Refugia from Browsing As Reference Sites for Restoration Planning

Total Page:16

File Type:pdf, Size:1020Kb

Refugia from Browsing As Reference Sites for Restoration Planning Western North American Naturalist 65(2), © 2005, pp. 269–273 REFUGIA FROM BROWSING AS REFERENCE SITES FOR RESTORATION PLANNING William J. Ripple1,2 and Robert L. Beschta1 Key words: refugia, ungulate browsing, woody browse species, predation risk, livestock grazing In the western U.S., deciduous woody species times have had significant impacts on vegeta- along riparian systems provide important eco- tion (National Research Council 2002a). Thus, logical functions. For example, they stabilize there is an increased need for restoration of stream banks and impart hydraulic resistance deciduous woody species at landscape scales. during overbank flows, enhance deposition of Such restorations would be facilitated if refer- organic matter and fine sediment on floodplains, ence sites existed that were relatively unim- support general food webs of aquatic and ripar- pacted by ungulate herbivory (i.e., refugia) since ian organisms, moderate water temperatures they (1) can provide an understanding of vege- and microclimates, and recruit large wood tation dynamics without the effects of her- (National Research Council 2002b). Measures bivory, (2) help define the degree and extent of of biodiversity, biomass, and number of rare degradation in woody plant communities for species are often much greater in riparian habi- other portions of a landscape, (3) may assist in tats than on adjacent uplands (Knopf et al. 1988). setting restoration priorities, and (4) may provide Deciduous woody species on upland sites pro- important “targets” for restoration programs. vide for watershed protection, aesthetics, wood In landscapes that have experienced the fiber, and habitats that also help support a effects of widespread and sustained herbivory wide variety of wildlife and avian species (Bar- from ungulates (either domestic or wild), refu- tos 2001, National Research Council 2002a). gia from browsing can be created with fenced Despite their significance to western ecosys- exclosures (Brookshire et al. 2002, Sarr 2002), tems, deciduous woody species have been in provided that sufficient seed or bud banks re- decline (Braatne et al. 1996, Kay 1997, Bartos main. Unfortunately, such exclosures are seldom 2001). Many western riparian systems have available. Yet, even within a heavily browsed been diminished in total area (Swift 1984) while landscape we suggest there will often exist many that remain often have been altered or scattered refugia sites with deciduous woody degraded by various human activities and land species; such sites are often small in area but uses (Wigington and Beschta 2000). may contain a relatively diverse plant commu- While the causes of loss and alteration of nity structure and composition. Where such woody species during a period of increasing refugia have persisted is notable as they typi- Euro-American influence are multiple, high cally occur in locations where there are multi- levels of herbivory from domestic ungulates ple impediments to ungulate access. The im- have often degraded ecosystem structure and portance of these sites is that they provide a function. Such degradation includes impacts glimpse of the potential structure and compo- to habitats of numerous species of vertebrates sition of plant communities where ungulate and invertebrates, various food web interac- herbivory is not of overriding significance and tions, and nutrient cycling (Fleischner 1994, may represent an initial approximation of what Braatne et al. 1996, Belsky and Blumenthal other areas in a landscape might become if 1997, Donahue 1999, Rooney and Waller 2003). herbivory levels were reduced or curtailed. Even where land has been set aside within the Because refugia are often visually different National Park system, native ungulates some- (e.g., high contrast, taller plants, higher plant 1College of Forestry, Oregon State University, Corvallis, OR 97331. 2Corresponding author. 