk levels, and in the absence of killer whales (KW) but with dusky dolphin anti-predator behavioral and movement rules. Summary of foraging and locomotor costs for dusky dolphins with and without calf are shown below, where Foraging costs = 0.15 kcal fixed search cost per prey + capture cost expressed as a percentage caloric content of prey (assumed at 5%, 10%, 20%) based on Benoit-Bird 2004 and dusky dolphin stomach content data from Cipriano

(1992) (Table 7), Locomotor costs (LC, joules/m) = 1.651M1.01, where M = body mass in kg (from Rosen and Trites

2002)

Foraging Costs (FC) Preycapturecosts 5% 10% 20% Average#ofpreyitemsbasedonduskydolphinfullgutcontents(n=6dolphinspecimens) 42.3 Fixedsearchcost 0.15 kcal Low prey energy value contribution to DER (Table 7) Dolphinshavetofeed x timestobefullbasedonlowpercentagepreyenergyvaluecontributiontoDER, wherex = 5.36 Totalestimatedforagingcostforanadultdolphin 622.805 1211.601 2389.193 kcal/day TotalestimatedforagingcostforalactatingmomwithacalfwithaDERof7,000kcal/day 1245.610 2423.202 4778.386 kcal/day High prey energy value contribution to DER (Table 7) Dolphinshavetofeed x timestobefullbasedonhighpercentagepreyenergyvalueofDERof3,500 kcal/day,wherex = 1.6 Totalestimatedforagingcostforanadultdolphin 185.912 361.672 713.192 kcal/day TotalestimatedforagingcostforalactatingmomwithacalfwithaDERof7,000kcal/day 371.824 723.344 1426.384 kcal/day Locomotor Costs (LC): Killer whales absent LCmomwithcalf(Travelcosts) 257.205 kcal/day LCforadultdusky(Travelcosts) 124.532 kcal/day 104

Table 9 continued

Total Estimated Energetic Costs = FC + LC Preycapturecosts 5% 10% 20% Low prey energy value contribution to DER (from Table 3) Absence of killer whales but with dusky dolphin behavioral and movement rules EnergyExpenseforadultlactatingduskydolphinwithcalf:(FC)+LC(Travel) 1502.816 2680.408 5035.592 kcal/day EnergyExpenseforadultduskydolphin:(FC)+LC(Travel) 747.337 1336.133 2513.725 kcal/day

Presence of killer whales and with dusky dolphin behavioral and movement rules ( 3 day KW return) EnergyExpenseforadultlactatingduskydolphinwithcalf:(FC)+LC(Travel)+LC(Flee) 1517.871 2695.463 5050.647 kcal/day EnergyExpenseforadultduskydolphin:(FC)+LC(Travel)+LC(Flee) 777.702 1366.498 2544.090 kcal/day Presence of killer whales and with dusky dolphin behavioral and movement rules ( 0.5 day KW return) EnergyExpenseforadultlactatingduskydolphinwithcalf:(FC)+LC(Travel)+LC(Flee) 1561.381 2738.973 5094.157 kcal/day EnergyExpenseforadultduskydolphin:(FC)+LC(Travel)+LC(Flee) 837.039 1425.835 2603.427 kcal/day

High prey energy value contribution to DER (from Table 7) Absence of killer whales but with dusky dolphin behavioral and movement rules EnergyExpenseforadultlactatingduskydolphinwithcalf:(FC)+LC(Travel) 629.029 980.549 1683.589 kcal/day EnergyExpenseforadultduskydolphin:(FC)+LC(Travel) 310.444 486.204 837.724 kcal/day

Presence of killer whales and with dusky dolphin behavioral and movement rules ( 3 day KW return) EnergyExpenseforadultlactatingduskydolphinwithcalf:(FC)+LC(Travel)+LC(Flee) 644.085 995.605 1698.645 kcal/day EnergyExpenseforadultduskydolphin:(FC)+LC(Travel)+LC(Flee) 340.809 516.569 868.089 kcal/day Presence of killer whales and with dusky dolphin behavioral and movement rules ( 0.5 day KW return) EnergyExpenseforadultlactatingduskydolphinwithcalf:(FC)+LC(Travel)+LC(Flee) 687.594 1039.114 1742.154 kcal/day EnergyExpenseforadultduskydolphin:(FC)+LC(Travel)+LC(Flee) 400.145 575.905 927.425 kcal/day

105

Table 9 continued

Foraging calories lost in low-high killer whale presence Presence of killer whales and with dusky dolphin behavioral and movement rules ( 3 day KW return) Foragingcalorieslostbyaduskydolphinwithcalf 128.988 kcal/day Foragingcalorieslostbyaduskydolphinwithoutcalf 49.979 kcal/day Presence of killer whales and with dusky dolphin behavioral and movement rules ( 0.5 day KW return) Foragingcalorieslostbyaduskydolphinwithcalf 543.661 kcal/day Foragingcalorieslostbyaduskydolphinwithoutcalf 182.351 kcal/day

Note:Foragingcalorieslostduringhighandlowpresenceofkillerwhales.Valuesarecalculatedbasedonduskydolphinwith andwithoutcalffeedingratesof330kcal/hourand675kcal/hour,respectively.Dailyenergeticrequirement(DER)is assumedat3,500kcal/day(withoutcalf)and7,000kcal/day(withcalf)withduskydolphinsforagingthroughoutdurationof DSLavailabilityovera210dayperiod(NovMay).

106

107

Table 10 Parameters used in 40 different combinations for model sensitivity analysis to look at effect on dusky dolphin time/distance budgets and encounter index. Total treatments n = 40 (with calf = 20 and without calf = 20 treatments). KW = Killer whale. Each treatment was run for 5 reps. Note: For each dolphin detection distance value both values of memory in refuge were tested for with and without calf treatments. [Memory in refuge = memory after killer whale attack]

Variables Values Dolphindetection distance(km) 5,10 KWdetection distance(km) 6 KWreturntime (days) 0.5,1,2,3,7 KWmemoryafter dolphinescape(hr) 1 Dolphinmemory inrefuge(hr) 1,3(withoutcalf);3,5(withcalf) KWwaittime(hr) 1

b) a)

c) d)

FIG. 22 Distance budgets (a-d) resulting from different parameter combinations (Table 10) in model simulation for with and without calf treatments (n = 40, 5 reps) over a 210 day period (Nov-May). 108

a) b)

d) c)

FIG. 23 Time budgets based on different parameter combinations (Table 10) in model simulation for with and without calf treatments (n = 40, 5 reps) over a 210 day period (Nov-May) . 109

a) b)

FIG. 24 Proportion foraging time and encounter index for dusky dolphins based on different parameter combinations

(Table 10) in model simulation for with and without calf treatments (n = 40, 5 reps) over a 210 day period (Nov-May).

110 111

Thegraphsrevealsensitivitytochangingkillerwhalereturnrates,particularlytohigher killerwhalepresence(0.5days)(Figs.22,23,24).Independentsamplettestsforwith andwithoutcalftreatmentswerefoundtobesignificantlydifferent(p<0.0001)forall variablesconsideredDistance(Total,Travel,Rest,Flee)andTime(Rest,Travel,Hide), exceptforDistanceandTimeSearch,andTimeFlee(ttests,p>0.05).Distance/Time

Searchvariablesareinsignificantasdolphinsasthereislittlecompetitionforfood resourcesandfoodisabundant.

GLMMANOVAforwithcalf(n=20)andwithoutcalf(n=20)treatments wereperformedtoassesstheinfluenceofKillerwhalereturntimes,dolphinmemoryin refuge,anddetectiondistanceofduskydolphinsonDistanceandTimedependent variables.ResultssuggestthatKWreturntimeshavethestrongestinfluenceonall time/distancevariablesconsidered(Table11a,b),particularlyforwithoutcalftreatments

(alsosupportedbyWilksLambdamultivariatetestsfordistancebudgets,whereWilks lambdavalue=0.066,F=21.1,df=16,p<0.0001,relativetodetectiondistanceand memoryinrefuge).KWreturninseparatecombinationswithdolphindetectiondistance andmemoryinrefugealsoproducesignificantresultsforwithoutcalftreatments.Other interactiontermsarenotsignificant,alsoreflectedinthetestpower(Table11a,b).For withcalftreatments(Table12a,b),killerwhalereturntimesstillhavethestrongest effectontime/distancebudgetsrelativetoallotherinteractionterms(WilksLamda, multivariatetestsfordistancebudgets,WilksLamda=0.02,F=33.9,df=16,p<

0.0001),thoughtime/distancetraveldonotappeartobeasstronglyaffectedbyKW returnrelativetowithoutcalftreatments(Table12a,b). 112

Table 11 GLM MANOVA results for effect of parameter changes on a)distance budgets and b) time budgets without calf treatments (n = 20). See Table 10 for parameter combinations used in model simulations. a) Distance budgets (without calf treatments)

Source Dependent Variable df F Sig. Observed Power Memoryinrefuge DTot 1 49.796 0.000 1.0 DLoaf 1 37.495 0.000 1.0 DTravel 1 1.725 0.193 0.3 DFlee 1 2.994 0.087 0.4 KWReturn DTot 4 196.438 0.000 1.0 DLoaf 4 263.880 0.000 1.0 DTravel 4 20.096 0.000 1.0 DFlee 4 122.870 0.000 1.0 Dolphindetectiondistance DTot 1 35.211 0.000 1.0 DLoaf 1 51.614 0.000 1.0 DTravel 1 2.696 0.105 0.4 DFlee 1 40.037 0.000 1.0 Memoryinrefuge*KWReturn DTot 4 7.219 0.000 1.0 DLoaf 4 3.677 0.008 0.9 DTravel 4 4.254 0.004 0.9 DFlee 4 1.366 0.253 0.4 KWReturn*Dolphindetectiondistance DTot 4 5.606 0.000 1.0 DLoaf 4 6.910 0.000 1.0 DTravel 4 0.223 0.925 0.1 DFlee 4 5.469 0.001 1.0 Memoryinrefuge*Dolphindetectiondistance DTot 1 0.035 0.853 0.1 DLoaf 1 0.089 0.766 0.1 DTravel 1 3.288 0.074 0.4 DFlee 1 0.018 0.893 0.1 Memoryinrefuge*KWReturn*Dolphin detectiondistance DTot 4 0.254 0.906 0.1 DLoaf 4 0.273 0.895 0.1 DTravel 4 1.468 0.220 0.4 DFlee 4 1.861 0.125 0.5

113

Table 11 continued. b) Time budgets (without calf treatments)

Source Dependent Variable df F Sig. Observed Power Memoryinrefuge TRest 1 201.720 0.000 1.0 TTravel 1 1.273 0.263 0.2 TFeed 1 120.496 0.000 1.0 THide 1 765.515 0.000 1.0 KWReturn TRest 4 256.833 0.000 1.0 TTravel 4 17.196 0.000 1.0 TFeed 4 261.369 0.000 1.0 THide 4 356.654 0.000 1.0 Dolphindetectiondistance TRest 1 48.907 0.000 1.0 TTravel 1 4.158 0.045 0.5 TFeed 1 67.653 0.000 1.0 THide 1 80.222 0.000 1.0 Memoryinrefuge*KWReturn TRest 4 25.748 0.000 1.0 TTravel 4 3.894 0.006 0.9 TFeed 4 10.519 0.000 1.0 THide 4 92.170 0.000 1.0 KWReturn*Dolphindetectiondistance TRest 4 8.821 0.000 1.0 TTravel 4 0.111 0.978 0.1 TFeed 4 10.094 0.000 1.0 THide 4 15.639 0.000 1.0 Memoryinrefuge*Dolphindetectiondistance TRest 1 1.621 0.207 0.2 TTravel 1 2.606 0.110 0.4 TFeed 1 1.988 0.162 0.3 THide 1 10.094 0.002 0.9 Memoryinrefuge*KWReturn*Dolphin detectiondistance TRest 4 1.225 0.307 0.4 TTravel 4 1.457 0.223 0.4 TFeed 4 3.083 0.021 0.8 THide 4 4.468 0.003 0.9

