Mar. Drugs 2012, 10, 1582-1604; doi:10.3390/md10071582 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review Exploiting the Nephrotoxic Effects of Venom from the Sea Anemone, Phyllodiscus semoni, to Create a Hemolytic Uremic Syndrome Model in the Rat Masashi Mizuno 1,*, Yasuhiko Ito 1 and B. Paul Morgan 2 1 Renal Replacement Therapy, Division of Nephrology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan; E-Mail:
[email protected] 2 Complement Biology Group, Institute of Infection and Immunology, School of Medicine, Cardiff University, Cardiff CF14 4XN, UK; E-Mail:
[email protected] * Author to whom correspondence should be addressed; E-Mail:
[email protected] or
[email protected]; Tel.: +81-52-744-2205; Fax: +81-52-744-2184. Received: 31 May 2012; in revised form: 29 June 2012 / Accepted: 12 July 2012 / Published: 23 July 2012 Abstract: In the natural world, there are many creatures with venoms that have interesting and varied activities. Although the sea anemone, a member of the phylum Coelenterata, has venom that it uses to capture and immobilise small fishes and shrimp and for protection from predators, most sea anemones are harmless to man. However, a few species are highly toxic; some have venoms containing neurotoxins, recently suggested as potential immune-modulators for therapeutic application in immune diseases. Phyllodiscus semoni is a highly toxic sea anemone; the venom has multiple effects, including lethality, hemolysis and renal injuries. We previously reported that venom extracted from Phyllodiscus semoni induced acute glomerular endothelial injuries in rats resembling hemolytic uremic syndrome (HUS), accompanied with complement dysregulation in glomeruli and suggested that the model might be useful for analyses of pathology and development of therapeutic approaches in HUS.