269 270 WESTERN NORTH AMERICAN NATURALIST [Volume 65 densities) relative to the general landscape, servation because of cascading effects upon they are typically easy to locate. In the follow- lower trophic levels (Smith et al. 2003, Ripple ing discussion, we identify numerous types of and Beschta 2004). Refugia created through “impediments” to browsing that have contrib- risk-sensitive foraging involve predator/prey uted to the maintenance of refugia. interactions whereby areas of low browsing Several studies have described the role of intensity occur, either in conjunction with exist- natural physical barriers to animal movement ing physical barriers or independent of them. in creating refugia. At the microsite scale, Changes in prey behavior due to the presence Rooney (1997) described how herbaceous veg- of predators are referred to as predation-risk etation growing on the tops of boulders effects. These behavioral modifications include escaped deer browsing. Schreiner et al. (1996) changes in habitat use, patch selection, and discovered shrub refugia behind log barriers choices of feeding sites (Lima and Dill 1990). created by fallen conifers in Olympic National This process can produce low populations of Park. They found several species of shrubs in herbivores in a predator’s core use area, thus these refugia that successfully produced flow- creating refugia for woody browse species ers and fruit unlike the majority of the shrubs through lower herbivory. For example, in re- growing nearby in the open. They concluded sponse to the presence of predators, researchers that these refugial shrub patches may provide have documented increased concentrations of critical seed sources for recolonization of the ungulates in buffer zones away from both mam- floodplain by species that might otherwise be malian predators (Mech 1977, White et al. 1998, absent. Ripple and Larsen (2001) found that Ripple et al. 2001) and human hunters (Lalib- fallen conifers killed by the 1988 fires in Yel- erte and Ripple 2003). lowstone National Park could be dense enough Predation-risk effects on prey animals, in to provide local refugia, allowing aspen recruit- combination with varying terrain conditions, ment with high levels of ungulate browsing can also create “invisible impediments” to nearby (Fig. 1). Beschta and Ripple (2005) iden- browsing and have apparently been caused by tified increased cottonwood recruitment occur- sport hunters as well as wolves. For example, ring between highways and terrain features St. John (1995) concluded that aspen stands such as steep slopes and rivers that reduced within 500 m of roads were less impacted by the presence of animals. Larsen and Ripple wild ungulates than those farther away, suggest- (2003) discovered a lack of aspen recruitment ing that elk adjusted their foraging behavior to across the northern range in Yellowstone avoid human contact and possible predation National Park except for stands growing in the by humans. Other researchers found that aspen midst of scree deposits. They concluded that were heavily browsed on U.S. Air Force land the scree protected the aspen from ungulate that was utilized year-round by a large elk browsing. The scale of the refugia in the above population but where sport hunting was not case studies ranges from 1 to several thousand permitted. Conversely, this property is sur- square meters. Yet, physical barriers also have rounded by national forest land where hunting been described at much larger scales where is allowed and the aspen stands were mini- terrain features such as mesas and buttes im- mally browsed (McCain et al. 2003). peded ungulate access and created refugia Ripple and Beschta (2003) proposed that, (Jameson et al. 1962, Ambos et al. 2000). following the reintroduction of wolves in Yel- It is important to recognize that the wide- lowstone National Park, a “terrain fear factor” spread loss of major predators such a wolves has been playing an important role in the (Canis lupus) early in the 20th century allowed selective release of cottonwood and willow ungulates to browse with a reduced threat of from long-term browsing suppression by elk. predation. In addition to the often widespread In their predation-risk hypothesis, they sug- effects of domestic ungulates, woody plant gested that elk would increasingly forage at communities can be profoundly affected by sites that allow early detection, avoidance, and native ungulates when top predators are re- successful escape from wolves. They found moved from ecosystems (Leopold et al. 1947, cottonwood and willow to be releasing at Terborgh et al. 1999, Ripple and Larsen 2000, potentially high-risk sites with limited visibil- Beschta 2003, Soulé et al. 2003) and evidence ity