114

Table 12 GLM MANOVA results for effect of parameter changes on a) distance budgets and b) time budgets with calf treatments (n = 20). See Table 10 for parameter combinations used in model simulations. a) Distance budgets (with calf treatments)

Source Dependent Variable df F Sig. Observed Power KWReturn DTot 4 30.781 0.000 1.0 DRest 4 225.671 0.000 1.0 DTravel 4 2.578 0.044 0.7 DFlee 4 278.505 0.000 1.0 Memoryinrefuge DTot 1 8.441 0.005 0.8 DRest 1 18.289 0.000 1.0 DTravel 1 0.457 0.501 0.1 DFlee 1 0.208 0.650 0.1 Dolphindetectiondistance DTot 1 11.299 0.001 0.9 DRest 1 65.024 0.000 1.0 DTravel 1 0.083 0.775 0.1 DFlee 1 66.370 0.000 1.0 KWReturn*Memoryinrefuge DTot 4 0.948 0.441 0.3 DRest 4 0.981 0.423 0.3 DTravel 4 2.249 0.071 0.6 DFlee 4 1.245 0.298 0.4 KWReturn*Dolphindetectiondistance DTot 4 3.910 0.006 0.9 DRest 4 12.394 0.000 1.0 DTravel 4 0.315 0.867 0.1 DFlee 4 6.252 0.000 1.0 Memoryinrefuge* Dolphindetectiondistance DTot 1 0.390 0.534 0.1 DRest 1 0.993 0.322 0.2 DTravel 1 0.005 0.946 0.1 DFlee 1 0.448 0.505 0.1 KWReturn*Memoryinrefuge* Dolphindetectiondistance DTot 4 1.534 0.200 0.5 DRest 4 2.373 0.059 0.7 DTravel 4 0.775 0.545 0.2 DFlee 4 0.122 0.974 0.1

115

Table 12 continued. b) Time budgets (with calf treatments)

Source Dependent Variable df F Sig. Observed Power KWReturn TTravel 4 2.5 0.050 0.7 TFeed 4 326.0 0.000 1.0 THide 4 457.4 0.000 1.0 Memoryinrefuge TRest 1 24.5 0.000 1.0 TTravel 1 0.3 0.580 0.1 TFeed 1 42.7 0.000 1.0 THide 1 165.9 0.000 1.0 Dolphindetectiondistance TRest 1 81.8 0.000 1.0 TTravel 1 0.1 0.793 0.1 TFeed 1 85.0 0.000 1.0 THide 1 118.7 0.000 1.0 KWReturn*Memoryinrefuge TRest 4 1.3 0.269 0.4 TTravel 4 2.8 0.032 0.7 TFeed 4 7.5 0.000 1.0 THide 4 12.7 0.000 1.0 KWReturn*Dolphindetectiondistance TRest 4 14.5 0.000 1.0 TTravel 4 0.3 0.875 0.1 TFeed 4 13.4 0.000 1.0 THide 4 19.5 0.000 1.0 Memoryinrefuge* Dolphindetectiondistance TRest 1 0.6 0.455 0.1 TTravel 1 0.1 0.733 0.1 TFeed 1 0.2 0.638 0.1 THide 1 0.3 0.604 0.1 KWReturn*Memoryinrefuge* Dolphindetectiondistance TRest 4 1.6 0.195 0.5 TTravel 4 0.9 0.470 0.3 TFeed 4 2.6 0.039 0.7 THide 4 1.3 0.290 0.4

Discussion

Modelsimulationresultsandpredictedenergeticcostssuggesttheimportanceof

consideringindirectpredationriskeffectsinbioenergeticmodels.Amotherwithcalfhas

ahigherpricetopaybymakingshortandlongtermantipredatorchoicesintermsof

greaterdistancetraveled,lesstimetorest,higherforagingcosts,andforagingcalories

lostduetoperceivedkillerwhalethreats.However,theyhavefewerencounterswith

killerwhalesandfleeshorterdistancesrelativetoanadultduskyforthesametime periodsimulated.Thedistinctionbetweenthecostsincurredandthebenefitsgainedfor

116

duskydolphinsareclearlyrepresentedbytheencounterindex.Higherkillerwhale presenceleadstomorefrequentencountersforadult vs. amotherwithcalf.Whenall antipredatorrulesareswitchedoff,theencounterindexrisessharplyto10timesthe encountersexpectedwhenrulesoperate.Therefore,itmakesevolutionarysensetoadopt antipredatormechanismsandpayshorttermecologicalcostsratherthanbecomean unsuspectingpreytoapowerfulpredator.Seekingshallowerwatersmayallowthemto escapeapotentialkillerwhaleattackratherthanpreventinganencounterwithkiller whales(Verdolin2006).

Quantifyingecologicalcostsintermsofbioenergetics,revealthatduskydolphins payaminimalpriceintravelcostsbuthavehigherforagingcosts—afunctionof dolphinpreyenergyvaluesandforagingtime.Proximitytodeepfoodladenwaters allowsforagingduskydolphinstomakeshorternearshoreoffshoretrips.However, whenconsideredintermsofforagingcalorieslostinthepresenceofkillerwhales,the foragingcalorieslostare5timesmorewithincreasedkillerwhalepresence.Infact,with a10kmduskydolphindetectiondistanceanda0.5daykillerwhalereturnrate,total foragingtimeavailableforaduskydolphinisreducedby>10%overthe210day simulatedperiod.Further,nurserygroupsarelikelypayingahigherpricedueto physiologicalandmaternalconstraints,aswellasduetosafetyoptionstheymaychoose.

Idonotcoverthefullrangeofbioenergeticconsequencesduetochangesinfood distribution/abundance,duskydolphingroupsizevariations,hungerandsatiation requirements,andthepropensityforduskydolphinstoconsumefoodhigherthantheir energeticrequirements.Inclusionofthesefactorscanproducevariableresultsonthe

117

predictedbioenergeticcostsfromavoidingpredators.Forexample,theforagingtime usedhereisconservative,andinrealitywilldifferdueto:a)moredolphinsfeedingona patch,thusincreasingtheneedtosearchforrichpatchesthroughthenight,b)lunar phasechangesaffectingthetimingoftheverticalmigrationofprey.Infact,dolphins couldlosealmost2hoursofforagingtimeduetothedelayedrisingoftheverticallayer andearlierdownwardmigrationduringfullmoonperiods(BenoitBirdetal.inpress),c) increasedflightdistance/hidingtimepostkillerwhaleencounter/detectionpreventingor delayingdolphinresumptionofnormalactivity.

Inthemodel,killerwhalesaresimulatedtoenterthesystemdayornight.So, whilelongerdaylighthoursavailableinaustralsummer/fallmayfavordayhunting, marinemammalseekingkillerwhalesmayhuntatnightaswell(VolkerDeecke, personalcommunication,NewmanandSpringer2007).Ifinterruptedbypotential threats,feedingduskydolphinsmayhavetoincreasefeedingrates(Houstonetal.1993,

LimaandBedenkoff2002),orbecomeunsuspectingpreytokillerwhaleattacks,ifprey vigilanceisreduceddictatedbytheirhunger/energystates(McNamaraandHouston

1990).Ontheotherhand,ifduskydolphinsdetectkillerwhales,escapetoarefugeand stayforanindeterminatetime,theycouldlosevaluableforagingtime.Duskydolphins onoccasionshavebeenobservedtostayinshallowrefugesfor~4hours(Cipriano

1992),butthetimingcouldvarybasedonthreatlevels(Lima1998).

Inthemodel,bothsocialclassesofduskydolphinsresumefeedingaftera memorylapse.However,tomyknowledge,weknowlittleaboutpostencounterrefuge

118

emergencetimesandresumptionofnormalactivityformostpreyspecies,including aboutdifferencesbyage/sexgroupings(butsee Sih1992,Lima1998forreviews).

Nurserygroupsmaychoosesafetyovertravelingoffshoretofeedorreturningto feedwhenunderthreat.OffKaikoura,whenkillerwhalesaresightedinthearea,itoften becomesdifficulttoobservenurserygroupsforseveralhours(Weir2007,ChapterII).It isunclearwhethernurserygroupsavoidcostsoffleeingduetoincompatiblespeedswith attackingkillerwhales(ChapterII),orthestressofpotentialseparationfromcalf,by seekingrefugesoonerorleavingthearea?Perhapsitisboth.ConsideringtheDERofa lactatingmotherandlocomotioncosts,thismayprovefurtherexpensivewith consecutivedaysofkillerwhalepresenceandnofeedingopportunities.

Fromtheoreticalperspectives,themodelprovidesatestabletoolonpreyand predatordetectiondistances,groupvigilanceandflightinitiationdistance(FID)asit relatestogroupsize,speciesbehavior,andrisklevel.Futureinvestigationofthese aspectsmayidentifyquantifiableconsequencesforpreyinvestinginantipredator mechanisms.

Currently,dolphinsinitiateflightwithinatimestep.Thiscouldbevariedto determinepreydecisionstofleedependingonrisklevelandpredatormotivation.Results frommodelsimulationssuggestthatduskywithcalffleelessdistancerelativetodusky withoutacalf.Thismayreflecttheproximityofnurserygroupsbeingfoundinvery shallowwater(<20m),andthereforeareclosertoarefuge,whereasadultgroupsare foundfurtherfromshore(<200m)duringpeakkillerwhaleseason.Inthemodel,ifa killerwhaleisinthewayofafleeingduskydolphin,thedolphinmaximizesdistanceto

119

avoidthepredatorandtakesalengthiertracktoashallowwaterrefuge,insteadoftaking theshortest,straightestpath,thisaddstodistancefled.Idonotknowwhetherthisroute oftravelrepresentswhatduskiesactuallydo,anddataareneeded.

TheduskydolphinsystemoffKaikouracouldrepresentapreywith‘imperfect predatorinformation’(seeFig.5inBrownetal.1999).Predatorpresencethough variableandunpredictable,canprovetobequitelethalforunsuspectingor‘ignorant prey’(Brownetal.1999),asevidencedforthetreatmentwithoutduskydolphinanti predatorrulesbutwithhigh/lowkillerwhalepresence.Thus,duskydolphinsmaintaina backgroundlevelofapprehensionthatismuchhigherformotherswithcalvesroutinely displayedbytheirdepthchoicesduringhighpredationriskandsocialaffiliations.But followingtheentryofapredatorintothesystem,theantipredatorresponseis heightenedandthecurverisesgraduallywithincreasingrisk,butispredictedtobemuch steeperforamotherwithcalf.

PredationpressuresoffKaikouraarehighlyvariablefromdaytodayand betweenyears,yetduskydolphinsappeartofollowafixedresponseofchoosingshallow watersduringpeakseasonovera13yearperiod.Thisisnotatypical,asevidencedin otherpreystudies(Sih1987).

Thechoiceofantipredatorstrategymayvarybysocialgroupingsandthenature ofimmediaterisk,buttheresponsesareconsistentovertime.Longtermobservationsof duskydolphinsoffKaikoura(ChapterII)andmodelsimulationresultsindicatethat duskydolphinstrategiesandtacticsareeffectiveagainstanunpredictablebutpowerful

120

predator.Thismaywellchangeifkillerwhalepresenceincreases,asreflectedinthe currentsimulationstudies.