of approaching wolves and/or with terrain is growing on the importance of predator con- impediments to escape from an attack, such as 2005] NOTES 271 Fig. 1. Protected aspen sprouts growing among coarse woody debris on the Blacktail Plateau in Yellowstone National Park (example of a physical barrier to browsing). See Ripple and Larsen (2001) for details on aspen recruitment in loca- tions where dead trees have created a jackstraw barrier to ungulate movement. In 2003 the aspen sapling to the left of the white pole was approximately 4 m tall (see arrow), while aspen sprouts growing nearby outside the woody debris were less than 1 m tall. high terraces, steep cutbanks, and nearby gul- represent atypical conditions for pre-European lies (Fig. 2). plant communities. There are several limitations to the use of Realizing the potential limitations of local refugia as reference sites. Because they are
Recommended publications
  • Debris the Science and Changing Perceptions of Dead Trees by Alexander Evans and Robert Perschel
    An Appreciation of Debris The Science and Changing Perceptions of Dead Trees By Alexander Evans and Robert Perschel oarse woody debris. To most people, two Coarse woody debris (CWD) is wood in the forest that’s no of the three words in that phrase have longer part of a living tree. Rather than being dead, this wood negative connotations. Debris is the worst is an important source of life in the forest. Foresters who value offender, suggesting random junk strewn it for its ecological functions have been searching for new terms about. When the debris is coarse, it’s even for CWD, and you’ll hear it referred to as biomass, dead wood, worse – it’s unrefined, it’s big. coarse woody material, and even retained organic matter. VIRGINIA BARLOW 44 Northern Woodlands / Winter 2008 Harry Dwyer, a forester in Fayette, Maine, likens the lan- as a seed bed for trees and plants, a mulch layer, and a slow- guage predicament to that of another formerly maligned mate- release fertilizer. Decomposing fungi depend on dead wood for rial: garden waste. He said, “You could look at a pile of rotting nutrients and moisture, and in turn many trees rely on mutu- vegetables as garbage, or you could note its value and call it alistic relationships with mycorrhizal fungi. Nitrogen fixation compost.” Digging into a rotten log in his woodlot, Dwyer in CWM by microbes (both anaerobic and microaerophyllic displays some of the dark, wet material in his hand. “It doesn’t bacteria) provides this important element in both terrestrial matter what you call this – coarse woody debris, coarse woody and aquatic ecosystems.
    [Show full text]
  • AN ABSTRACT of the THESIS of Douglas William Havlina for The
    AN ABSTRACT OF THE THESIS OF Douglas William Havlina for the degree of Master of Science in Rangeland Resources presented on January 27, 1995 Title: Fire Effects on Vegetation Diversity, Structure, and Successional Dynamics in Shrub-Steppe and Mixed Conifer Environments of the Hells Canyon, Idaho. Abstract approved: The effects of fire severity on post-fire succession and shrub demography were quantified in shrub-steppe grasslands and subalpine forests in the Hells Canyon of the Payette National Forest, Idaho. Following the 1988 Eagle Bar Fire, species frequency, community diversity, fire adaptations, and stand ages were quantified at 12 plots in burned and unburned forests. Pre-fire composition was dominated by Pseudotsuga menziesii, Pinus contorta, Abies grandis, and Abies lasiocarpa in the overstory. Pre- fire basal area ranged from 41 to 80 m 2 ha-1 . Pre-fire stand ages ranged from 71 years in Abies lasiocarpa forests to > 200 years in Pseudotsuga menziesii stands. Fire scenarios which were sampled consisted of: (1) complete stand-replacement fires; (2) partial stand- replacement fires; and (3) unburned forests (control). Partial stand-replacement forests were characterized by significantly higher mean species diversity and richness (H'=3.16, S=36) than complete stand-replacement (H'=2.78, S=27) or unburned forests (H=2.26, S=15). Vegetation preferentially established in burned areas along a gradient of fire severity according to adapted fire guilds. Single-storied forests dominated by Pinus contorta and Abies lasiocarpa typified stand-replacement fire scenarios, with mean ages ranging from 99 to 159 years corresponding to fire return intervals common in this type.