Asfaraspredatorperspectivesareconcerned,westilllacksufficientknowledge aboutkillerwhalepreypreference,motivation,andbehavioralstrategiesthatmayenable themtobeeffectivehunterswhentargetingdifficultpreysuchasdolphins(Jeffersonet al.1991).Elucidationofthesevariableswillenhanceourunderstandingofclever predatortacticsastheystalkbehaviorallyresponsiveprey(Limaetal.2003).

Insubsequentmodels,itispossibletoincludespecificenergeticconsiderations suchasduskydolphinhunger,DSLdensity,feedingrates,variablegroupsize,aswellas killerwhaleenergeticrequirements,motivation,preysearchandhandlingtoimprove bioenergeticestimatesandpossibleinfluenceondolphinpopulationdynamics.

Recentarticles(Schmitzetal.2008,Peckarskyetal.,2008,Orrocketal.,2008in

Vol.89,Issue9of Ecology )providecredibleevidenceonthenatureandeffectsofnon consumptiveeffects(NCE)ofpredationriskindifferentsystemsandecological communities.However,formostmarinemammalspecies,studiescontinuetofocuson lethalorconsumptivepredation(e.g.Trites2002,Williamsetal.2004).Recentmarine mammalarticles(Springeretal.2003,2008,Wadeetal.2007,Steigeretal.2008)have debatedkillerwhalelethaleffectsonhistoricgreatwhaleandpinniped(sealions,seals, andfurseal)populations,withoutanalyzingsublethaleffectsonbehavioralecologyof killerwhalemarinemammalprey,whichmaybemoreconsequential.

OtherstudiesbyHeithausandDill(2002,2006),Fridetal.(2006,2007),

Wirsingetal.(2007)ondolphinsandothermarinemammals,haveshownthatmarine

121

mammals,likeotherprey(Lima1998),makeimportantforagingandhabitatuse decisionsborneoutoffear.Futureresearchoncosts vs. benefitsofmarinemammalanti predatormechanismscouldgreatlyexpandourunderstandingofdirectandindirect effectsofpredationriskonpopulationdynamics,bioenergetics,demographics,and ecologicalcommunities.Suchknowledgewouldprovideinvaluableresourcesfor managingcriticalmarinemammalpopulationsandhabitats.

122

CHAPTER V

SUMMARY

IreviewedpotentialpredatorthreatsforduskydolphinsintheKaikouraNewZealand area,andprovidedevidencethatkillerwhalesarethedominantthreat,withlittleeffect fromdeepwatersharks.KillerwhalesightingsoffKaikouraappeartobestrongly directlyandspatiallycorrelatedwithduskydolphinpreferencefornearshoreshallow waters,regardlessofsocialaffiliationi.e.mixedage/sex,adult,ornurserygroups

(motherswithcalves).Basedonbothsystematicandopportunistictourboatdata,this trendisstableovera13yearperiod.Killerwhaleandduskydolphindensityof occurrenceshowa73%positivecorrelation(CRHmodifiedttest)intheKaikouraarea, asdeterminedfromlongtermdolphintourboatdata( Dolphin Encounter 19952007).

Also,killerwhaleandduskydolphinsightingsduringthesametimeperiodandforthe samedatasetshowsignificantspatialcrosscorrelation(crossManteltests,p<0.001), suggestingthatkillerwhaleandduskydolphinsightingsmaybeinterdependent(Chapter

II).

KillerwhalepresenceinKaikourawatersisunpredictable,andattacksondusky dolphinsarerarelywitnessed(Constantineetal.1998).However,regardlessofpredation pressures,duskydolphinsappeartorelyonconsistentlongtermstablestrategiesof choosingnearshorewatersduringpeakkillerwhaleseason(NovApr)(ChapterII).

123

Peakkillerwhaleseasonalsocoincideswithreducedfoodavailabilitygovernedby photoperiodchangesandthepresenceofduskydolphincalves(Markowitz2004).

Variationsindeepscatteringlayer(DSL)density,location,orcompositionon duskydolphindistributionpatternsareunknown.However,duskydolphinsfeedonthe

DSLthroughouttheyear,andthusmaynotbestronglyaffectedbypossiblechangesin foodcompositionorlocation.Furthermore,environmentalfactorssuchasseasurface temperature(SST)maynothavesignificanteffectsondolphinnearshoreoffshore shiftsbetweenseasons(ChapterII),butrathermayinfluencedolphinprey.Thus,based oncurrentevidence,duskydolphinlongtermandseasonalpatternsofhabitatchoice appearprimarilyinfluencedbykillerwhaleoccurrencepatterns.Furthermore,dusky dolphinsbehaviorallyrespondwith‘fightorflight’tacticsbesidesageneralresponseof seekingshallownearshorewaters(Cipriano1992,Markowitz2004).

Duskydolphinshaveseveralshorttermandlongtermsurvivalstrategiesto avoidpotentialpredatorencounters.Thesestrategiesarerepresentedbychangesin groupsize,socialaffiliations,swimmingpatterns,andinterindividualdistancesthat varywithactivity(ChapterII).Motherwithcalfgroupsornurserygroupshavea differentsetoftacticscomparedtoadultgroups.Thisincludeschoosingshallower waters(<20m),isolationfromothersocialgroups,andpossiblyadifferentexitstrategy suchasleavingtheareaentirelyorhidingintheshallowswhenconfrontedwith potentialdanger.

Overall,duskydolphinantipredatorstrategiesareeffectiveagainstthe intermittentthreatfromkillerwhales,withthesocialgroupsofadultsandnursery

124

groupsshowinglittleevidenceofscarringeitherfromsharksorkillerwhales.However, sincemostpredationeventsmaygounnoticed,anddolphinsmaymoreoftenbe consumedthanscarred,predationriskassessmentsbasedonscarsareinaccurate.

Aspatiallyexplicitindividualbasedmodel(IBM)wasdevelopedtoattemptto answerwhyduskydolphinsmakenearshoreoffshoretripsintermsofcosts vs. benefits frombothecologicalandevolutionaryperspectives.Mymodelattemptstocapturethe dynamicbehavioralinteractionsbetweenacleverprey(theduskydolphin)andaclever predator(thekillerwhale).

Themodelwasevaluatedbycomparingobservedduskydolphinsightingdata withmodelsimulatedsightings.Sightingsfromthemodelweresampledbytimeand monthcorrespondingtoobservedduskydolphinsightingsfromJanMay2007fielddata

(seeChapterII).Thesightingswerecorrelatedwithinthesurveyareaandwere representativeofsocialtypedepthpreferences.Baselineparametervaluesformodel simulationsweredeterminedfromavailabledata.Whereinformationwaslacking,best guessestimatesfromsimilarspecieswereused.Asensitivityanalysisofparameter levelsandcombinationsrevealedasignificantinfluenceofkillerwhalereturntimeson time/distancebudgets.Thus,formodelsimulations,low(3day)andhigh(0.5day)killer whalepredationrisklevelswereassumed.Resultsrevealthatduskydolphinsrestless andtravelmoreduringpresenceofkillerwhales(3daykillerwhalereturnprobability).

Time/distancebudgetvariabilityaremorepronouncedwithincreasedkillerwhale presence(0.5daysreturnprobability).

125

Themodelsuggeststhatastrongreasontofavortheadoptionofshortandlong termantipredatormechanismsmaybeincreasedsurvivalresultingfromdecreased encounterswithkillerwhales.Thisisparticularlyevidentwhenantipredatorrulesare turnedoff,butkillerwhalesarepresentinthesystem.Underthislatterscenario, dolphinsareallowedtofreelymoveinthesystemandinteractwithcruisingpredators.

Futureversionsofthemodelmayincludefreelymovingpredatorsaswell(e.g. see

Hammondetal.2007).

InChapterIV,modelsimulationswereextendedtoincludeduskydolphinswith calves.Baselineparametervalueswerechangedtoaccountforaduskymotherwithcalf, andconcomitantincreaseinenergeticdemandsforthelactatingmother.Parameter sensitivityanalysisrevealedastronginfluenceofkillerwhalereturntimesforwithand withoutcalftreatmentsontime/distancevariables.AGLMMANOVAmodelwasused toassesstheinfluenceofindividualpredictorvariables:KillerWhalereturntimes,dusky dolphinmemoryinrefuge,anddolphindetectiondistanceonduskydolphin time/distancebudgets.Resultsindicatethatkillerwhalereturntimeshavethestrongest influenceontime/distancevariablesforbothwithandwithoutcalftreatments.However, separatecombinationsofkillerwhalereturntimeanddolphindetectiondistance variablesandkillerwhalereturntimeanddolphinmemoryinrefugevariablesalsohave asignificantinfluenceontime/distancebudgetsforwithoutcalftreatments.

Forbioenergeticcalculations,modelsimulationsincludedtreatments with/withoutcalfandwith/withoutkillerwhaleswithallbehavioralrulespresent.With calfandwithoutcalftreatmentssignificantlydifferedformosttime/distancevariables,

126

excludingtime/distancesearch.Sinceallmodelsimulationswereconductedwithone individual.

Simulationresultsrevealthatduskydolphinswithcalvesrestlessandtravel morewhenkillerwhalesarepresent,relativetodolphinswithoutcalves.However, duskydolphinswithcalveshavefewerencounterswithkillerwhalesregardlessoflevels ofpredationriskandhaveshorterdistancestoflee.Theshorterdistancefledbyadusky dolphinwithcalfisindicativeoftheirproximitytonearshoreshallowwaters(<20m) comparedtoadultduskygroupspreferringdeeperwaters(<200m).Thus,dusky dolphinsmayincurshorttermecologicalcostsresultingfromkillerwhalepresence,but maybenefitfromadoptingantipredatorrulesbyhavingfewerlethalencounters.Such strategiesappeartobestabledespitevaryingpredationpressuresoffKaikoura.

Bioenergeticconsequencesforduskydolphinsfacedwithvaryingkillerwhale predationrisklevelswasdeterminedbyestimatingtotalenergyexpendedinforaging andlocomotion(travel,andtravelplusflee)aswellasfromvariableduskydolphin foragingtimes.Totalenergyexpendedforduskydolphins(withandwithoutcalf)was estimatedas:Foragingcosts(FC)+Locomotorcosts(LC)(Travel)orLC(Travel)+LC

(Flee)basedontheabsenceofkillerwhales,aswellaslow/highpresenceofkiller whales.Travelandfleedistanceestimateswereobtainedfrommodelsimulations involvingwithandwithoutcalftreatmentsinthepresenceandabsenceofkillerwhales

(ChapterIV).Dolphindailyenergeticrequirementswereassumedat3,500kcal/dayfor anadultduskydolphin(Cipriano1992),whichiscomparabletootherdolphinsof

127

similarsize(BenoitBird2004,Kasteleinetal.2002),and7,000kcal/dayforalactating motherwithcalf(Reidetal.1994,Kasteleinetal.2002).

Duskydolphinsspendapproximately6291,502kcal/day(withcalf)and310

747kcal/day(withoutcalf)inforagingandtravelcostsintheabsenceofkillerwhales, consideringa5%preycapturecostofprey(BenoitBird2004),andbasedonhighand lowpreyenergyvaluecontributiontoduskydolphindailyenergeticrequirements

(Cipriano1992,ChapterIV),sinceexactpreysizeisunknownfromduskydolphin stomachcontentdata.Thisnumberrisestoapproximately1,6835,035kcal/day(with calf)and8372,500kcal/day(withoutcalf)ata20%capturecost(i.e.20%ofprey energyvalueislostincapture).Thetotalenergycostscalculatedhereislargely attributabletoforagingcosts(ChapterIV).Foragingcostscalculatedhereareestimates andtherefore,mayneedfurtherverificationasmoreaccurateinformationbecomes available.

Thevaluesarenotsignificantlyhigherfromloworhighpresenceofkillerwhales formotherwithcalf,butincreaseby~90kcal/dayforadultwithoutcalf.Thus,costs incurredfromtravelandfleeingappearminimalrelativetoforagingcosts.Lowtravel costsforduskydolphinswithandwithoutcalfinpartreflecttheproximityofdolphinsto deepwaterandhavingtocovershorterdistancestofeed.However,asuitablemeasure ofkillerwhaleeffectsisevidentfromreducedforagingtimeforwithandwithoutcalf treatments.Iestimatethatforagingcalorieslostduetoincreasedkillerwhalepresence arealmost5timesmoreformotherwiththanwithoutcalf.However,maximumforaging

128

timeavailablecanbereducedsignificantlywithanincreaseindolphingroupsize, inclusionofdolphinhunger,lunarphaseandDSLdensitychanges.

Anincreaseindolphindetectiondistanceandhidingtimeduetopresenceof killerwhalesmayfurtherreducefeedingtime.Infact,witha10kmdolphindetection distanceanda0.5daykillerwhalereturnrate,totalforagingtimeavailableisreducedby

>10%overthe210daysimulatedperiod.Therefore,Ibelievethatfuturebioenergetic analysisshouldconsiderindirectpredationriskeffectsaspreyantipredatormechanisms mayresultinsignificantenergeticcostsindependentofphysiological,growth,and reproductivecosts.Also,bioenergeticanalysisshouldincorporatedifferencesdueto socialtypes,suchasalactatingmother,tobetterunderstandtheenergyconstraints withinwhichdifferentanimalsoperatewithinthe‘ecologyoffear’(Brownetal.1999)

—Thismayhaveimportantconsequencesforpreypopulationdemographicsand dynamics.

Byevaluatingcosts vs. benefitsforduskydolphinantipredatordecisions,it appearsthatdespiteincurringshorttermecologicalcosts,duskydolphinstrategiesare effectiveagainstkillerwhalethreatsthatvaryspatiallyandtemporally.Also,thelong termbenefitsofadoptingantipredatorbehaviorsandrulespaydividendsintermsof increasingduskydolphinsurvivalbyreducingpotentialencounterswithkillerwhales.

Concluding remarks

Amalekillerwhaleflingingasealionintheair,abreachinggreatwhitewithafurseal initsmouth,aprideoflionesseschasingalonebuffalo—allconjureupfantastic visuals,yet,thereismoretothisstarkspectacleofpredatorconsumingprey.Inactuality,

129

thereisanentireseriesofintricatemechanismsinvolvingsubtlebodylanguageand repertoiresofstableandflexiblestrategiesthatcomplicatethedynamicrelationship betweenpredatorandprey.

Fordecades,predationeffectshavebeenaboutpreymortalityandregulating preypopulations( reviewed in LimaandDill1990,Peckarskyetal.2008).Asaresultof revisedthinkingandapproaches(Lima1998,Brownetal.1999),theeffectsofpredators haveexpandedtoincludeindirectpredationriskeffectstoprovideamoreholistic perspectiveofpredatorinfluencesonpreybeyondtheconceptofconsumptioneffects.

Thisalteredthinkinghasenabledscientiststobetterunderstandhowpredatorscanshape preybehavioralecology,aswellasecologicalcommunities(Heithausetal.2008,

Schmidtetal.2008).

Thereis,however,muchtolearnatthespecieslevel,withregardtoantipredator decisionsandevolvingpredatorstrategies.Thecurrentmodelisnotaperfectrecipeto addressallaspectsofpredatorpreyrelationships.Butthemodelhasthecapabilityto increasetheveracityoffindings,andtestecologicalquestionswithinabroader theoreticalframework.TheIBMdevelopedhereisastartuptoolthatcanberefinedto includespeciesandsystemsthatfitwithinthecontinuumofsimpletocomplex.

Behaviorandmovementrulesandsystemcomponentscanbemodifieddependingon speciesorsystemofinterest.Thebetterthebaselineknowledge,themoresignificant willbetheapplicationtomanagementorpolicydecisions.

Thereis,ofcourse,nosubstitutetofieldbasedinformation.Afterall,modelsare basedonfieldgainedknowledge.However,especiallywhenempiricaldataarelimited,

130

IBM’scanprovideatestableplatformtoaskecologicalquestionsthatresultfromthe interplayofabioticandbioticfactors.Furthermore,themodelhelpstovisualizethe interconnectednessofdifferentmodules.Throughsensitivityanalysisandmodel evaluationprocedures,newversionsofthemodelcanbegeneratedthatfitwithinour understandingofarealisticframework.However,inclusionofeveryinfluencingvariable andgeneratingacomplicatedmodelmaynotnecessarilyimproveourunderstandingofa system,noraddresseveryecologicalquestion.Instead,thefocushastobeondeveloping parsimoniousmodelsthataddressbasicquestionsfirst,andincorporatecomplexityina stepwisefashion.

Predatorpreyrelationshipsarefascinating,simplybecausetheyinvolvetwo animalsmatchingskill,strength,strategy,andstamina—thereisnoexpectedvictorious outcomeeachtime.Theinherentunpredictabilityoftheseeventsprovideindicationthat regardlessofwheretheanimalsareonthefoodchain,allpreyareequippedwith survivalinstinctsthathavesavedthemonvariousoccasionsfrommotivatedpredators.

Tounravelthegamesthatpredatorandpreyplaywitheachotherisnotaneasily achievedtask.However,wecanbuildonpreviousworkandtestthebasictenets governingmostpredatorpreyinteractionsbybeginningatthespeciesleveland expandingittoecologicallevels.Thefocusthoughhastobeonbothpredatorandprey perspectives.

131

LITERATURE CITED

Abrams,P.A.1990.Theeffectsofadaptivebehavioronthetype2functionalresponse.

Ecology71:877–995.

Abrams,P.A.1995.Implicationsofdynamicallyvariabletraitsforidentifying,

classifying,andmeasuringdirectandindirecteffectsinecologicalcommunities.

AmericanNaturalist146:112–134.

Abrams,P.A.2000.Theevolutionofpredator–preyinteractions:theoryandevidence.

AnnualReviewofEcologyandSystematics31:79–105.

Abrams,P.A.2007.Definingandmeasuringtheimpactofdynamictraitson

interspecificinteractions.Ecology88:255–2562.

AcevedoGutierrez,A.,D.A.Croll,andB.R.Tershy.2002.Highfeedingcostslimit

divetimeinthelargestwhales.JournalofExperimentalBiology205:1747–1753.

Adams,S.M.,andL.D.DeAngelis.1987.Indirecteffectsofearlybassshadinteractions

onpredatorpopulationstructureandfoodwebdynamics.Pages103–117 in W.

C.KerfootandA.Sih,editors.Predationinaquaticcommunities.University

PressofNewEngland,Hanover,NewHampshire.

Ajie,B.C.,L.M.Pintor,J.Watters,J.L.Kerby,J.I.Hammond,andA.Sih.2007.A

frameworkfordeterminingthefitnessconsequencesofantipredatorbehavior.

BehavioralEcology18:267–270.

Alados,C.L.1985.AnanalysisofvigilanceintheSpanishibex( Capra pyrenaica ).

ZeitschriftFürTierpsychiologie68:58–64.

132

Alexander,R.D.1974.Theevolutionofsocialbehavior.AnnualReviewEcological

Systems5:325–383.

Altmann,J.,1974.Observationalstudyofbehaviorsamplingmethods.Behaviour,

49:227–267.

Ayers,D.,M.P.Francis,L.H.Griggs,andS.J.Baird.2004.FishbycatchinNew

Zealandtunalonglinefisheries,200001and200102.NewZealandFisheries

AssessmentReport2004/46.

Bateson,P.P.G.1983.Matechoice.CambridgeUniversityPress,UK.

Bednekoff,P.A.,andS.L.Lima.1998.Randomness,chaosandconfusioninthestudy

ofantipredatorvigilance.TrendsinEcology&Evolution13:284–287.

BenoitBird,K.J.2004.Preycaloricvalueandpredatorenergyneeds:foraging

predictionsforwildspinnerdolphins.MarineBiology145:435–444.

BenoitBird,K.J.andW.W.L.Au.2003.Preydynamicsaffectforagingbyapelagic

predator( Stenella longirostris )overarangeofspatialandtemporalscales.

BehavioralEcologyandSociobiology53:364–373.

BenoitBird,K.J.,A.D.Dahood,andB.Würsig.2008.Usingactiveacousticsto

comparepredatorpreybehaviorintwomarinemammalspecies.MarineEcology

ProgressSeries:InPress.

BenoitBird,K.J.,B.Würsig,andC.J.McFadden.2004.Duskydolphin

(Lagenorhynchus obscurus )foragingintwodifferenthabitats:Activeacoustic

detectionofdolphinsandtheirprey.MarineMammalScience20:215–231.

133

Bergman,E.J.,R.A.Garrott,S.Creel,J.J.Borkowski,R.Jaffe,andE.G.R.Watson.

2006.Assessmentofpreyvulnerabilitythroughanalysisofwolfmovementsand

killsites.EcologicalApplications16:273–284.

Bertram,B.C.R.1978.Livingingroups:predatorsandprey.FourthEdition.Blackwell,

Oxford,UK

Black,N.1994.Behaviorandecologyofpacificwhitesideddolphins( Lagenorhynchus

obliquidens )inMontereyBay,California.MastersThesis.SanFranciscoState

University.

Boinski,S.,L.Kauffman,A.Westoll,C.M.Stickler,S.Cropp,andE.Ehmke.2003.

Arevigilance,riskfromavianpredatorsandgroupsizeconsequencesofhabitat

structure?Acomparisonofthreespeciesofsquirrelmonkey( Saimiri oerstedii , S.

boliviensis ,and S. sciureus ).Behavior140:1421–1467.

Boonstra,R.,D.Hik,G.R.Singleton,andA.Tinnikov.1998.Theimpactofpredator

inducedstressonthesnowshoeharecycle.EcologicalMonographs68:371–394.

Bowen,W.D.1997.Roleofmarinemammalsinaquaticecosystems.MarineEcology

ProgressSeries158:267–274.

Bradshaw,C.J.A.,C.Lalas,andC.M.Thompson.2000.Clusteringofcoloniesinan

expandingpopulationofNewZealandfurseals( Arctocephalus forsteri ).Journal

ofZoology250:105–112.

Brown,C.R.,andM.B.Brown,1996.ColonialityintheCliffswallow:theeffectof

groupsizeonsocialbehavior.UniversityofChicagoPress,Chicago,IL.

134

Brown,J.S.1988.Patchuseasanindicatorofhabitatpreference,predationrisk,and

competition.BehavioralEcologyandSociobiology22:37–47.

Brown,J.S.,andB.P.Kotler.2004.Hazardousdutypayandtheforagingcostof

predation.EcologyLetters7:999–1014.

Brown,J.S.,B.P.Kotler,andA.Bouskila.2001.Ecologyoffear:foraginggames

betweenpredatorsandpreywithpulsedresources.AnnalesZoologiciFennici

38:71–87.