    [Show full text]
  • Influence of Coarse Woody Debris on Seedlings and Saplings in A
    INFLUENCE OF COARSE WOODY DEBRIS ON SEEDLINGS AND SAPLINGS IN A PINUS PALUSTRIS WOODLAND by ALEXANDRA LOGAN JUSTIN L. HART, COMMITTEE CHAIR MATTHEW C. LAFEVOR ARVIND A.R. BHUTA A THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in the Department of Geography in the Graduate School of The University of Alabama TUSCALOOSA, ALABAMA 2020 Copyright Alexandra Logan 2020 ALL RIGHTS RESERVED 2 ABSTRACT Coarse woody debris (CWD) has beneficial effects on plant growth and establishment. Longleaf pine (Pinus palustris Mill.) stands support relatively low amounts of CWD — 2 to 30 m3 ha-1. In April 2011, an EF3 tornado passed through the Oakmulgee Ranger District of the Talladega National Forest in the Fall Line Hills of Alabama. This disturbance resulted in the large addition of CWD to a longleaf pine woodland, and a rare opportunity to analyze how CWD can influence a managed, pine woodland. The goal of this study was to examine the effect of CWD on woody plant richness, density, and growth rate (quantified by height) in a longleaf pine woodland that experienced a catastrophic wind disturbance. A total of three 1 m2 quadrats were established against either side of a piece of CWD (> 3 m in length and ≥ 10 cm in diameter). Another quadrat was established at least 3 m away from the focal CWD piece. For each plot, the presence and height of every woody plant (< 5 cm dbh) were recorded. Sapling density, oak and hickory density, and organic matter were all found to be significantly higher in quadrats adjacent to CWD than away (all p < 0.05).
    [Show full text]
  • Environmental Limits Page 1
    POST Report 370 January 2011 Living with Environmental Limits Page 1 Summary Human well-being is dependent upon assessment approaches. However, where renewable natural resources. Agricultural there is a risk of thresholds being systems, for example, depend upon plant breached and potentially irreversible productivity, soil, the water cycle, the impacts occurring, additional policy nitrogen, sulphur and phosphorus nutrient safeguards to maintain natural resource cycles and a stable climate. Renewable systems within environmental limits are natural resources can be subject to required. biological and physical thresholds beyond which irreversible changes in benefit Managing ecosystems to maximise one provision may occur. These are difficult to particular benefit, such as food provision, define and many are likely to be identified can result in declines in other benefits. only once crossed. An environmental limit The evidence base is not yet sufficient to is usually interpreted as the point or range determine the most effective ways to of conditions beyond which there is a maintain benefit provision within significant risk of thresholds being environmental limits, but a range of policy exceeded and unacceptable changes responses are seeking to optimise multiple occurring.1 benefit provision, including: Biodiversity loss, climate change and a agri-environment schemes range of other pressures are affecting generic measures to enhance renewable natural resources. If biodiversity, which may increase governments do not effectively monitor the the capacity of natural resource use and degradation of natural resource systems to adapt to environmental systems in national account frameworks, change the probability of costs arising from the use of ecological processes to exploiting natural resources beyond increase overall natural system environmental limits is not taken into resilience to address problems account.
    [Show full text]
  • Human Involvement in Food Webs*
    EG35CH01-Strong ARI 13 September 2010 10:20 Human Involvement in Food Webs∗ Donald R. Strong1 and Kenneth T. Frank2 1Department of Evolution and Ecology, University of California, Davis, California 95616; email: [email protected] 2Bedford Institute of Oceanography, Ocean Sciences Division, Dartmouth, Nova Scotia B2Y 4A2, Canada; email: [email protected] Annu. Rev. Environ. Resour. 2010. 35:1–23 Key Words First published online as a Review in Advance on bottom-up, fisheries, intraguild predation, mesopredator, top-down, July 1, 2010 trophic cascade The Annual Review of Environment and Resources is online at environ.annualreviews.org Abstract This article’s doi: Human involvement in food webs has been profound, bringing about 10.1146/annurev-environ-031809-133103 enormous and disproportionate losses of large apex predators on land Copyright c 2010 by Annual Reviews. and in water. The losses have modified or even eliminated concatena- All rights reserved tions of indirect interactions propagating from predators to herbivores 1543-5938/10/1121-0001$20.00 to plants, inter alia. Food webs are a synthesis of bottom-up energy and ∗This article was co-authored by an employee of nutrient flow from plant producers to consumers and top-down regula- a British Commonwealth government as part of tion of producers by consumers. The trophic cascade is the simplest top- his official duties and is therefore subject to down interaction and accounts for a great deal of what is known about Crown Copyright. food webs. In three-link cascades, predators suppress herbivores, re- leasing plants. In longer cascades, predators can suppress smaller meso- by UNIVERSITY OF IDAHO LIBRARY on 03/21/11.