Brown,J.S.,J.W.Laundre,andM.Gurung.1999.Theecologyoffear:optimal

foraging,gametheory,andtrophicinteractions.JournalofMammalogy80:385–

399.

Carey,F.G.,andJ.V.Scharold.1990.Movementsofbluesharks( Prionace glauca )in

depthandcourse.MarineBiology106:329–342.

Carey,F.G.,J.M.Teal,andJ.W.Kanwisher.1981.Thevisceraltemperaturesof

mackerelsharks(Lamnidae).PhysiologicalZoology54:334–344.

Chivers,S.J.1999.Biologicalindicesformonitoringpopulationstatusofwalrus

evaluatedwithanindividualbasedmodel.Pages239247 in Garner,G.W.,S.C.

Amstrup,J.L.Laake,B.F.J.Manly,L.L.McDonald,andD.G.Robertson,editors.

Marinemammalsurveyandassessmentmethods.A.A.Balkema,Rotterdam.

Cipriano,F.1992.Behaviorandoccurrencepatterns,feedingecology,andlifehistoryof

duskydolphins( Lagenorhynchus obscurus )offKaikoura,NewZealand.

Dissertation,UniversityofArizona,Tucson,AZ.

135

Collier,A.,C.C.Bronk,B.Larson,andS.Taylor.2008.Theimpactofpredationstress

bylargemouthbass( Micropterus salmoides )onthegrowthanddevelopmentof

leopardfrogtadpoles( Rana sphenocephala ).JournalofFishEcology23:281–

289.

Compagno,L.J.V.1984.Sharksoftheworld.Anannotatedandillustratedcatalogueof

sharkspeciesknowntodate,Part1.FAOFisheriesSynopsis125.

Connor,R.C.2000.Grouplivinginwhalesanddolphins.Pages199–218,Chapter8 in

J.Mann,R.C.Connor,P.L.Tyack,andH.Whitehead,editors.Cetacean

societies.UniversityofChicagoPress,Chicago,Illinois.

Connor,R.C.,andM.R.Heithaus.1996.Approachbygreatwhitesharkelicitsflight

responseinbottlenosedolphins.MarineMammalScience12:602–606.

Connor,R.C.,J.Mann,P.L.Tyack,andH.Whitehead.1998.Socialevolutionin

toothedwhales.TrendsinEcology&Evolution13:228–232.

Connor,R.C.,R.S.Wells,J.Mann,andA.Read.2000.Thebottlenosedolphin:social

relationshipsinafissionfusionsociety.UniversityofChicagoPress.Chicago&

London.

Constantine,R.,I.Visser,D.Buurman,R.Buurman,andB.McFadden.1998.Killer

whale( Orcinus orca) predationonduskydolphins( Lagenorhynchus obscurus )in

Kaikoura,NewZealand.MarineMammalScience14:324–330.

Cooper,W.E.2000.Tradeoffsbetweenpredationriskandfeedinginalizard,thebroad

headedskink( Eumeces laticeps ).Behaviour137:1175–1189.

136

Costa,D.P.2008.Aconceptualmodelofthevariationinparentalattendancein

responsetoenvironmentalfluctuation:foragingenergeticsoflactatingsealions

andfurseals.AquaticConservation:MarineandFreshwaterEcosystems17:S44–

S52.

Cowlishaw,G.1997.Tradeoffsbetweenforagingandpredationriskdeterminehabitat

useinadesertbaboonpopulation.AnimalBehavior,53:667–686.

Creel,S.,andD.Christianson.2008.Relationshipsbetweendirectpredationandrisk

effects.TrendsinEcology&Evolution23:194–201.

Creel,S.,andJ.A.Winnie.2005.Responsesofelkherdsizetofine–scalespatialand

temporalvariationintheriskofpredationbywolves.AnimalBehaviour

69:1181–1189.

Creel,S.,D.Christianson,S.Liley,andJ.A.Winnie.2007.Predationriskaffects

reproductivephysiologyanddemographyofelk.Science315:960–960.

Creel,S.,J.Winnie,B.Maxwell,K.Hamlin,andM.Creel.2005.Elkalterhabitat

selectionasanantipredatorresponsetowolves.Ecology86:3387–3397.

CrespiAbril,A.C.,N.A.García,E.A.Crespo,andM.A.Coscarella.2003.

Consumptionofmarinemammalsbybroadnosesevengillshark Notorynchus

cepedianus inthenorthernandcentralPatagonianShelf.LatinAmericanJournal

ofAquaticMammals2:101–107.

Cresswell,W.2008.Nonlethaleffectsofpredationinbirds.Ibis,150:3–17.

Crovetto,A.,J.Lamilla,andG.Pequeno.1992. Lissodelphis peronii ,Lacepede1804

(Delphinidae,Cetacea)withinthestomachcontentsofasleepingshark,

137

Somniosus cf pacificus ,BigelowandSchroeder1944,inChileanwaters.Marine

MammalScience8:312–314.

Dahood,A.D.,B.Würsig,Z.Vernon,I.Bradshaw,D.Buurman,andL.Buurman.2008.

Touroperatordataillustratelongtermduskydolphin( Lagenorhynchus obscurus )

occurrencepatternsnearKaikoura,NewZealand.IWC/SC60/WW2.Presented

totheScientificCommitteeoftheInternationalWhalingCommissionJune2008.

Deecke,V.B.,P.J.B.Slater,andJ.K.B.Ford.2002.Selectivehabituationshapes

acousticpredatorrecognitioninharbourseals.Nature420:171–173.

Dehn,M.M.1990.Vigilanceforpredators–detectionanddilutioneffects.Behavioral

EcologyandSociobiology26:337–342.

Deutsch,S.M.2008.Behavioraldevelopmentofduskydolphins.MSThesis,Texas

A&MUniversity,Galveston.

Dill,L.M.1987.AnimaldecisionmakinganditsecologicalconsequencesThefuture

ofaquaticecologyandbehavior.CanadianJournalofZoology65:803–811.

Dill,L.M.,M.R.Heithaus,andC.J.Walters.2003.Behaviorallymediatedindirect

interactionsinmarinecommunitiesandtheirconservationimplications.Ecology

84:1151–1157.

Ebert,D.A.1991.Dietofthesevengillshark Notorynchus cepedianus inthetemperate

coastalwatersofsouthernAfrica.SouthAfricanJournalofMarineScience

11:565–572.

Ebert,D.A.2002.Ontogeneticchangesinthedietofthesevengillshark( Notorynchus

cepedianus ).MarineandFreshwaterResearch53:517–523.

138

Edmunds.1974.Defenceinanimals.Longman,NewYork,NY.

Elgar,M.A.1989.Predatorvigilanceandgroupsizeinmammalsandbirdsacritical

reviewoftheempiricalevidence.BiologicalReviewsoftheCambridge

PhilosophicalSociety64:13–33.

Estes,J.A.,andD.O.Duggins.1995.SeaottersandkelpforestsinAlaskagenerality

andvariationinacommunityecologicalparadigm.EcologicalMonographs

65:75–100.

Fertl,D.,A.AcevedoGutierrez,andF.L.Darby.1996.Areportofkillerwhales

(Orcinus orca )feedingonacarcharhinidsharkinCostaRica.MarineMammal

Science12:606–611.

Fischhoff,I.R.,S.R.Sundaresan,J.Cordingley,andD.I.Rubenstein.2007.Habitatuse

andmovementsofplainszebra( Equus burchelli )inresponsetopredationin

dangerfromlions.BehaviorEcology18:725–729.

Fitzgibbon,C.D.1990.Whydohuntingcheetahsprefermalegazelles.Animal

Behaviour40:837–845.

Ford,J.K.B.andR.R.Reeves.2008.Fightorflight:antipredatorstrategiesofbaleen

whales.MammalReview38:50–86.

Fortin,D.,H.L.Beyer,M.S.Boyce,D.W.Smith,T.Duchesne,andJ.S.Mao.2005.

Wolvesinfluenceelkmovements:behaviorshapesatrophiccascadein

YellowstoneNationalPark.Ecology86:1320–1330.

Francis,M.P.,J.D.Stevens,andP.R.Last.1988.Newrecordsof Somniosus

(Elasmobranchii,Squalidae)fromAustralasia,withcommentsonthetaxonomy

139

ofthegenus.NewZealandJournalofMarineandFreshwaterResearch22:401–

409.

Frid,A.,G.G.Baker,andL.M.Dill.2006.Doresourcedeclinesincreasepredation

ratesonNorthPacificharborseals?Abehaviorbasedplausibilitymodel.Marine

EcologyProgressSeries312:265–275.

Gaskin,D.E.1968.Distributionofdelphinidae(Cetacea)inrelationtoseasurface

temperaturesoffeasternandsouthernNewZealand.NewZealandJournalof

MarineFreshwaterResearch2:527–534.

Gowans,S.,B.Würsig,andL.Karczmarski.2008.Thesocialstructureandstrategiesof

delphinids:Predictionsbasedonanecologicalframework.AdvancesinMarine

Biology53:195–294.ElsevierAcademicPressInc,SanDiego,CA.

Graham,J.2004.Movementpatternsandbioenergeticsoftheshortfinmakoshark.

CaliforniaSeaGrantCollegeProgram.ResearchProfiles.Paper

PPFisheries04_03.4pphttp://repositories.cdlib.org/csgc/rp/PPFisheries04_03.

AccessedMarch2008.

Graw,B.,andM.Manser.2007.Thefunctionofmobbingincooperativemeerkats.

AnimalBehavior74:507–517.

GrimmV.,andS.F.Railsback.2005.Individualbasedmodelingandecology.Princeton

UniversityPress,Princeton,NJ.

Grimm,V.,E.Revilla,U.Berger,F.Jeltsch,W.M.Mooij,S.F.Railsback,H.H.Thulke,

J.Weiner,T.Wiegand,D.L.DeAngelis.2005.Patternorientedmodelingof

agentbasedcomplexsystems:Lessonsfromecology.Science310:987–991.

140

Gygax,L.2002.Evolutionofgroupsizeinthedolphinsandporpoises:interspecific

consistencyofintraspecificpatterns.BehavioralEcology13:583–590.

Hall,A.J.,B.J.McConnell,T.K.Rowles,A.Aguilar,A.Borrell,L.Schwacke,P.J.H.

Reijnders,R.S.Wells.2006.Individualbasedmodelframeworktoassess

populationconsequencesofpolychlorinatedbiphenylexposureinbottlenose

dolphins.EnvironmentalHealthPerspectives.114:60–64.

Hall,C.A.S.andJ.W.Day,Jr.1977.Ecosystemmodelingintheoryandpractice.John

Wiley&Sons,NewYork.

Hamilton,W.D.1971.Geometryforselfishherd.JournalofTheoreticalBiology

31:295–311.

Hamilton,W.D.1972.Altruismandrelatedphenomena,mainlyinsocialinsects.

AnnualReviewsofEcologicalSystems3:193–232

Hanlon,R.T.andJ.B.Messenger.1996.Cephalopodbehaviour,CambridgeUniversity

Press,Cambridge,UK.

Hart,D.L.,andR.W.Sussman.2005.Manthehunted:primates,predators,andhuman.

WestviewPress,Boulder,CO.

Heithaus,M.R.2001.Predatorpreyandcompetitiveinteractionsbetweensharks(order

Selachii)anddolphins(suborderOdontoceti):areview.JournalofZoology253:

53–68.

Heithaus,M.R.2004.Predatorpreyinteractions.Pages487521 in J.C.Carrier,J.

Musick,andM.RHeithaus,editors.Thebiologyofsharksandtheirrelatives.

CRCPress,BocaRaton,Fl.