    [Show full text]
  • Bibliography
    Bibliography Abella, S. R. 2010. Disturbance and plant succession in the Mojave and Sonoran Deserts of the American Southwest. International Journal of Environmental Research and Public Health 7:1248—1284. Abella, S. R., D. J. Craig, L. P. Chiquoine, K. A. Prengaman, S. M. Schmid, and T. M. Embrey. 2011. Relationships of native desert plants with red brome (Bromus rubens): Toward identifying invasion-reducing species. Invasive Plant Science and Management 4:115—124. Abella, S. R., N. A. Fisichelli, S. M. Schmid, T. M. Embrey, D. L. Hughson, and J. Cipra. 2015. Status and management of non-native plant invasion in three of the largest national parks in the United States. Nature Conservation 10:71—94. Available: https://doi.org/10.3897/natureconservation.10.4407 Abella, S. R., A. A. Suazo, C. M. Norman, and A. C. Newton. 2013. Treatment alternatives and timing affect seeds of African mustard (Brassica tournefortii), an invasive forb in American Southwest arid lands. Invasive Plant Science and Management 6:559—567. Available: https://doi.org/10.1614/IPSM-D-13-00022.1 Abrahamson, I. 2014. Arctostaphylos manzanita. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory, Fire Effects Information System (Online). plants/shrub/arcman/all.html Ackerman, T. L. 1979. Germination and survival of perennial plant species in the Mojave Desert. The Southwestern Naturalist 24:399—408. Adams, A. W. 1975. A brief history of juniper and shrub populations in southern Oregon. Report No. 6. Oregon State Wildlife Commission, Corvallis, OR. Adams, L. 1962. Planting depths for seeds of three species of Ceanothus.
    [Show full text]
  • The Ecological Role of Coarse Woody Debris an Overview of The
    WORKING PAPER 30 The Ecological Role of Coarse Woody Debris An Overview of the Ecological Importance of CWD in BC Forests 1997 Ministry of Forests Research Program The Ecological Role of Coarse Woody Debris An Overview of the Ecological Importance of CWD in BC Forests Victoria Stevens Ministry of Forests Research Program The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the Government of British Columbia of any product or service to the exlusion of any others that may also be suitable. Contents of this report are presented for discussion purposes only. Citation Stevens, Victoria. 1997. The ecological role of coarse woody debris: an overview of the ecological importance of CWD in B.C. forests. Res. Br., B.C. Min. For., Victoria, B.C. Work. Pap. 30/1997. Compiled by Victoria Stevens for B.C. Ministry of Forests Research Branch 31 Bastion Square Victoria, B.C. V8W 3E7 Copies of this report may be obtained, depending upon supply, from: B.C. Ministry of Forests Forestry Division Services Branch Production Resources 595 Pandora Avenue, 1st Floor Victoria, B.C. V8W 3E7 © 1997 Province of British Columbia The contents of this report may not be cited in whole or in part without the approval of the Director of Research, B.C. Ministry of Forests, Victoria, B.C. ACKNOWLEDGEMENTS Plunging into a subject as complex as ecological roles of coarse woody debris is not an activity lending itself to solitude. This paper has been at least partially digested by a large number of readers and greatly improved by the suggestions of many.
    [Show full text]
  • Contrasting Distribution and Foraging Patterns of Herbivorous and Detritivorous Fshes Across Multiple Habitats in a Tropical Seascape
    Marine Biology (2019) 166:51 https://doi.org/10.1007/s00227-019-3498-0 ORIGINAL PAPER Contrasting distribution and foraging patterns of herbivorous and detritivorous fshes across multiple habitats in a tropical seascape M. Eggertsen1 · D. H. Chacin2 · C. Åkerlund1 · C. Halling1 · C. Berkström1,3 Received: 21 September 2018 / Accepted: 8 March 2019 / Published online: 16 March 2019 © The Author(s) 2019 Abstract Understanding drivers behind patterns of functionally important groups of fshes is crucial for successful management and conservation of tropical seascapes. Herbivorous fshes are the most prominent consumers of marine primary production which can have profound efects on reef resilience. We explored environmental variables afecting distribution and foraging patterns of herbivorous and detritivorous fsh assemblages (siganids, acanthurids and parrotfsh) across distinct shallow-water habitats (coral reefs, macroalgae beds and seagrass meadows) during September–November 2016 at Mafa Island, Tanzania (8°00′S, 39°41′E). We performed underwater visual census to quantify fsh assemblages, measured habitat features, deployed mac- roalgal assays and conducted inventories of grazing scars. Multi-dimensional scaling and mixed-efects linear models were used to evaluate diferences in fsh assemblages and environmental variables infuencing abundance and foraging patterns of fshes. Fish communities of focal functional groups difered among habitats. Abundance of herbivores and detritivores as well as relative browsing and scraping was highest on coral reefs compared to macroalgae and seagrass meadows. Adult fsh were more abundant on coral reefs while juveniles were abundant in macroalgal beds. Coral cover and crustose coralline algal cover had a positive efect on the abundance of fsh in coral reef areas, while macroalgal cover had a negative efect.
    [Show full text]
  • Chronic Over Browsing and Biodiversity Collapse
    Journal of the Torrey Botanical Society 138(2), 2011, pp. 220–224 Chronic over browsing and biodiversity collapse in a forest understory in Pennsylvania: Results from a 60 year-old deer exclusion plot Chandra Goetsch and Jennifer Wigg Department of Biological Sciences, University of Pittsburgh, A234 Langley Hall, Pittsburgh, PA 15260 Alejandro A. Royo and Todd Ristau USDA Forest Service Northern Research Station, Forestry Sciences Lab, P.O. Box 267, Irvine, PA 16329-0267 Walter P. Carson1 Department of Biological Sciences, University of Pittsburgh, A234 Langley Hall, Pittsburgh, PA 15260 GOETSCH, C., J. WIGG (Department of Biological Sciences, University of Pittsburgh, A234 Langley Hall, Pittsburgh, PA 15260), A. A. ROYO,T.RISTAU (USDA Forest Service Northern Research Station, Forestry Sciences Lab, P.O. Box 267, Irvine, PA 16329-0267), AND W. P. CARSON (Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260). Chronic over browsing and biodiversity collapse in a forest understory in Pennsylvania: results from a 60-year-old deer exclusion plot. J Torrey Bot. Soc. 138: 220–224. 2011.—We evaluated the impact of chronic deer over browsing on the diversity and abundance of understory forbs and shrubs within a forest stand in the Allegheny High Plateau Region of Pennsylvania by comparing vegetation inside a 60-year-old exclosure to vegetation within an adjacent reference site. This is the oldest known exclosure in the Eastern Deciduous Forest. Browsing caused the formation of an extremely low diversity herbaceous understory dominated by a single fern species, caused the local extirpation of shrubs, and drove forbs to extremely low abundance (, 0.2% cover m22 vs.