141

Heithaus,M.R.,A.Frid,A.J.Wirsing,andB.Worm.2008.Predictingecological

consequencesofmarinetoppredatordeclines.TrendsinEcology&Evolution

23:202–210.

Heithaus,M.R.,andL.M.Dill.2002.Foodavailabilityandtigersharkpredationrisk

influencebottlenosedolphinhabitatuse.Ecology83:480–491.

Heithaus,M.R.,L.M.Dill,G.J.Marshall,andB.Buhleier.2002.Habitatuseand

foragingbehavioroftigersharks( Galeocerdo cuvier )inaseagrassecosystem.

MarineBiology140:237–248.

Heithaus,M.R.,andL.M.Dill.2006.Doestigersharkpredationriskinfluenceforaging

habitatusebybottlenosedolphinsatmultiplespatialscales?Oikos114:257–264.

Holomuzki,J.R.,andJ.D.Hoyle.1990.Effectofpredatoryfishpresenceonhabitatuse

anddielmovementofthestreamamphipod, Gamm rarus minus .Freshwater

Biology24:509–517.

Holts,D.B.,andD.W.Bedford.1993.Horizontalandverticalmovementsoftheshortfin

makoshark, Isurus oxyrinchus ,inthesouthernCaliforniabight.Australian

JournalofMarineandFreshwaterResearch44:901–909.

Hopcraft,J.G.C.,A.R.E.Sinclair,andC.Packer.2005.Planningforsuccess:

Serengetilionsseekpreyaccessibilityratherthanabundance.JournalofAnimal

Ecology74:559–566.

Houston,A.I.,J.M.McNamara,andJ.M.C.Hutchinson.1993.Generalresults

concerningthetradeoffbetweengainingenergyandavoidingpredation.

142

PhilosophicalTransactionsoftheRoyalSocietyofLondonSeriesBBiological

Sciences341:375–397.

Hui,C.A.1987.Powerandspeedofswimmingdolphins.JournalofMammalogy

68:126–132.

Hulbert,L.B.,M.F.Sigler,andC.R.Lunsford.2006.Depthandmovementbehaviorof

thePacificsleepersharkinthenortheastPacificOcean.JournalofFishBiology

69:406–425.

Inman,A.J.,andJ.Krebs.1987.Predationandgroupliving.TrendsinEcologyand

Evolution2:31–32.

InternationalUnionfortheConservationofNatureandNaturalResources(IUCN).

2008.2008IUCNRedListofThreatenedSpecies.www.iucnredlist.org

AccessedFeb2008.

Jackson,A.L.,S.Brown,T.N.Sherratt,andG.D.Ruxton.2005.Theeffectsofgroup

size,shapeandcompositiononeaseofdetectionofcrypticprey.Behaviour

142:811–826.

Jarman,P.J.1974.Thesocialorganizationofantelopeinrelationtotheirecology.

Behavior48:215–267.

Jeffers,J.N.R.1978.Anintroductiontosystemsanalysiswithecologicalapplications.

UniversityParkPress,Baltimore,MD.

Jefferson,T.A.,P.J.Stacey,andR.W.Baird.1991.Areviewofkillerwhale

interactionswithothermarinemammalspredationtocoexistence.Mammal

Review21:151–180.

143

Kappeler,P.M.,andC.P.VanSchaik.2002.Evolutionofprimatesocialsystems.

InternationalJournalofPrimatology23:707–740.

Kastelein,R.A.,C.A.vanderElst,H.K.Tennant,andP.R.Wiepkema.2000.Food

consumptionandgrowthofafemaleduskydolphin( Lagenorhynchus obscurus ).

ZooBiology19:131–142.

Kastelein,R.A.,N.Vaughan,S.Walton,andP.R.Wiepkema.2002.Foodintakeand

bodymeasurementsofAtlanticbottlenosedolphins(Tursiops truncatus )in

captivity.MarineEnvironmentalResearch53:199–218.

Kats,L.B.,andL.M.Dill.1998.Thescentofdeath:chemosensoryassessmentof

predationriskbypreyanimalsEcoscience5:569–569.

Keiper,C.A.,D.G.Ainley,S.G.Allen,andJ.T.Harvey.2005.Marinemammal

occurrenceandoceanclimateoffcentralCalifornia,1986to1994and1997to

1999.MarineEcologyProgressSeries289:285–306.

Kjelland,M.E.,U.P.Kreuter,G.A.Clendenin,R.N.Wilkins,X.BenWu,E.G.

Afanador,andW.E.Grant.2007.Factorsrelatedtospatialpatternsofruralland

fragmentationinTexas.EnvironmentalManagement40:231–244.

Klanjscek,T.2006.Dynamicenergybudgetsandbioaccumulation:amodelformarine

mammalsandmarinemammalpopulations.Dissertation,WoodsHole

OceanographyInstitute(WHOI),MassachusettsInstituteofTechnology.

KleiberM.1975.Thefireoflife:anintroductiontoanimalenergetics.Krieger,

Huntington,NY.

144

Klimley,A.P.,S.C.Beavers,T.H.Curtis,andS.J.Jorgensen.2002.Movementsand

swimmingbehaviorofthreespeciesofsharksinLaJollaCanyon,California.

EnvironmentalBiologyofFishes63:117–135.

Kotler,B.P.1984.Riskofpredationandthestructureofdesertrodentcommunities.

Ecology65:689–701.

Kotler,B.P.,andR.D.Holt.1989.PredationandcompetitionTheinteractionof2

typesofspeciesinteractions.Oikos54:256260.

Krause,J.1994.Theinfluenceoffoodcompetitionandpredationriskonsize–

assortativeshoalinginjuvenilechub( Leuciscus cephalus ).Ethology96:105–

116.

Krause,J.,andJ.G.J.Godin.1995.Predatorpreferencesforattackingparticularprey

groupsizes–consequencesforpredatorhuntingsuccessandpreypredationrisk.

AnimalBehaviour50:465–473.

Krause,J.,andG.Ruxton.2002.Livingingroups.OxfordUniversityPress,London.

Krebs,C.J.,R.Boonstra,S.Boutin,andA.R.E.Sinclair.2001.Whatdrivesthe10–year

cycleofthesnowshoehare?BioScience51(1):25–35

Kruuk,H.1972.Thespottedhyena:astudyofpredationandsocialbehavior.University

ofChicagoPress,Chicago,IL.

Lamprecht,J.1981.Thefunctionofsocialhuntinginlargerterrestrialcarnivores.

MammalReview11:169–179.

Landeau,L.andJ.Terborgh.1986.Oddityandtheconfusioneffectinpredation.Animal

Behaviour34:1372–1380.

145

Laundre,J.W.,L.Hernandez,andK.B.Altendorf.2001.Wolves,elk,andbison:

reestablishingthe"landscapeoffear"inYellowstoneNationalPark,USA.

CanadianJournalofZoology79:1401–1409.

Liley,S.,andS.Creel.2007.Whatbestexplainsvigilanceinelk:characteristicsofprey,

predators,ortheenvironment?BehavioralEcology19:245–254.

Lima,S.L.1998.Stressanddecisionmakingundertheriskofpredation:Recent

developmentsfrombehavioral,reproductive,ecologicalperspectives.Advances

intheStudyofBehavior27:215–290.

Lima,S.L.2002.Puttingpredatorsbackintobehavioralpredatorpreyinteractions.

TrendsinEcology&Evolution17:70–75.

Lima,S.L.,andP.A.Bednekoff.1999.Temporalvariationindangerdrivesantipredator

behavior:thepredationriskallocationhypothesis.AmericanNaturalist153:649–

659.

Lima,S.L.,andL.M.Dill.1990.Behavioraldecisionsmadeundertheriskofpredation

–areviewandprospectus.CanadianJournalofZoology–RevueCanadiennede

Zoologie68:619–640.

Lima,S.L.,W.A.Mitchell,andT.C.Roth.2003.Predatorsfeedingonbehaviourally

responsiveprey:someimplicationsforclassicalmodelsofoptimaldietchoice.

EvolutionaryEcologyResearch5:1083–1102.

Lockyer,C.2007.Allcreaturesgreatandsmaller:astudyincetaceanlifehistory

energetics.JournaloftheMarineBiologicalAssociationoftheUnitedKingdom

87:1035–1045.

146

Long,D.J.,andR.E.Jones.1996.Whitesharkpredationandscavengingoncetaceans

intheeasternNorthPacificOcean.Pages293–307 in A.P.KlimleyandD.G.

Ainley,editors.Greatwhitesharks:thebiologyof Carcharodon carcharias

AcademicPress,NewYork,NY.

Lotka,A.J.1925.Elementsofphysicalbiology.Williams&WilkinsCompany,

Baltimore,MD.

Lucifora,L.O.,R.C.Menni,andA.H.Escalante.2005.Reproduction,abundanceand

feedinghabitsofthebroadnosesevengillshark Notorynchus cepedianus innorth

Patagonia,Argentina.MarineEcologyProgressSeries289:237–244.

Luttbeg,B.,andJ.L.Kerby.2005.Arescaredpreyasgoodasdead?TrendsinEcology

&Evolution20:416418.

Luttbeg,B.,andA.Sih.2004.Predatorandpreyhabitatselectiongames:theeffectsof

howpreybalanceforagingandpredationrisk.IsraelJournalofZoology.50:233–

254.

Macleod,C.D.,C.R.Weir,M.B.Santos,andT.E.Dunn.2008.Temperaturebased

summerhabitatpartitioningbetweenwhitebeakedandcommondolphinsaround

theUnitedKingdomandRepublicofIreland.JournaloftheMarineBiological

AssociationoftheUnitedKingdom88:1193–1198.

Madenjian,C.P.,andS.R.Carpenter.1991.Individualbasedmodelforgrowthof

youngoftheyearwalleyeApieceoftherecruitmentpuzzle.Ecological

Applications1:268–279.

147

Mamaev,E.G.,andV.N.Burkanov.2006.Killerwhales( Orcinus orca )andnorthern

fursealsoftheCommanderIslands:isitfeedingspecializationdevelopment?

Pages347–351 in MarinemammalsoftheHolarctic,FourthInternational

Conference,St.Petersburg,Russia.

Mann,J.andH.Barnett.1999.Lethaltigershark(Galeocerdo cuvier )attackon

bottlenosedolphin( Tursiops sp .)calf:defenseandreactionsbythemother.

MarineMammalScience15:568–575.

Marino,L.1998.Acomparisonofencephalizationbetweenodontocetecetaceansand

anthropoidprimates.BrainBehaviorandEvolution51:230–238.

Markowitz,T.M.,2004.SocialorganizationoftheNewZealandduskydolphin.

DissertationTexasA&MUniversity,Galveston,TX.

Matkin,C.O.,L.G.BarrettLennard,H.Yurk,D.Ellifrit,andA.Trites.2007.Ecotypic

variationandpredatorybehavioramongkillerwhales( Orcinus orca )offthe

easternAleutianIslands,Alaska.FisheryBulletin105:74–87.

McNamara,J.M.,andA.I.Houston.1990.Thevalueoffatreservesandthetradeoff

betweenstarvationandpredation.ActaBiotheoretica38:37–61.

Meagher,E.M.,W.A.Mclellan,A.J.Westgate,R.S.Wells,J.E.Blum,andD.A.

Pabst.2008.Seasonalpatternsofheatlossinwildbottlenosedolphins( Tursiops

truncatus ).JournalofComparativePhysiologyBBiochemicalSystemicand

EnvironmentalPhysiology178:529–543.

Mehta,A.V.,J.M.Allen,R.Constantine,C.Garrigue,B.Jann,C.Jenner,M.K.Marx,

C.O.Matkin,D.K.Mattila,G.Minton,S.A.Mizroch,C.Olavarria,J.Robbins,

148

K.G.Russell,R.E.Seton,G.H.Steiger,G.A.Vikingsson,P.R.Wade,B.H.

Witteveen,andP.J.Clapham.2007.Baleenwhalesarenotimportantaspreyfor

killerwhales Orcinus orca inhighlatituderegions.MarineEcologyProgress

Series348:297–307.

MinistryofFisheries.2007a.BlueSharks(BWS)FisheriesSummary.Ministryof

FisheriesPlenaryReport.

http://services.fish.govt.nz/fishresourcespublic/Plenary2006/BWS_06.pdf.

AccessedMarch2008.

MinistryofFisheries.2007b.MakoShark(MAK)FisheriesSummary.Ministryof

FisheriesPlenaryReport.

http://services.fish.govt.nz/fishresourcespublic/Plenary2007/MAK_07.pdf.

AccessedMarch2008.

Mitchell,W.A.,andS.L.Lima.2002.Predatorpreyshellgames:largescalemovement

anditsimplicationsfordecisionmakingbyprey.Oikos99:249–259.

Morisaka,T.,andR.C.Connor.2007.Predationbykillerwhales( Orcinus orca )andthe

evolutionofwhistlelossandnarrowbandhighfrequencyclicksinodontocetes.

JournalofEvolutionaryBiology20:1439–1458.

Myers,R.A.,J.K.Baum,T.D.Shepherd,S.P.Powers,andC.H.Peterson.2007.

Cascadingeffectsofthelossofapexpredatorysharksfromacoastalocean.

Science315:1846–1850.

149

Newman,K.,andA.M.Springer.2007.Killerwhalesdoitinthedark:nocturnal

activitybytransientsatSt.PaulIsland.Abstract,MarineScienceinAlaska:2007

Symposium,Anchorage,AK.

Nichol,L.M.,andD.M.Shackleton.1996.Seasonalmovementsandforaging

behaviourofnorthernresidentkillerwhales( Orcinus orca )inrelationtothe

inshoredistributionofsalmon( Oncorhynchus spp )inBritishColumbia.

CanadianJournalofZoologyRevueCanadienneDeZoologie74:983–991.

Noren,S.R.2008.Infantcarryingbehaviorindolphins:costlyparentalcareinan

aquaticenvironment.FunctionalEcology22:284–288.

Norris,K.S.1994.Predators,parasites,andmultispeciesaggregations.Pages287300 in

K.S.Norris,B.Würsig,R.S.Wells,M.Würsig,editors.TheHawaiianspinner

dolphin.UniversityofCaliforniaPress,Berkeley.

Norris,K.S.,andT.P.Dohl.1980.BehavioroftheHawaiianspinnerdolphin, Stenella

longirostris .FisheryBulletin77:821–849.

Norris,K.S.,andC.R.Schilt.1988.Cooperativesocietiesin3dimensionalspace–on

theoriginsofaggregations,flocks,andschools,withspecialreferenceto

dolphinsandfish.EthologyandSociobiology9:149–179.

Orrock,J.L.,J.H.Grabowski,J.H.Pantel,S.D.Peacor,B.L.Peckarsky,A.Sih,andE.

E.Werner.2008.Consumptiveandnonconsumptiveeffectsofpredatorson

metacommunitiesofcompetingprey.Ecology89:2426–2435.

150

Otto,S.B.,E.L.Berlow,N.E.Rank,J.Smiley,andU.Brose.2008.Predatordiversity

andidentitydriveinteractionstrengthandtrophiccascadesinafoodweb.

Ecology89:134–144.

Pace,M.L.,J.J.Cole,S.R.Carpenter,andJ.F.Kitchell.1999.Trophiccascades

revealedindiverseecosystems.TrendsinEcology&Evolution14:483–488.

Packer,C.1986.Theecologyofsocialityinfelids,pages429–451 in D.I.Rubenstein

andR.W.Wrangham,editors.Ecologicalaspectsofsocialevolution:birdsand

mammals.PrincetonUniversityPress,Princeton,NJ.

Peacor,S.D.,andE.E.Werner.2001.Thecontributionoftraitmediatedindirecteffects

totheneteffectsofapredator.ProceedingsoftheNationalAcademyofSciences

oftheUnitedStatesofAmerica,98:3904–3908.

Peckarsky,B.L.,P.A.Abrams,D.I.Bolnick,L.M.Dill,J.H.Grabowski,B.Luttbeg,

J.L.Orrock,S.D.Peacor,E.L.Preisser,O.J.Schmitz,andG.C.Trussell.2008.

Revisitingtheclassics:consideringnonconsumptiveeffectsintextbook

examplesofpredatorpreyinteractions.Ecology89:2416–2425.

Peckarsky,B.L.,C.A.Cowan,M.A.Penton,andC.Anderson.1993.Sublethal

consequencesofstreamdwellingpredatorystonefliesonmayflygrowthand

fecundity.Ecology74:18361846.

Peckarsky,B.L.,andA.R.McIntosh.1998.Fitnessandcommunityconsequencesof

avoidingmultiplepredators.Oecologia113:565–576.

151

Peckarsky,B.L.,A.R.McIntosh,B.W.Taylor,andJ.Dahl.2002.Predatorchemicals

inducechangesinmayflylifehistorytraits:awholestreammanipulation.

Ecology83:612–618.

Perryman,W.L.,andT.CFoster.1980.Preliminaryreportonpredationbysmall

whales,mainlythefalsekillerwhale, Pseudorca crassidens ,ondolphins

(Stenella spp.and Delphinus delphis )intheeasterntropicalPacific.AdminRep

LJ–80–05,SouthwestFisheriesScienceCenter,LaJolla,CA.

Peterseni,J.H.,D.L.Deangelas,andC.P.Paukert.2008.Anoverviewofmethodsfor

developingbioenergeticandlifehistorymodelsforrareandendangeredspecies.

TransactionsoftheAmericanFishSociety137:244–253.

Pitman,R.L.,L.T.Ballance,S.I.Mesnick,andS.J.Chivers.2001.Killerwhale

predationonspermwhales:observationsandimplications.MarineMammal

Science17:494–507.

Preisser,E.L.,D.I.Bolnick,andM.F.Benard.2005.Scaredtodeath?Theeffectsof

intimidationandconsumptioninpredator–preyinteractions.Ecology86:501–

509.

Pulliam,H.R.1973.Advantagesofflocking.JournalofTheoreticalBiology38:419–

422.

Pulliam,H.R.andT.Caraco.1984.Livingingroups:isthereanoptimalgroupsize?

Pages122–157 in Chapter5J.R.KrebsandN.B.Davies,editors.Behavioural

ecology:anevolutionaryapproach,2ndEdition.BlackwellScientific,Oxford,

UK.

152

Reddy,M.,T.Kamolnick,T.,C.Curry,C.,D.Skaar,D.,andS.Ridgway.1994.Energy

requirementsforthebottlenosedolphin( Tursiops truncatus )inrelationtosex,

ageandreproductivestatus.MarineMammals:PublicDisplayandResearch,1,

26–31.

Rice,J.A.,T.J.Miller,K.A.Rose,L.B.Crowder,E.A.Marschall,A.S.Trebitz,and

D.L.Deangelis.1993.Growthratevariationandlarvalsurvivalinferences

fromanindividualbasedsizedependentpredationmodel.CanadianJournalof

FishandAquaticSciences50:133–142.

Ripple,W.J.,andR.L.Beschta.2004.Wolvesandtheecologyoffear:canpredation

riskstructureecosystems?Bioscience54:755–766.

Ripple,W.J.,andR.L.Beschta.2006.Linkingacougardecline,trophiccascade,and

catastrophicregimeshiftinZionNationalPark.BiologicalConservation

133:397–408.

Roberts,G.1996.Whyindividualvigilancedeclinesasgroupsizeincreases.Animal

Behaviour51:1077–1086.

Rodriguez,A.,H.Andren,andG.Jansson.2001.Habitatmediatedpredationriskand

decisionmakingofsmallbirdsatforestedges.Oikos95:383–396.

Rosen,D.A.S.,andA.W.Trites.2002.CostoftransportinStellersealions,

Eumetopias jubatus .MarineMammalScience18:513–524.

Rosen,D.A.S.,A.J.Winship,andL.A.Hoopes.2007.Thermalanddigestive

constraintstoforagingbehaviourinmarinemammals.Philosophical

TransactionsoftheRoyalSocietyBBiologicalSciences362:2151–2168.

153

RosenbergM.S.2001.PASSAGE.Patternanalysis,spatialstatistics,andgeographic

exegesis.Version2.0betaDepartmentofBiology,ArizonaStateUniversity,

Tempe,Arizona

Ruzicka,J.J.,andS.M.Gallager.2006.Theimportanceofthecostofswimmingtothe

foragingbehaviorandecologyoflarvalcod( Gadus morhua )onGeorgesBank.

DeepSeaResearchPartITopicalStudiesinOceanography53:2708–2734.

Saayman,G.S.,andC.K.Tayler.1979.Thesocioecologyofhumpbackdolphins( Sousa

sp.). Pages165226 in H.E.WinnandB.L.Olla,editors.Thebehaviorofmarine

animals,Volume3:Cetaceans,PlenumPress,NewYork.

Schaller,G.1972.TheSerengetilion.TheUniversityofChicagoPress,Chicago,IL.

Scheel,D.,andC.Packer.1991.Grouphuntingbehavioroflions–asearchfor

cooperation.AnimalBehaviour41:697–709.

Schipper,J.,J.S.Chanson,F.Chiozza,N.A.Cox,etal.2008.Thestatusoftheworld's

landandmarinemammals:Diversity,threat,andknowledge.Science322:225–

230.

SchmidtNielsen,K.1972.Locomotionenergycostofswimming,flying,andrunning.

Science177:222–228.

Schmitz,O.J.2006.Predatorshavelargeeffectsonecosystempropertiesbychanging

plantdiversity,notplantbiomass.Ecology87:1432–1437.

Schmitz,O.J.,J.H.Grabowski,B.L.Peckarsky,E.L.Preisser,G.C.Trussell,andJ.R.

Vonesh.2008.Fromindividualstoecosystemfunction:towardanintegrationof

evolutionaryandecosystemecology.Ecology89:2436–2445.

154

Scott,M.D.,andJ.G.Cordaro.1987.Behavioralobservationsofthedwarfsperm

whale, Kogia simus .MarineMammalScience3:353–354.

Shane,S.H.,R.S.Wells,andB.Würsig.1986.Ecology,behaviorandsocial

organizationofthebottlenoseddolphinareview.MarineMammalScience

2:34–63.

Shurin,J.B.,E.T.Borer,E.W.Seabloom,K.Anderson,C.A.Blanchette,B.Broitman,

S.D.Cooper,andB.S.Halpern.2002.Across–ecosystemcomparisonofthe

strengthoftrophiccascades.EcologyLetters5:785–791.

Sigler,M.F.,L.B.Hulbert,C.R.Lunsford,N.H.Thompson,K.Burek,G.O'Corry

Crowe,andA.C.Hirons.2006.DietofPacificsleepershark,apotentialSteller

sealionpredator,inthenortheastPacificOcean.JournalofFishBiology

69:392–405.

Sih,A.1980.Optimalbehaviorcanforagersbalance2conflictingdemands?Science

210:1041–1043.

Sih,A.1987.Predatorsandpreylifestyles:anevolutionaryandecologicaloverview.