    [Show full text]
  • Student Worksheet Provide an Example of an Herbivore, Carnivore
    Vocabulary and Concepts Review: Student Worksheet Provide an example of an herbivore, carnivore and omnivore that lives in the Great Plains of North America (can be living, or extinct): ____________________________________________________________________________________ What is hypsodonty? List 3 mammals that have hypsodont dentition and aspects of their diet that correspond with needing such specialized teeth. ____________________________________________________________________________________ What is the difference between a savanna and a prairie? Which is characteristic of the North American Great Plains? ____________________________________________________________________________________ Are shrubs and plants short in height more common in open grasslands or wooded forests? How might a diet of these short plants affect tooth wear in herbivores? _______________________________________________________________________________ Why might silica phytoliths be better preserved in the fossil record than blades of grass or leaves? _____________________________________________________________________________________ Provide an example (excluding what was learned about mammalian teeth) of how an organisms’ morphology reflects evolutionary pressures as a result of changes in its environment. _____________________________________________________________________________________ What is the difference between browsing and grazing (food type, eating habit)? _____________________________________________________________________________________ When
    [Show full text]
  • Restore Large Carnivores to Save Struggling Ecosystems
    Restore large carnivores to save struggling ecosystems What? It’s just a flesh wound. Steve Jurvetson We are losing our large carnivores. In ecosystems around the world, the decline of large predators such as lions, bears, dingoes, wolves, and otters is changing landscapes, from the tropics to the Arctic. Habitat loss, persecution by humans and loss of prey have combined to inflict great losses on these populations. In fact more than 75% of the 31 largest carnivore species are declining, and 17 species now occupy less than half their former ranges. Southeast Asia, southern and East Africa, and the Amazon are among areas in which multiple large carnivore species are declining. And with only a few exceptions, large carnivores have already been exterminated from much of the developed world, including areas of Western Europe, and the eastern United States. Top dogs keep ecosystems in order Many of these large carnivore species are endangered and some are at risk of extinction, either in specific regions or entirely. Ironically, they are vanishing just as we are learning about their important ecological effects, which is what led us to write a new paper in the journal Science to document their role. From a review of published reports, we singled out seven species that have been studied for their important ecological role and widespread effects, known as trophic cascades. These are the African lion, leopard, Eurasian lynx, cougar, gray wolf, sea otter and dingo. Based on field research, my Oregon State University co-author Robert Beschta and I documented the impact of cougars and wolves on the regeneration of forest tree stands and riverside vegetation in Yellowstone and other national parks in western North America.
    [Show full text]
  • Does Wolf Presence Reduce Moose Browsing Intensity in Young Forest Plantations?
    Utah State University DigitalCommons@USU Aspen Bibliography Aspen Research 1-30-2018 Does Wolf Presence Reduce Moose Browsing Intensity in Young Forest Plantations? Suzanne T. S. van Beeck Calkoen Swedish University of Agricultural Sciences Dries P. J. Kuijper Polish Academy of Sciences Håkan Sand Swedish University of Agricultural Sciences Navinder J. Singh Swedish University of Agricultural Sciences Sip E. van Wieren Wageningen University Joris P. G. M. Cromsigt Swedish University of Agricultural Sciences Follow this and additional works at: https://digitalcommons.usu.edu/aspen_bib Part of the Agriculture Commons, Ecology and Evolutionary Biology Commons, Forest Sciences Commons, Genetics and Genomics Commons, and the Plant Sciences Commons Recommended Citation van Beeck Calkoen, S. T., Kuijper, D. P., Sand, H. , Singh, N. J., van Wieren, S. E. and Cromsigt, J. P. (2018), Does wolf presence reduce moose browsing intensity in young forest plantations?. Ecography, 41: 1776-1787. doi:10.1111/ecog.03329 This Article is brought to you for free and open access by the Aspen Research at DigitalCommons@USU. It has been accepted for inclusion in Aspen Bibliography by an authorized administrator of DigitalCommons@USU. For more information, please contact [email protected]. doi: 10.1111/ecog.03329 41 1776– 1787 ECOGRAPHY Research Does wolf presence reduce moose browsing intensity in young forest plantations? Suzanne T. S. van Beeck Calkoen, Dries P. J. Kuijper, Håkan Sand, Navinder J. Singh, Sip E. van Wieren and Joris P. G. M. Cromsigt S. T. S. van Beeck Calkoen (http://orcid.org/0000-0002-2574-9056) ([email protected]), N. J. Singh and J.
    [Show full text]