Pages203–224 in W.C.KerfootandA.Sih,editors.Predation:directand

indirectimpactsonaquaticcommunities.UniversityPressofNewEngland,

Hanover,NH.

Sih,A.,andD.E.Wooster.1994.Preybehavior,preydispersal,andpredatorimpactson

streamprey.Ecology75:1199–1207.

Simmonds,M.P.,andS.J.Isaac.2007.Theimpactsofclimatechangeonmarine

mammals:earlysignsofsignificantproblems.Oryx41:19–26.

155

Springer,A.M.,J.A.Estes,G.B.vanVliet,T.M.Williams,D.F.Doak,E.M.Danner,

K.A.Forney,andB.Pfister.2003.SequentialmegafaunalcollapseintheNorth

PacificOcean:anongoinglegacyofindustrialwhaling?Proceedingsofthe

NationalAcademyofSciencesoftheUnitedStatesofAmerica100:12223–

12228.

Staniland,I.J.,I.L.Boyd,andK.Reid.2007.Anenergydistancetradeoffinacentral

placeforager,theAntarcticfurseal( Arctocephalus gazella ).MarineBiology

152:233–241.

Steiger,G.H.,J.Calambokidis,J.M.Straley,L.M.Herman,S.Cerchio,D.R.Salden,J.

UrbánR,J.K.Jacobsen,O.vonZiegesar,K.C.Balcomb,C.M.Gabriele,M.E.

Dahlheim,S.Uchida,J.K.B.Ford,P.LadrondeGuevaraP,M.Yamaguchi,and

J.Barlow.2008.Geographicvariationinkillerwhaleattacksonhumpback

whalesintheNorthPacific:implicationsforpredationpressure.Endangered

SpeciesResearch4:247–256.

Taggart,S.J.,A.G.Andrews,J.Mondragon,andE.A.Mathews.2005.Cooccurrence

ofPacificsleepersharks Somniosus pacificus andharborseals Phoca vitulina in

GlacierBay.AlaskaFisheryResearchBulletin11:113–117.

Testa,J.W.,K.Mock,C.Taylor,H.Koyuk,J.Coyle,R.Waggoner,andK.Newman,,

2007.Anagentbasedmodelofpredatorpreyrelationshipsbetweentransient

killerwhalesandothermarinemammals.FinalreportfortheMarineMammal

Commission,WashingtonDC.

156

Tricas,T.C.1979.Relationshipsoftheblueshark, Prionace glauca ,anditspreyspecies

nearSantaCatalinaIsland,California.FisheryBulletin77:175–182.

Trites,A.W.2002.Predatorpreyrelationships.Pages994997 in W.F.Perrin,B.

WürsigandH.G.M.Thewissen,editors.Encyclopediaofmarinemammals.

AcademicPress,SanDiego,CA.

Trivers,R.L.1972.Mother–offspringconflict.AmericanZoologist12:648–648.

Trivers,R.L.1985.Socialevolution.BenjaminCummings,MenloPark.CA.

Uddstrom,M.J.,andN.A.Oien.1999.Ontheuseofhighresolutionsatellitedatato

describethespatialandtemporalvariabilityofseasurfacetemperaturesinthe

NewZealandregion.JournalofGeophysicalResearchOceans104:20729–

20751.

VanSchaik,C.P.,andHörstermann.1994.Predationriskandthenumberofadultmales

inaprimategroup:acomparativetest.BehavioralEcologyandSociobiology.35:

261–272.

VanSchaik,C.P.,andJ.VanHooff.1983.Ontheultimatecausesofprimatesocial

systems.Behavior85:91–117.

Verdolin,J.L.2006.Metaanalysisofforagingandpredationrisktradeoffsinterrestrial

systems.BehavioralEcologyandSociobiology60:457–464.

Visser,I.N.1999.Benthicforagingonstingraysbykillerwhales( Orcinus orca )in

NewZealandwaters.MarineMammalScience15:220–227.

Visser,I.N.2000.Orca( Orcinus orca )inNewZealandwaters.Dissertation,University

ofAuckland,NewZealand.

157

Visser,I.N.,D.Fertl,J.Berghan,andR.VanMeurs.2000.Killerwhale( Orcinus orca)

predationonashortfinmakoshark( Isurus oxyrinchus ),inNewZealandwaters.

AquaticMammals26:229–231.

Volterra,V.1926.Pages409–448(Appendix) in R.N.Chapman.Animalecology.

McGraw–Hill,NY.

Wade,P.R.,V.N.Burkanov,M.E.Dahlheim,N.A.Friday,L.W.Fritz,T.R.

Loughlin,S.A.Mizroch,M.M.Muto,D.W.Rice,L.G.BarrettLennard,N.A.

Black,A.M.Burdin,J.Calambokidis,S.Cerchio,J.K.B.Ford,J.K.Jacobsen,

C.O.Matkin,D.R.Matkin,A.V.Mehta,R.J.Small,J.M.Straley,S.M.

McCluskey,G.R.VanBlaricom,andP.J.Clapham.2007.Killerwhalesand

marinemammaltrendsintheNorthPacificareexaminationofevidencefor

sequentialmegafaunacollapseandthepreyswitchinghypothesis.Marine

MammalScience23:766–802.

Walters,C.J.1986.Adaptivemanagementofrenewableresources.BlackburnPress,

Caldwell,NJ.

Weir,J.S.2007.DuskydolphinnurserygroupsoffKaikoura,NewZealand.Masters

Thesis,TexasA&MUniversity,Galveston,TX.

Weir,J.S.,N.M.T.Duprey,andB.Würsig.2008.Duskydolphin( Lagenorhynchus

obscurus )subgroupdistribution:areshallowwatersarefugefornurserygroups?

CanadianJournalofZoology86:1225–1234.

Wells,R.S.1991.Theroleoflongtermstudyinunderstandingthesocialstructureofa

bottlenosedolphincommunity.Pages199226 in K.PryorandK.S.Norris,

158

editors.Dolphinsocieties:discoveriesandpuzzles.UniversityofCalifornia

Press,Berkeley,CA.

Wells,R.S.,M.D.Scott,andA.B.Irvine.1987.Thesocialstructureoffreeranging

bottlenosedolphins.CurrentMammalogy1:247–305.

Weng,K.C.,A.M.Boustany,P.Pyle,S.D.Anderson,A.Brown,andB.A.Block.

2007.Migrationandhabitatofwhitesharks( Carcharodon carcharias )inthe

easternPacificOcean.MarineBiology152:877–894.

Werner,E.E.,andS.D.Peacor.2003.Areviewoftraitmediatedindirectinteractionsin

ecologicalcommunities.Ecology84:1083–1100.

Whitehead,H.andWeilgart,L.2000.TheSpermWhale:socialfemalesandroving

males.Pages154–172 in J.Mann,R.C.Connor,P.L.TyackandH.Whitehead,

editors.CetaceanSocieties:fieldstudiesofdolphinsandwhales.Universityof

ChicagoPress,Chicago.

Williams,T.M.2002.Swimming.Pages1213–1222 in W.F.Perrin,B.Würsig,and

J.G.M.Thewissen,editors.Encyclopediaofmarinemammals.AcademicPress,

SanDiego,CA.

Williams,T.M.,J.A.Estes,D.F.Doak,andA.M.Springer.2004.Killerappetites:

Assessingtheroleofpredatorsinecologicalcommunities.Ecology85:3373–

3384.

Williams,T.M.,andL.Yeates.2004.Theenergeticsofforaginginlargemammals:a

comparisonofmarineandterrestrialpredators.Pages351–358 in Animalsand

Environments.ProceedingsoftheThirdInternationalConferenceof

159

ComparativePhysiologyandBiochemistry.InternationalCongressSeries.Dec

2004.

Wilson,E.O.1975.Sociobiology.HarvardUniversityPress,Cambridge,MA.

Winnie,J.,andS.Creel.2007.Sexspecificbehaviouralresponsesofelktospatialand

temporalvariationinthethreatofwolfpredation.AnimalBehaviour73:215–

225.

Wirsing,A.J.,M.R.Heithaus,andL.M.Dill.2006.Tigershark( Galeocerdo cuvier )

abundanceandgrowthinasubtropicalembayment:evidencefrom7yearsof

standardizedfishingeffort.MarineBiology149:961–968.

Wirsing,A.J.,M.R.Heithaus,andL.M.Dill.2007.Fearfactor:dodugongs( Dugong

dugon )tradefoodforsafetyfromtigersharks( Galeocerdo cuvier )?Oecologia

153:1031–1040.

Wirsing,A.J.,M.R.Heithaus,A.Frid,andL.M.Dill.2008.Seascapesoffear:

evaluatingsublethalpredatoreffectsexperiencedandgeneratedbymarine

mammals.MarineMammalScience24:1–15.

Wolf,N.G.1985.Oddfishabandonmixed–speciesgroupswhenthreatened.Behavioral

EcologyandSociobiology17:47–52.

Wolff,J.O.,andT.VanHorn.2003.VigilanceandforagingpatternsofAmericanelk

duringtherutinhabitatswithandwithoutpredators.CanadianJournalof

Zoology81:266–271.

Wrangham,R.W.1980.Anecologicalmodeloffemale–bondedprimategroups.

Behavior75:262–300.

160

Wu,X.Y.andW.J.Mitsch.1998.Spatialandtemporalpatternsofalgaeinnewly

constructedfreshwaterwetlands.Wetlands18:9–20.

Würsig,B.,andM.Würsig.1979.Dayandnightofthedolphin.NaturalHistory88:60

67.

Würsig,B.,andM.Würsig.1980.Behaviorandecologyoftheduskydolphin,

Lagenorhynchus obscurus ,intheSouthAtlantic.FisheryBulletin77:871–890.

Würsig,B.,F.Cipriano,E.Slooten,R.Constantine,K.Barr,andS.Yin.1997.Dusky

dolphins( Lagenorhynchus obscurus) offNewZealand:statusofpresent

knowledge.ReportsoftheInternationalWhalingCommission47:715–722.

Würsig,B.,M.Würsig,andF.Cipriano.1989.Dolphinsindifferentworlds.Oceanus

32:7175.

Würsig,B.,N.Duprey,andJ.Weir.2007.Duskydolphins( Lagenorhynchus obscurus )in

NewZealandwaters:presentknowledgeandresearchgoals.DOCResearchand

DevelopmentSeries270.DepartmentofConservation,Wellington,NZ.

Ydenberg,R.C.,R.W.Butler,D.B.Lank,C.G.Guglielmo,M.Lemon,andN.Wolf.

2002.Tradeoffs,conditiondependenceandstopoversiteselectionbymigrating

sandpipers.JournalofAvianBiology33:47–55.

Ydenberg,R.C.,andL.M.Dill.1986.Theeconomicsoffleeingfrompredators.

AdvancesintheStudyofBehavior16:229–249.

Yin,S.E.1999.Movementpatterns,behaviors,andwhistlesoundsofdolphingroupsoff

Kaikoura,NewZealand.MSThesis,TexasA&MUniversity,Galveston,TX.

Zar,J.H.1999.Biostatisticalanalysis.PrenticeHall,Inc.,UpperSaddleRiver,NJ.

161

VITA

Name: MridulaSrinivasan

Address: DepartmentofWildlifeandFisheriesSciences,NagleHall,

TexasA&MUniversity,CollegeStation778432258

Email: [email protected]

Education: B.Sc.(Honors),Zoology,UniversityofDelhi,India,1997

M.Sc.,Zoology/MolecularBiology,UniversityofDelhi,India,1999

M.S.,EnvironmentalManagement,FloridaTech,2001